D. Citer-ce,

V. Demambro, H. Courtland, J. Maynard, H. Sun, S. Elis et al., Auteur de correspondance) (2010). Sex-specific regulation of body size and bone slenderness by the acid Version postprint Comment citer ce document

V. Demambro, H. Courtland, J. Maynard, H. Sun, S. Elis et al., Sex-specific regulation of body size and bone slenderness by the acid Comment citer ce document, 2010.

V. Demambro, H. Courtland, J. Maynard, H. Sun, S. Elis et al., Sex-specific regulation of body size and bone slenderness by the acid References, 2010.

I. Ueki, G. T. Ooi, M. L. Tremblay, K. R. Hurst, L. A. Bach et al., Inactivation of the acid labile subunit gene in mice results in mild retardation of postnatal growth despite profound disruptions in the circulating insulin-like growth factor system, Proc Natl Acad Sci, vol.97, issue.12, pp.6868-6873, 2000.

O. V. Fofanova-gambetti, H. V. Kirsch, S. Pihoker, C. Chiu, H. K. Hogler et al., Three novel IGFALS gene mutations resulting in total ALS and severe circulating IGF-I/IGFBP-3 deficiency in children of different ethnic origins, Horm Res, vol.71, issue.2, pp.100-110, 2009.

H. M. Domene, P. A. Scaglia, A. Lteif, F. H. Mahmud, S. Kirmani et al., Phenotypic effects of null and haploinsufficiency of acid-labile subunit in a family with two novel IGFALS gene mutations, J Clin Endocrinol Metab, vol.92, issue.11, pp.4444-4450, 2007.

K. E. Heath, J. Argente, V. Barrios, J. Pozo, F. Diaz-gonzalez et al., Primary acid-labile subunit deficiency due to recessive IGFALS mutations results in postnatal growth deficit associated with low circulating insulin growth factor (IGF)-I, IGF binding protein-3 levels, and hyperinsulinemia, J Clin Endocrinol Metab, vol.93, issue.5, pp.1616-1624, 2008.

H. A. Van-duyvenvoorde, M. J. Kempers, T. B. Twickler, J. Van-doorn, W. J. Gerver et al., Homozygous and heterozygous expression of a novel mutation of the acid-labile subunit, Eur J Endocrinol, vol.159, issue.2, pp.113-120, 2008.

V. Demambro, H. Courtland, J. Maynard, H. Sun, S. Elis et al., Acid-labile subunit deficiency: phenotypic similarities and differences between human and mouse, J Endocrinol Invest, vol.28, issue.5, pp.43-46, 2005.

S. Yakar, C. J. Rosen, W. G. Beamer, C. L. Ackert-bicknell, Y. Wu et al., Circulating levels of IGF-1 directly regulate bone growth and density, J Clin Invest, vol.110, issue.6, pp.771-781, 2002.

S. Yakar, J. L. Liu, B. Stannard, A. Butler, D. Accili et al., Normal growth and development in the absence of hepatic insulin-like growth factor I, Proc Natl Acad Sci U S A, vol.96, issue.13, pp.7324-7329, 1999.

S. Yakar, M. L. Bouxsein, E. Canalis, H. Sun, V. Glatt et al., The ternary IGF complex influences postnatal bone acquisition and the skeletal response to intermittent parathyroid hormone, J Endocrinol, vol.189, issue.2, pp.289-299, 2006.

S. Yakar, J. Setser, H. Zhao, B. Stannard, M. Haluzik et al., Inhibition of growth hormone action improves insulin sensitivity in liver IGF-1-deficient mice, J Clin Invest, vol.113, issue.1, pp.96-105, 2004.

K. J. Jepsen, B. Hu, S. M. Tommasini, H. W. Courtland, C. Price et al., Genetic randomization reveals functional relationships among morphologic and tissue-quality traits that contribute to bone strength and fragility, Mamm Genome, vol.18, issue.6-7, pp.492-507, 2007.

S. M. Tommasini, P. Nasser, and K. J. Jepsen, Sexual dimorphism affects tibia size and shape but not tissue-level mechanical properties, Bone, vol.40, issue.2, pp.498-505, 2007.

S. M. Tommasini, P. Nasser, M. B. Schaffler, and K. J. Jepsen, Relationship between bone morphology and bone quality in male tibias: implications for stress fracture risk, J Bone Miner Res, vol.20, issue.8, pp.1372-1380, 2005.

S. Yakar, E. Canalis, H. Sun, W. Mejia, Y. Kawashima et al., Serum IGF-1 Determines Skeletal Strength by Regulating Sub-Periosteal Expansion and Trait Interactions, J Bone Miner Res, 2009.

K. J. Jepsen, D. E. Pennington, Y. L. Lee, M. Warman, and J. Nadeau, Bone brittleness varies with genetic background in A/J and C57BL/6J inbred mice, J Bone Miner Res, vol.16, issue.10, pp.1854-1862, 2001.

A. M. Parfitt, M. K. Drezner, F. H. Glorieux, J. A. Kanis, H. Malluche et al., Bone histomorphometry: standardization of nomenclature, symbols, and units, J Bone Miner Res, vol.2, issue.6, pp.595-610, 1987.

F. Selker and D. R. Carter, Scaling of long bone fracture strength with animal mass, J Biomech, vol.22, pp.1175-1183, 1989.

K. A. Wikland, Z. C. Luo, A. Niklasson, and J. Karlberg, Swedish population-based longitudinal reference values from birth to 18 years of age for height, weight and head circumference, Acta Paediatr, vol.91, issue.7, pp.739-754, 2002.

M. P. Akhter, U. T. Iwaniec, M. A. Covey, D. M. Cullen, D. B. Kimmel et al., Genetic variations in bone density, histomorphometry, and strength in mice, Calcif Tissue Int, vol.67, issue.4, pp.337-344, 2000.

M. H. Sheng, D. J. Baylink, W. G. Beamer, L. R. Donahue, C. J. Rosen et al., Histomorphometric studies show that bone formation and bone mineral apposition rates are greater in C3H/HeJ (high-density) than C57BL/6J (low-density) mice during growth, Bone, vol.25, issue.4, pp.421-429, 1999.

W. Hogler, C. J. Blimkie, C. T. Cowell, A. F. Kemp, J. Briody et al., A comparison of bone geometry and cortical density at the mid-femur between prepuberty and young adulthood using magnetic resonance imaging, Bone, vol.33, issue.5, pp.771-778, 2003.

N. Pandey, S. Bhola, A. Goldstone, F. Chen, J. Chrzanowski et al., Interindividual variation in functionally adapted trait sets is established during postnatal growth Comment citer ce document

V. Demambro, H. Courtland, J. Maynard, H. Sun, S. Elis et al., Sex-specific regulation of body size and bone slenderness by the acid and predictable based on bone robustness, J Bone Miner Res, vol.24, issue.12, pp.1969-1980, 2009.

S. M. Garn, J. M. Nagy, and S. T. Sandusky, Differential sexual dimorphism in bone diameters of subjects of European and African ancestry, Am J Phys Anthropol, vol.37, issue.1, pp.127-129, 1972.

W. Hogler, C. J. Blimkie, C. T. Cowell, D. Inglis, F. Rauch et al., Sex-specific developmental changes in muscle size and bone geometry at the femoral shaft, Bone, vol.42, issue.5, pp.982-989, 2008.

C. Richman, S. Kutilek, N. Miyakoshi, A. K. Srivastava, W. G. Beamer et al., Postnatal and pubertal skeletal changes contribute predominantly to the differences in peak bone density between C3H/HeJ and C57BL/6J mice, J Bone Miner Res, vol.16, issue.2, pp.386-397, 2001.

S. M. Tommasini, P. Nasser, B. Hu, and K. J. Jepsen, Biological co-adaptation of morphological and composition traits contributes to mechanical functionality and skeletal fragility, J Bone Miner Res, vol.23, issue.2, pp.236-246, 2008.

J. C. Fritton, Y. Kawashima, W. Mejia, H. W. Courtland, S. Elis et al., The insulin-like growth factor-1 (IGF-1) binding protein acid-labile subunit (ALS) alters mesenchymal stromal cell fate, J Biol Chem, 2009.

C. S. Tam, F. De-zegher, S. P. Garnett, L. A. Baur, and C. T. Cowell, Opposing influences of prenatal and postnatal growth on the timing of menarche, J Clin Endocrinol Metab, vol.91, issue.11, pp.4369-4373, 2006.

A. Blogowska, B. Krzyzanowska-swiniarska, D. Zielinska, and I. Rzepka-gorska, Body composition and concentrations of leptin, neuropeptide Y, beta-endorphin, growth hormone, insulin-like growth factor-I and insulin at menarche in girls with constitutional delay of puberty, Gynecol Endocrinol, vol.22, issue.5, pp.274-278, 2006.

, Version postprint Comment citer ce document

V. Demambro, H. Courtland, J. Maynard, H. Sun, S. Elis et al., Sex-specific regulation of body size and bone slenderness by the acid Comment citer ce document, 2010.

V. Demambro, H. Courtland, J. Maynard, H. Sun, S. Elis et al., Auteur de correspondance) (2010). Sex-specific regulation of body size and bone slenderness by the acid Figure 2

, Mean body weight (± s.d) at 4, 8, 12, and 16 weeks of age. (B) Mean femoral length (± s.d.) at 4, 8, and 16 weeks of age. (C) Mean fat composition relative to body weight (%, ± s.d.) at 4, 8, 12, and 16 weeks of age. (D) Mean lean mass relative to body weight (%, ± s.d.) at 4, 8, 12, and 16 weeks of age. *ALSKO males and females have significantly smaller mean values than their respective controls. ?ALSKO males have significantly smaller mean values than male controls, Body size and composition data for control and ALSKO mice. (A)

V. Demambro, H. Courtland, J. Maynard, H. Sun, S. Elis et al., Auteur de correspondance) (2010). Sex-specific regulation of body size and bone slenderness by the acid Figure, vol.3

, Means (± s.d) are presented for (A) Tt.Ar (B) Ct.Ar (C) Ma.Ar and (D) J o at 4, 8 and 16 weeks of age, ALSKO femora

, *ALSKO males and females have significantly smaller mean values than their respective controls. ?ALSKO males have significantly smaller mean values than male controls, Comment citer ce document

V. Demambro, H. Courtland, J. Maynard, H. Sun, S. Elis et al., Sex-specific regulation of body size and bone slenderness by the acid Comment citer ce document, 2010.

V. Demambro, H. Courtland, J. Maynard, H. Sun, S. Elis et al., Sex-specific regulation of body size and bone slenderness by the acid Comment citer ce document, 2010.

V. Demambro, H. Courtland, J. Maynard, H. Sun, S. Elis et al., Sex-specific regulation of body size and bone slenderness by the acid Comment citer ce document, 2010.

V. Demambro, H. Courtland, J. Maynard, H. Sun, S. Elis et al., Sex-specific regulation of body size and bone slenderness by the acid Comment citer ce document, 2010.

V. Demambro, H. Courtland, J. Maynard, H. Sun, S. Elis et al., Sex-specific regulation of body size and bone slenderness by the acid Comment citer ce document, 2010.

V. Demambro, H. Courtland, J. Maynard, H. Sun, S. Elis et al., Sex-specific regulation of body size and bone slenderness by the acid Comment citer ce document, 2010.

V. Demambro, H. Courtland, J. Maynard, H. Sun, S. Elis et al., Sex-specific regulation of body size and bone slenderness by the acid, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02666501