

# Acute metal stress in Populus tremula x P. alba (717-1B4 genotype): leaf and cambial proteome changes induced by Cd2+

Thomas Durand, Kjell Sergeant, Sébastien Planchon, Sabine Carpin, Philippe Label, Domenico D. Morabito, Jean-François Hausman, Jenny Renaut

# ▶ To cite this version:

Thomas Durand, Kjell Sergeant, Sébastien Planchon, Sabine Carpin, Philippe Label, et al.. Acute metal stress in Populus tremula x P. alba (717-1B4 genotype): leaf and cambial proteome changes induced by Cd2+. Proteomics, 2010, 10 (3), pp.349-368. 10.1002/pmic.200900484 . hal-02666523

# HAL Id: hal-02666523 https://hal.inrae.fr/hal-02666523

Submitted on 31 May 2020  $\,$ 

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

# Acute metal stress in *Populus tremula x P. alba (717-1B4 genotype)*: leaf and cambial proteome changes induced by Cd<sup>2+</sup>

3

Durand, Thomas C.<sup>abcd</sup>; Sergeant, Kjell<sup>a</sup>; Planchon, Sébastien<sup>a</sup>; Carpin, Sabine<sup>bc</sup>; Label,
 Philippe<sup>d</sup>; Morabito, Domenico<sup>bc</sup>; Hausman, Jean-François<sup>a</sup>; Renaut, Jenny<sup>a</sup>\*

6

<sup>a</sup> CRP-Gabriel Lippmann, 41 rue du Brill, L-4422 Belvaux, GD, Luxembourg. Department
 8 Environment and Agro-biotechnologies.

- <sup>b</sup> Université d'Orléans, UFR-Faculté des Sciences, Laboratoire de Biologie des Ligneux et des
   Grandes Cultures, UPRES EA 1207, rue de Chartres, BP 6759, 45067 Orléans Cedex 02, France.
- <sup>c</sup> INRA, USC2030 'Arbres et Réponses aux Contraintes Hydrique et Environnementales'
   (ARCHE), 45067 Orléans, France.
- <sup>d</sup> Institut National de la Recherche Agronomique, CS40001 Ardon, 2163 Avenue de la pomme de pin, 45075 Orléans CEDEX 2, France.
- 15 \* To whom correspondence should be addressed. E-mail: renaut@lippmann.lu
- 16
- 17 Acknowledgment :

The authors are grateful to Thomas Udelhoven for his helpful expertise in statistics and
to Vanessa Caruso for English correction.

Thomas Durand was supported by a PhD fellowship of the Luxembourg Ministry of Culture, Higher Education and Research (BFR 05/094) and a National funds for Research grant (AFR)

23 24

- Keywords : Cadmium, Cambium, Fluorescence two-dimensional difference gel
  electrophoresis, Mass spectrometry, Metal stress, Phytoremediation.
- 27

28 Abbreviations: DAP: DNA-binding Aspartyl Protease / PRP: proline-rich protein / PSII :

29 Photosystem 2.

Version postprint

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Proteomics, 2010, 10(3), 349-368

# 30 ABSTRACT

The comprehension of metal homeostasis in plants requires the identification of molecular markers linked to stress tolerance. Proteomic changes in leaves and cambial zone of *Populus tremula x P. alba* (717-1B4 genotype) were analysed after 61 days of exposure to Cd 360 mg.kg<sup>-1</sup> soil dry weight in pot-soil cultures.

The treatment led to an acute Cd stress with a reduction of growth and photosynthesis. Cd stress induced changes in the display of 120 spots for leaf tissue and 153 spots for the cambial zone. It involved a reduced photosynthesis, resulting in a profound reorganisation of carbon and carbohydrate metabolisms in both tissues. Cambial cells underwent stress from the Cd actually present inside the tissue but also a deprivation of photosynthates caused by leaf stress. An important tissue specificity of the response was observed, according to the differences in cell structures and functions.

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Proteomics, 2010, 10(3), 349-368

# 42 INTRODUCTION

43

Cadmium (Cd) is regarded as one of the most toxic heavy metals, responsible for human and plant diseases <sup>[1,2]</sup>. When plant physiology is affected by Cd stress, symptoms are generally chlorosis, necrosis, leaf rolling or drying and growth inhibition <sup>[3]</sup>. Cd toxicity arises notably from competition with Zn for binding sites in biomolecules, *e.g* enzymes or carriers <sup>[4,5]</sup>.

49 Since a few years Salicaceae (e.g. willows and poplars) have emerged as promising 50 candidates in the search for convenient species to achieve phytoremediation of polluted sites <sup>[6]</sup>. Indeed, poplar, whose small genome is now completely sequenced, is a suitable 51 model plant to support molecular studies on stress response's <sup>[7,8]</sup>. Poplar is reported to be 52 able to thrive despite metal contamination, and to accumulate metals, especially cadmium 53 54 <sup>[9]</sup>. Being a perennial species poplar furthermore allows the opportunity to shape an ideal 55 phytoremediator. Year after year accumulation of metals in harvestable woody tissues 56 provides a convenient means of soil clean up combined with the potential of energy 57 production. As a model-tree species poplar can also be used to study the metabolic 58 mechanisms of metal uptake and tolerance in woody species.

59 The plant responses to metal stress are mediated through modifications in gene 60 expression and protein levels. Proteins that participate in metal tolerance response are 61 reported to be involved in the induction of transcription factors, in the protection or 62 restoration of macromolecules and in detoxification activities <sup>[10]</sup>.

Metal homeostasis and detoxification are known to be partly constitutive <sup>[2]</sup>, but 63 inducible parts of these processes can be explored by a proteomic approach. Although 64 65 proteomic research has been conducted on the effects of metals on plants, e.g. on the response to Cd in roots of Oryza sativa<sup>[11]</sup>, in cell cultures of Arabidopsis thaliana<sup>[12]</sup>, in 66 leaves of Spinacia oleracea<sup>[13]</sup> or in roots and shoots of Thlaspi caerulescens<sup>[14]</sup>, a 67 recent review by Ahsan, Renaut & Komatsu<sup>[15]</sup> deplored the limited proteomic 68 investigations on this topic, especially for long-term exposition. Kieffer et al. [16,17] 69 70 recently reported proteome changes in leaves of poplar exposed to Cd up to 56 days 71 under hydroponic conditions.

The comprehension of the tolerance of plants to environmental constraints requires aprofound description of the acting molecules during the response. Typically, a constraint

# *Version définitive du manuscrit publié dans / Final version of the manuscript published in : Proteomics, 2010, 10(3), 349-368*

74 will evoke a stress perception and a stress signalization leading to damage avoidance and 75 repair. For each step of the plant response, some of the involved molecules belong to a 76 generic pattern of response to all biotic/abiotic stresses, while others can be related to one 77 specific stressor. Current research mainly deals with molecules involved in the response 78 to a range of diverse constraining conditions, e.g. chaperones, antioxidants, proline, plant growth regulators, etc. <sup>[18,19,20,21]</sup>. These molecules are responsible for the General 79 Adaptation Syndrome (GAS), initially formulated by Selve in 1951 <sup>[22,23]</sup>. However, one 80 type of stress will not equally affect the dissimilar tissues within an individual. Published 81 82 proteomic studies of plant stress most often concern leaf or root tissues. This is graspable 83 considering that the photosynthetic apparatus is often affected by heavy metal toxicity 84 <sup>[24]</sup>, while roots are directly exposed to the contaminated environment. Yet, other tissues 85 can be considered to complement the analysis. In woody species the cambium activity determines the secondary growth that represents a physical support for the extended 86 87 primary growth of the tree. It also shapes the structure of conductor tissues –number and 88 size of wood vessels and fibers, cellular composition of phloem. Cambium activity 89 eventually influences the production of biomass wherein heavy metals can be 90 accumulated. Despite its importance, the cambium response remains scarcely questioned. Available studies on the cambial tissue generally focus on developmental questions <sup>[e.g.</sup> 91 <sup>25,26]</sup> and few deal with biotic stress <sup>[27]</sup> or abiotic stress <sup>[28]</sup>. 92

A proteomics approach on the responses of plants during exposure to pollutants, *in casus* cadmium, will point out the molecular actors supporting metal intake and also give information about stress-related responses in different tissues. This knowledge will allow the selection or the design of plants that prevent deleterious metal accumulation along the food chain (like cadmium), or, on the contrary, crops that could solve problems of human essential metal deficiencies.

In this study, young poplar plants were exposed to a soil contaminated by the addition of 360 mg Cd.kg<sup>-1</sup> soil dry weight (SDW), corresponding to a total amount of 1 mmol of metal per liter of soil. Ecophysiological parameters were monitored all along the 61 days of exposure to characterise the physiological state of the plant. Metal distribution in the tree was also determined. A subsequent proteome analysis on leaf and cambial tissues

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Proteomics, 2010, 10(3), 349-368

illustrated the acute stress endured by Cd and its strong effect on photosynthesis andcarbon metabolism.

106

# 107 2. MATERIAL AND METHODS

108

# 109 **2.1. Plant material and metal constraints**

Pot-grown *Populus tremula L. x P. alba* L. (*Populus x canescens* (Aiton) Smith) genotype INRA 717-1B4 were obtained as previously described in Durand *et al.* (2009, submitted). Once rooted and 3 months old, poplar plants were pruned and transplanted from 0.3 L pots to 10 L pots filled with a sand - peat moss soil mixture (25:75, v/v, pH 6.9). Cadmium was incorporated in the 10 L soils by uniformly hand mixing.

115 Control soil contained no detectable cadmium. Cadmium contaminated soil contained 116 360 mg Cd.kg<sup>-1</sup> SDW. Soil solution concentrations were determined from 100 g of fresh 117 soil after 20 min of centrifugation at 10,000 g. The supernatant was collected for 118 quantification using a Jobin-Yvon® HR-ICP-AES, as described in <sup>[29]</sup>. Soil solution of 119 metal-exposed plants contained 20.8  $\mu$ M Cd<sup>2+</sup>.

Plants were grown in culture chamber at 21°C, 70% of relative humidity, and with an irradiance of 1000  $\mu$ mol.m<sup>-2</sup>.s<sup>-1</sup> provided during 16 h per day. After 61 days of metal exposure, leaf and woody tissues were collected and frozen in liquid nitrogen and stored at -80°C until protein extraction.

124 125

# 2.2. Protein extraction and sample preparation

126 Four biological replicates corresponding each one to individual plants were used. 127 Leaf proteins were extracted starting from 500 mg of fresh weight collected from the three last fully expanded leaves of one plant. After lyophilisation of the cutting, the bark 128 129 was excised. The cambial zone was then collected by softly scratching the inner face of 130 the bark with a scalpel. Proteins from the cambial zone were extracted from 131 approximately 60 mg of dry tissue of each replicate. Tissues were ground in liquid nitrogen. Proteins were extracted using the TCA-acetone precipitation method described 132 by Damerval *et al* <sup>[30]</sup>. Resolubilisation of the precipitated proteins was carried out in a 133 lysis buffer (7M urea, 2M thiourea, 4% w/v 3-[(3-cholamidopropyl)-dimethylammonio]-134

135 1-propane sulfonate (CHAPS), 30 mM Tris pH 8.5. The protein extracts were quantified
136 using a quantification kit (2D-Quant Kit, GE healthcare) with bovine serum albumin as
137 standard.

After quantification, proteins were labelled by mixing 240 pmol of fluorochromes (CyDyes<sup>TM</sup>, GE Healthcare) with 30  $\mu$ g proteins. For each gel, Cy3 and Cy5 were used for control or treated samples; Cy2 was used for the internal standard consisting of a mix of equal amounts of each sample. A dye swap was used between Cy3 and Cy5 to avoid problems associated with preferential labelling.

- 143
- 144

# **2.3.** Protein separation and relative quantification (2-D DIGE)

Bidimensional electrophoresis was carried out as described in Bohler *et al.* <sup>[31]</sup>, with slight modifications. The isoelectric focusing was carried out on pH 3-10 IPG-strips (24 cm, non linear gradient; GE Healthcare, Little Chalfont, UK) using the IPGphor system from GE Healthcare. Protein samples were cup loaded. The migration was performed at 20°C ( $\leq$  50 µA, 60V for 2 h; gradient from 60 V to 1,000 V for 3h ; hold 1,000 for 1h, gradient from 1,000 to 8,000 for 3 h; hold 8,000 V until 85,000 V.h). Strips were then stored at -20°C.

Prior to second dimension migration, the strips were equilibrated. During equilibration, proteins were reduced by 1% DTT for 15 min and then alkylated by 2.5% (w/v) iodoacetamide for 15 min. The SDS-PAGE was carried out on 12.5% (w/v) of acrylamide-bisacrylamide (37.5/1) gels. Proteins were separated by applying 1.5 W per gel for 20 min, and then 2 W per gel until the migration front reached the end of the gel. After migration and fixing of proteins in the gel, images were captured using a Typhoon Variable Mode Imager 9400 (GE Healthcare).

DeCyder v.6.05.11 software (GE Healthcare) was used to determine differentially expressed proteins with a variation factor of at least 1.3 in abundance (up and down) and a significant Student t-test score (p<0.05). The automated matching was manually confirmed for all the spots that were selected for identification, and that are further discussed. Spots were picked from the gel and digested by trypsin for 6 h at 37°C using an Ettan Dalt Spot Handling Workstation (GE Healthcare) before acquisition of peptide

# Version définitive du manuscrit publié dans / Final version of the manuscript published in : Proteomics, 2010, 10(3), 349-368

mass spectra with a MALDI-TOF-TOF analyser (4800 Applied Biosystems, Foster City,CA, USA).

167

### 168 **2.4. Protein identification.**

169 As the poplar genome is not yet completely annotated and many sequences were only 170 available as ESTs, protein identification was mainly done using the EST-database on an 171 in-house mascot platform. The NCBI poplar EST database used in this study contains 172 419,944 poplar sequences and was downloaded from the NCBI database on 06/11/2009. 173 MS and MS/MS data were also submitted for analysis with a viridiplantae protein 174 database downloaded on 02/17/2009 and containing 1,214,000 sequences. All searches 175 were carried out using a mass window of 100 ppm for the precursor and 0.5 Da for the 176 MS/MS fragments. Up to 2 trypsin miscleavages were accepted. The search parameters allowed for carbamidomethylation of cysteine, oxidation of methionine as well as 177 178 oxidation of tryptophan to kynurenine and double oxidation of tryptophan to N-179 formylkynurenine. During automatic interrogation of databases, the MASCOT score cut-180 off was 77 for NCBI and 65 for EST interrogations. Because all spectra and 181 identifications were manually verified, peptide scores were considered even below the 182 cut-off values for peptide scores. Identifications were validated manually with at least 183 two identified peptides at disparate sites within a protein with a score above homology.

184 Percentage of sequence coverage was given in Tables 1 & 2. Since EST's generally do 185 not represent an entire protein sequence, the authors would like to remark that this value 186 has little significance when identifications were done on EST sequences. Grouping of 187 proteins in biological process was done accordingly to KEGG and Uniprot databases 188 (http://www.genome.jp/kegg; http://www.uniprot.org/). The functions of some proteins were enlightened by the use of InterPro<sup>[32]</sup> (http://www.ebi.ac.uk/interpro/) which 189 190 consists in blasting the amino sequences to the integrated resources of several databases 191 like PANTHER, PROSITE and Gene3D.

In leaf and cambial proteomes, respectively in 2 and 7 spots, more than 1 protein was identified, since this prevents any interpretation about the actual abundance of change in them, biological discussion was not done on these proteins. They are nonetheless presented at the end of Tables 1 & 2.

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Proteomics, 2010, 10(3), 349-368

196

# **2.5. Statistics**

198 Statistical analysis was carried out with 4 biological replicates. The variable used for 199 comparison was the log10 of standardized volume of protein spots in the gels. A Student 200 t-test analysis was carried out in the DeCyder software. The results based on the log10 of 201 standardised volume of protein spots in the gels were provided by the DeCyder software 202 by Student t-test analysis. A false discovery rate correction was applied in the software .

203

# **3. RESULTS**

# **3.1. Leaf proteome profiles.**

The 2D electrophoretic leaf pattern presented 1,023 spots (Figure 1). Among them, 120 spots exhibited a significant absolute variation greater than 1.3-fold between control and treated conditions (p<0.05). The Cd treatment resulted in an increased abundance for 40 protein spots, and a decreased abundance for 80 protein spots. The MS analysis of these spots resulted in the confident identification of 103 proteins, of which 2 were a mix of at least two proteins (Table 1).

Briefly, the significant changes in protein abundance occurred in the following functions (Table 4): photosynthesis (44 protein spots), carbon and carbohydrate metabolism (21), energy metabolism (9), proteins metabolism, catabolism and folding (9), citrate cycle (5), oxidoreduction (6) and glutathione metabolism (2). Other functions that were influenced include an inositol-3-phosphate synthase (spot 572), a potassium channel beta subunit (spot 1300), an auxin-binding protein ABP19a precursor (spot 1756), an alpha tubilin (spot 1192) and a translation elongation factor (spot 225).

When the same protein was identified in several spots, as is for instance the case for Ferredoxin-NADP oxidoreductase in spot 1340, 1332, 1342, 1338, 1365 and 1359, the MS spectra were compared in order to find posttranslational regulatory events. For none of the proteins for which this comparison was done supplementary information was obtained.

224

### **3.2. Cambium proteome profiles.**

# Version définitive du manuscrit publié dans / Final version of the manuscript published in : Proteomics, 2010, 10(3), 349-368

226 The 2D electrophoretic cambium pattern presented 1,144 spots (Figure 2). Among 227 them, 153 exhibited a significant absolute variation greater than 1.3-fold between control 228 and treated conditions (p < 0.05). Compared to control conditions, the Cd treatment 229 resulted in the increased intensity of 47 proteins spots, while 106 spots were less intense. 230 The MS analysis of the differential spots resulted in the confident identification of the 231 proteins in 108 spots among which 7 presented a co-migration of more than 1 protein 232 (Table 2). The remaining 30% of the selected spots are still unidentified because of the 233 weak intensity of the spectra resulting from faintly stained spots. Furthermore, few ESTs 234 corresponding to cambial tissue are available.

235 Among the cambial proteins, 8 spots were identified as 'aspartyl protease family 236 protein' (spots number 398, 913, 996, 1140, 1146, 1157, 1488 and 1495), and 8 others as 237 'nucleoid DNA-binding protein cnd41-like protein' (spots 1106, 1115, 1142, 1148, 1149, 1169, 1177 and 1206). As these two groups of proteins exhibited common MS/MS 238 239 peptides, like 'TYTIVFDGAKER' or "ITASDYIVNVGIGTPKK", an InterProscan 240 interrogation was realised. Both of them designated proteins that possess a chloroplast 241 nucleoid DNA-binding domain as well as an aspartyl peptidase domain. Therefore, they 242 were gathered in the Tables 2 and 4 under the label "DNA-binding aspartyl peptidase".

243 Briefly, the significant changes in protein abundance specifically induced by Cd 244 treatment occurred in the following functions (Table 4): carbon and carbohydrate 245 metabolisms (22), cytoskeleton & cell wall (18), DNA binding peptidase (16), protein 246 metabolism, catabolism and folding (16), transcription and translation factors (8), 247 antioxidation and stress-related functions (6), lipid metabolism (5), the citrate cycle (3), 248 and others functions among which a cupin family protein (spot 1179), two beta-subunits 249 of K<sup>+</sup> channels (spot 1375, 1376) and two putative adenosine kinase (spots 1129 and 250 1135) were down-regulated in Cd-treated poplars whereas a Phi-1 (spot 1492), an eukarvotic initiation factor 4A (spot 880) and a DEAD box RNA helicase (spot 877) were 251 252 up-regulated in Cd-treated poplars.

253

Version postprint

254

# **4. Discussion.**

Young *Populus tremula x P. alba* 717-1B4 genotype plants were exposed to 360 mg Cd.kg<sup>-1</sup> SDW, this resulted a in soil solution concentrations of 20.8  $\mu$ M Cd<sup>2+</sup>. An insoil experiment permitted to follow the dynamic ion partition between soil and plant, which may be a determining factor in the response of the plant <sup>[33,34]</sup>. The study aimed at analyzing tissues that have grown and developed under metal constraints. This allowed to focus on distal equilibrium rather than on the alarm phase of stress. Thus, control and stressed plants were compared after 61 days of cadmium exposure.

The Cd treatment resulted in a Cd accumulation in the leaves (84 mg Cd.kg<sup>-1</sup>) and in the cambial zone (123 mg Cd.kg<sup>-1</sup>). The treatment drastically reduced the growth of the plants. Net photosynthesis and stomatal conductance were inhibited. Increases in the content of K<sup>+</sup>, Ca<sup>2+</sup>, Mg<sup>2+</sup> and Zn<sup>2+</sup> in tissues, especially in leaves, were observed. These results are summarized in the Table 3 (adapted from <sup>[29]</sup>). The physiological data demonstrate that Cd<sup>2+</sup> triggered an acute stress in poplar plants from which ensues important changes in leaf and cambial proteome (Figures 1 & 2).

270

271

### 4.1. Leaf proteome response to Cd

The proteomic data gave two levels of information that can hardly be distinguished. Some changes occurred as a consequence of the stress endured, while others constitute the concrete and active response of the plant defense system. The Impact Factor (IF) on protein abundance was calculated as the ratio of the volume of protein spots between treated and control conditions.

In leaf and cambial tissues the cadmium stress mainly affected the carbon metabolism. In the leaf, negative IF was salient on the carbon fixation, especially on ribulose-1,5bisphosphate carboxylase/oxygenase (RuBisCO) and RuBisCO activase. Other proteins involved in the Calvin Cycle were also affected (spots 284, 1116, 1120, 1124, 1127, 1566, 1571). Additionally 3 out of 4 spots wherein carbonic anhydrase was identified decreased in intensity in Cd-treated plants (spots 1592, 1598, 1616, 1660).

These data are consistent with our previous results, which describe the inhibition of CO<sub>2</sub> assimilation under Cd stress, which was mainly unrelated to stomata closure <sup>[29]</sup>. The literature diversely reports on the stomatal response to Cd stress, although stomata closure is often regarded as a typical response <sup>[35,36,37]</sup>. Shi and Cai <sup>[38]</sup> observed a Cd-

# Version définitive du manuscrit publié dans / Final version of the manuscript published in : Proteomics, 2010, 10(3), 349-368

induced xerophytes-like leaf morphology with more frequent but smaller stomata, accompanied by a reduced stomatal conductance in peanut (*Arachis hypogaea*). On the contrary Zhu, Macfie & Ding <sup>[39]</sup> reported that Cd-exposed *Brassica juncea* showed fewer although larger stomata. In both cases, the reduced stomatal aperture only partly explained the decreased photosynthetic activity.

292 Whatever the stomatal response, the Cd toxicity mostly arises through other processes 293 than gas exchange. In this study, the strongest negative influence of Cd on spot intensity 294 was observed for photosynthesis-related proteins. This reduced intensity was particularly 295 observed for proteins implied in the electron transport: chlorophyll a/b binding proteins 296 (10 spots down regulated, with IF from -2.08, spot 1584, to -11.02, spot 1517, Table 1), 297 Oxygen Evolving Enhancer (50EE1 spots and 5 OEE2 spots, i.e 33 kDa and 23 kDa 298 subunits respectively, all down regulated, with IF from -2.75, spot 1456, to -7.03, spot 299 1441) and ferredoxin-NADP oxidoreductase (5 spots down-regulated, e.g. spot 1340, 2 300 other up regulated, e.g. spot 1338). The decrease of the photosynthetic activity, inferred 301 from the diminished  $CO_2$  assimilation (Table 4) is further suggested by the drop in 302 abundance of a FtsH protease 8 which contributes to the turnover of the Photosystem II D1 protein <sup>[40]</sup>. These results incline to show a major impact on proteins of the PSII, 303 304 which is contradictory with a recent study on spinach where PSI was described as more sensitive to Cd<sup>2+ [4]</sup>. Among the 5 ATPase spots differentially expressed, 3 were down-305 306 regulated (spots 620, 632 and 633), all of them chloroplastic ATPase. The 2 up-regulated 307 ATPase are localized in the mitochondrion, according to the databases (spots 594 & 599). 308 This suggests that photosynthetic processes are inhibited by Cd stress, while respiration, 309 on the contrary, is promoted. Supporting the latter, the increase in quantity of a succinate 310 dehydrogenase spot was recorded (spot 418). This enzyme takes part in the mitochondrial 311 respiratory chain. Changes in the abundance of TCA cycle enzymes, increased 312 accumulation of citrate synthase (spots 902, 903) and decreased abundance of malate 313 dehydrogenase (spots 1200, 1316), do not result in a consensus on how the respiration is 314 affected during Cd stress, but confirm that there is an effect. Consistently with an 315 increased respiration concomitant to a suppressed photosynthesis, an induction of 316 glycolysis-involved enzymes was observed: UDP-glucose pyrophosphorylase (spot 597), 317 glycosyl hydrolase family 38 protein (spot 553), 3-phosphoglycerate kinase (spot 1051).

# Version définitive du manuscrit publié dans / Final version of the manuscript published in : Proteomics, 2010, 10(3), 349-368

Such a relation between suppressed photosynthesis and stimulated respiration from glucose catabolism in leaves was previously reported under Cd stress <sup>[41]</sup>, ozone stress <sup>[42]</sup>, drought and heat stress <sup>[43]</sup>.

321 Beside the inhibition of the carbon and carbohydrate metabolism, the analysis of the 322 leaf proteome gives clues of an inhibited protein metabolism. The proteome change 323 patterns suggest reduced protein synthesis (aminomethyltransferase, spot 1290, and 324 translation elongation factor EF-G, spot 225, inhibited), reduced protein transport (2 325 nascent polypeptide associated complex alpha chain inhibited, spots 1518 and 1752) and 326 reduced protein degradation (proteasome subunit PRGB inhibited, spot 1678). 327 Modifications of protein processes are often a way to avoid damages or to ensure 328 replacement of damaged molecules. Nevertheless, in this case, the observed changes 329 rather resulted from supply shortage due to a reduced primary metabolism in a leaf tissue 330 whose growth was heavily inhibited. Interestingly the strongest IF in the leaf proteome 331 was that of a phosphoglycerate dehydrogenase (+ 36.7, spot 548). This enzyme, involved 332 in the synthesis of several amino acids like glycine, serine or threonine, might also play a role in the glutathione production. 333

334 Changes in the glutathione metabolism are widely reported to be part of most plant response to Cd <sup>[44,45,46,16]</sup>. Direct measurement of this metabolism was not performed, but 335 336 indirect hints may nonetheless be considered. Two glutathione-S-transferase were up-337 regulated (spot 1659 and 1667), as was a formate dehydrogenase (spot 1061); its role is 338 the production of reducing power (NADH). A GDP-mannose 3,5-epimerase/ NAD 339 binding protein (spot 936), implied in the ascorbate synthesis, was up-regulated. 340 Ascorbate and glutathione are coordinated in the cell by the Halliwell-Asada Cycle. 341 Interestingly, the strongly induced (IF+16.7, spot 1637) 1-cys peroxiredoxin is a bifunctional enzyme with phospholipase A2 and glutathione peroxidase activities <sup>[47]</sup>. 342 343 This denotes, as expected, an impact of Cd on the redox status of the cell, as confirmed 344 by the abundance of changes in a type 2 peroxiredoxin (IF-2.09, spot 1821). This impact 345 could explain the changes of protein folding-involved HSP 70 (IF-1.59, spot 1011, and +1.6, spot 357) and chloroplast chaperonin 21 (IF-2.23, spot 1635). This could also 346 347 indicate an impact of Cd on the integrity of membranes, since one inositol-3-phosphate synthase (IF-1.99, spot 572) is negatively affected. These changes, as well as the decrease 348

# Version définitive du manuscrit publié dans / Final version of the manuscript published in : Proteomics, 2010, 10(3), 349-368

of an alpha tubulin (IF-2.94, spot 1192) might also be connected to the leaf growth
inhibition in spite of a sampling realized on fully expanded leaves. Indeed, the Cd-treated
sampled leaves presented a significantly smaller size than control.

352 A stimulated potassium channel beta subunit (IF+1.6, spot 1300) converged with 353 previous results showing a significant alteration of potassium homeostasis under Cd stress <sup>[29]</sup>. The [K<sup>+</sup>]<sub>leaves</sub> increased 2.3-fold compared to control plants (Table 4). In the 354 355 cambial zone, on the contrary, two beta-subunit of  $K^+$  channels decreased in quantity; 356 linked to the 48% reduced  $[K^+]_{cutting}$ . Only few reports on the regulation of mineral 357 homeostasis under Cd stress are available in the literature. A recently published paper indicated no change in K<sup>+</sup> and Mg<sup>2+</sup> content in leaves of Cd-tolerant mungbean (Vigna 358 *radiata*) under Cd exposure <sup>[48]</sup>. To our knowledge neither the mobilization of  $K^+$  in 359 leaves in response to Cd, nor the implication of a potassium channel were reported so far. 360

It is not surprising that Cd disturbs metal homeostasis, even if proteomic data give little indication on it. For instance the 2-fold increase of  $[Mg^{2+}]_{leaves}$  (Table 4) can be linked to the instability of photosynthesis proteins like the rubisco activase that often have  $Mg^{2+}$  as cofactor. The increased  $[Mg^{2+}]$  could be needed to compete with the toxic  $Cd^{2+}$  in order to reduce proteins misfolding and inactivation.

The comparison of these results with those from a previous hydroponic poplar exposure to Cd <sup>[17,16]</sup> exhibits some common traits that were underlined above, but also some differences. Hydroponic and soil conditions partly affect plant physiology in differential ways, notably metal bioavailability. This could account for a part of these differences in the proteomic response.

For instance, a chitinase (spot 1552) was the sole identified pathogenesis-related (PR) protein affected by Cd in leaves in this study, whereas this type of proteins was shown to accumulate, especially on the long term (day 56), in Kieffer's articles <sup>[17,16]</sup>. Cdresponsive proteins implied in oxidoreduction were more numerous in leaf than in cambial zone, with an overall negative impact of the stress. When comparing with exposure to Cd in a hydroponic system, it appears that these protein functions are more responsive on a shorter time scale (7-14 days) than on 56 days.

378

# **4.2. Cambial proteome response to Cd**

# Version définitive du manuscrit publié dans / Final version of the manuscript published in : Proteomics, 2010, 10(3), 349-368

380 As in leaf, the carbon metabolism is the principal biological process altered in cambial 381 proteome in response to Cd. The differentially expressed proteins are partly 382 corresponding to the same functions as in leaf (e.g. 3 malate dehydrogenase, spots 1268, 383 1290, 1336; 1 triosphosphate isomerase, spot 759, and 1 UDP glucose pyrophospho-384 rylase, spot 752, all of them were inhibited in the cambial zone). In addition to these 385 proteins, the overall changes linked with carbohydrate metabolism indicate an impact on 386 glycolysis and glycogenesis. Five spots of enolase were down-regulated (e.g. spot 784, 387 798, 800, 802, 816). Three spots of UDP glucose dehydrogenase (spots 744, 752, 809), 388 one phosphofructokinase family protein (spot 851), one 2,3-bisphosphoglycerate-389 independent phosphoglycerate mutase (spot 526) and one fructokinase (spot 1202) 390 decreased, whereas 2 alcohol dehydrogenase (spots 1069 & 1070) increased in quantity. 391 Two spots of alpha-D-xylosidase (spots 288 & 1892) were more intensively stained. This enzyme is reported to be analogous to alpha glucosidase <sup>[49]</sup>. Hence the overall 392 393 carbohydrate metabolism was reduced.

In cambial zone as in the leaf, the great disturbance in the carbohydrate metabolism is obviously a distal consequence of Cd stress. A previous work on poplar response to Cd showed changes in sugars content <sup>[17]</sup>. Such changes, beyond stress symptomatology, probably take part in the sensing and signaling of the constraint <sup>[50]</sup> even if the alarm phase is very likely to have ceased before day 61. Most sugars are known to improve osmoprotection during stress ; this is a role they could also play in the metal stress <sup>[51]</sup>.

400 The protein metabolism is the second biological process influenced by Cd stress in the 401 cambial zone. Protein synthesis was reduced, as attested by the decreased abundance of 4 402 spots containing methionine synthase (spots 381, 383, 385, 391), 3 spots containing S-403 adenosylmethionine synthetase (spots 881, 885, 891), an O-acetylserine (thiol)lyase (spot 404 1240), and a 60S acidic ribosomal protein P0 (spot 1302). There was also one 405 differentially displayed spot of eukaryotic initiation factor 4A (spot 902), and 3 others of 406 elongation factor  $1-\gamma$  (spots 332, 892, 911). One calreticulin-1 (spot 715) and 3 protein 407 disulfide-isomerase precursors (spots 537, 541, 1161), related to protein folding exhibited 408 a reduced abundance. Proteolysis was also affected, with the decreased abundance of two 409 proteasome subunits (spots 896 & 1555) and of a Zn-dependent leucine aminopeptidase 410 (spot 796), and also 2 more abundant alpha-mannosidase (spots 390 and 433) involved in

14

# *Version définitive du manuscrit publié dans / Final version of the manuscript published in : Proteomics, 2010, 10(3), 349-368*

the vacuolar degradation of glycoproteins. So protein metabolism, folding and catabolismappeared to be impaired by Cd treatment.

413 Cd-stress also induced changes in proteins involved in cell structure and cell wall, 414 hence related to the growth function of the meristem. Two spots of rhamnose 415 biosynthesis 1 (spots 480, 487) were less abundant, one was more abundant (spot 481); 416 this enzyme participates to the production of rhamnose, an important constituent of the cell wall <sup>[52]</sup>. Also in relation with cell wall synthesis, 3 spots of phenylcoumaran 417 418 benzylic ether reductase dropped in intensity (spots 1319, 1323, 1340). This enzyme is strongly associated with phenylpropanoid biosynthesis in lignifying cells of poplar<sup>[53]</sup>. 419 420 One cinnamoyl-CoA reductase (spot 1324), involved in the synthesis of lignin and a leucine rich repeat protein (spot 1317), also implied in cell wall synthesis <sup>[54]</sup> decreased in 421 422 amount. Two spots of reversibly glycosylated polypeptides (spots 1168 & 1187) dropped in intensity: these proteins, supposed to be plasmodesmata-associated <sup>[55]</sup> are linked to 423 424 cell elongation and related to cell wall formation, even if their precise role in the cell 425 remains unsolved <sup>[56]</sup>. Consistently with an inhibition of growth, 2 spots containing 426 adenosine kinase (spots 1129 & 1135), implied in nucleic acid synthesis, exhibited lower 427 content.

According to Garnier et al.<sup>[57]</sup>, Cd cytotoxicity arises notably through three waves of 428 429 oxidative stress in tobacco cells. In the present study, in cambial tissue as it was the case 430 in leaves, the redox balance appears to be disturbed. A class III peroxidase (spot 1137) 431 was more abundant. Two 6-phosphogluconate dehydrogenase family proteins (spots 908 432 & 909), involved in the glutathione metabolism, decreased in amount, whereas a 433 glutathione-S-transferase was more abundant (spot 1657). The lower accumulation of a 434 glutamate decarboxylase (spot 796) was observed, but a putative leucine aminopeptidase 435 was identified in the same spot, preventing any interpretation concerning this calmodulin-436 binding protein that produces GABA ( $\gamma$ -aminobutyric acid).

437

The suppression of cytoskeletal-linked proteins such as  $\alpha$  and  $\beta$  chain tubulin (7 spots down regulated, e.g. spot 772) or actin (spots 977, 990) in cadmium exposed poplar confirms the main role of cambium as an actively growing tissue, and the different growth rates between control and exposed plants. Two spots of glycine-rich RNA-

# Version définitive du manuscrit publié dans / Final version of the manuscript published in : Proteomics, 2010, 10(3), 349-368

442 binding protein (spots 1836 & 1838) appeared differentially expressed. This protein 443 family of post-transcriptional regulators has been showed playing a role in cold acclimation of *Arabidopsis*<sup>[58]</sup>. Cd induced antagonistic changes in 2 putative proline-444 445 rich protein (PRP) (spots 926 & 1057). These cell wall structural proteins are reported to accumulate under water deficit in *Phaseolus vulgaris* cells <sup>[59]</sup>. When the respective EST 446 sequences for these spots were used in BLAST analysis, the results indicated that they 447 448 contain a "GDSL" motif close to the N-terminus. In addition 2 GDSL-motif 449 lipase/hydrolase family protein spots decreased in amount (spots 572 & 576). These proteins could have a role in the degradation of complex polysaccharides <sup>[60,61]</sup>. The 450 GDSL family has been repeatedly reported to be implied in diverse stress responses <sup>[62]</sup>. 451

452 Among the 159 Cd-affected proteins in the cambial zone, 7 have Zn as cofactor (spots 453 796, 1069, 1070, 537, 541, 1161, 715), and 4 others potentially binds Zn (1302, 1836, 454 1838, 1179). All of them, except the 2 alcohol dehydrogenase and one of the 2 glycine-455 rich RNA-binding protein were reduced in quantity. In the leaf proteome 7 out of 114 456 identified Cd-affected proteins needs Zn for functioning (spots : 435, 1548, 1563, 1592, 1598, 1616, 1660). When compared to the counted 2367 Zn-related proteins of A. 457 *thaliana* <sup>[63]</sup>, out of 159,162 entries in database for this species (according to "porgn: 458 txid3702" request on http://www.ncbi.nlm.nih.gov), the present proportion of Zn-related 459 460 proteins affected by Cd stress did not clearly suggest a particular and quantitative 461 involvement of them in the response.

The quantitatively most prominent information about cambial proteome response 462 463 concerns plastidial DNA-binding aspartyl peptidase (DAP). Increased abundance in 464 proteolytic enzymes has already been observed in studies on poplar leaves and roots 465 under Cd exposure, but no influence on the abundance of DAP in this study under hydroponic condition was observed <sup>[16]</sup>. Sixteen DAP spots showed a differential 466 467 expression under Cd stress (e.g. spot 1140), 12 were up-regulated, with IF up to 5.05 (spot 398). Kato et al. <sup>[64]</sup> reported a link between nucleoid DNA-binding protein cnd41-468 469 like protein – which is a DAP – and the degradation of RuBisCO in tobacco leaves during 470 senescence. Yet no differences in the expression of DAP were observed in the leaves of 471 poplar plants. Although some cambium cells express photosynthetic genes, including at least RuBisCO subunits <sup>[65]</sup>, it seems unlikely that RuBisCO degradation plays such a 472

# Version définitive du manuscrit publié dans / Final version of the manuscript published in : Proteomics, 2010, 10(3), 349-368

major role in cambial response to Cd so as to involve about 20% of the identifiedproteome changes. Therefore, the precise role of these proteins remains intriguing.

The proteomic changes described in this study, when compared with the literature, are implied in other constraints as part of a generic stress pattern and do not show any Cd- or even metal-stress specificity <sup>[66,67,31,68]</sup>. This is not the case of the overexpression of DAP which constitutes a putative Cd-specific response of cambial tissue

This study focused on young fully developed leaves, is it probable that other leaf levels would exhibit nuances in their response profiles, for it is known that stress response depends on the age of the tissue <sup>[69]</sup>, that cadmium affects more strongly basal leaves of spinach <sup>[4]</sup>, and that some plants achieve tolerance towards metals by preferential storage in organs, tissues, cells or organelles <sup>[70,13]</sup>. We besides reported that lack of compartmentalization could be linked to *P. tremula* x *P. alba* sensitivity to Cd<sup>2+</sup> <sup>[71]</sup>.

# 487

486

# 7 Conclusion

In leaves containing 84 mg Cd.kg<sup>-1</sup>, the Cd toxicity principally impaired photosynthesis and primary metabolism. Consequently, primary growth was reduced. The resulting loss of photosynthates in all plant tissues, like cambium, partly accounts for the decreased activity of these tissues. So, cambial proteome changes resulted in part from a systemic toxicity, and in part from the 123 mg Cd.kg<sup>-1</sup> present inside the tissue. The proteomics data presented here showed contrasted responses to Cd between leaf and cambial zone.

It now seems important to explore whether the patterns of the proteome response of the different tissues persist whatever the constraint (*e.g.* under drought or heat stress). If so, the General Adaptation Syndrome description for plant under stress could be enriched with tissue-localized markers.

Comment citer ce document : **nuscrit d'auteur Author manuscript**anchon, S**Manuscrit d'auteur Author manuscript**, J.-F., **Manuscrit d'auteur / Author manusc** Renaut, J. (2010). Acute metal stress in Populus tremula x P. alba (717-1B4 genotype): leaf and cambial proteome changes induced by Cd2+. Proteomics, 10 (3), 349-368. DOI : 10.1002/pmic.200900484

| 499                      |     | References                                                                                                                                                                                                                                                                                                                    |
|--------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 500<br>501<br>502<br>503 | 1.  | Cui, Y., Zhu, Y. G., Zhai, R., Huang, Y., Qiu, Y., and Liang, J., Exposure to metal mixtures and human health impacts in a contaminated area in Nanning, China. Environment International. 2005, <i>31</i> , 784-790.                                                                                                         |
| 504<br>505               | 2.  | Sanita di Toppi, L. and Gabbrielli, R., Response to cadmium in higher plants.<br>Environ exp Bot. 1999, <i>41</i> , 105-130.                                                                                                                                                                                                  |
| 506<br>507<br>508<br>509 | 3.  | <ul> <li>Cosio, C., Vollenweider, P., and Keller, C., Localization and effects of cadmium in leaves of a cadmium-tolerant willow (<i>Salix viminalis L.</i>): I.</li> <li>Macrolocalization and phytotoxic effects of cadmium. Environ exp Bot. 2006, <i>58</i>, 64-74.</li> </ul>                                            |
| 510<br>511<br>512        | 4.  | Fagioni, M., D'Amici, G. M., Timperio, A. M., and Zolla, L., Proteomic analysis of multiprotein complexes in the thylakoid membrane upon cadmium treatment. J Prot Res. 2009, <i>8</i> , 310-326.                                                                                                                             |
| 513<br>514               | 5.  | Shute, T. and Macfie, S. M., Cadmium and zinc accumulation in soybean: A threat to food safety? Science of the Total Environment. 2006, <i>371</i> , 63-73.                                                                                                                                                                   |
| 515<br>516<br>517<br>518 | 6.  | Unterbrunner, R., Puschenreiter, M., Sommer, P., Wieshammer, G., Tlustos, P.,<br>Zupan, M., and Wenzel, W. W., Heavy metal accumulation in trees growing<br>on contaminated sites in Central Europe. Environ Pollut. 2007, <i>148</i> , 107-<br>114.                                                                          |
| 519<br>520<br>521<br>522 | 7.  | Renaut, J., Bohler, S., Hausman, JF., Hoffmann, A. A., Sergeant, K., Nagib, A.,<br>Jolivet, Y., and Dizengremel, P., The impact of atmospheric composition on<br>plants. A case study of ozone and poplar. Mass Spectrom Rev. 2008, 28,<br>495-516.                                                                           |
| 523<br>524<br>525<br>526 | 8.  | Caruso, A., Chefdor, F., Carpin, S., Depierreux, C., Delmotte, F. M., Kahlem, G.,<br>and Morabito, D., Physiological characterization and identification of genes<br>differentially expressed in response to drought induced by PEG 6000 in<br><i>Populus canadensis</i> leaves. J Plant Physiol. 2008, <i>165</i> , 932-941. |
| 527<br>528<br>529        | 9.  | <ul> <li>Robinson, B. H., Mills, T. M., Petit, D., Fung, L. E., Green, S. R., and Clothier, B.</li> <li>E., Natural and induced cadmium-accumulation in poplar and willow:<br/>Implications for phytoremediation. Plant Soil. 2000, 227, 301-306.</li> </ul>                                                                  |
| 530<br>531               | 10. | Hall, J. L., Cellular mechanisms for heavy metal detoxification and tolerance. J exp<br>Bot. 2002, <i>53</i> , 1-11.                                                                                                                                                                                                          |
| 532<br>533<br>534<br>535 | 11. | Aina, R., Labra, M., Fumagalli, P., Vannini, C., Marsoni, M., Cucchi, U., Bracale,<br>M., Sgorbati, S., and Citterio, S., Thiol-peptide level and proteomic changes<br>in response to cadmium toxicity in <i>Oryza sativa</i> L. roots. Environ exp Bot.<br>2007, 59, 381-392.                                                |

Version définitive du manuscrit publié dans / Final version of the manuscript published in : Proteomics, 2010, 10(3), 349-368

| 536<br>537<br>538<br>539<br>540 | 12. | <ul> <li>Sarry, JE., Kuhn, L., Ducruix, C., Lafaye, A., Junot, C., Hugouvieux, V., Jourdain, A., Bastien, O., Fievet, J. B., Vailhen, D., Amekraz, B., Moulin, C., Ezan, E., Garin, J., and Bourguignon, J., The early responses of <i>Arabidopsis thaliana</i> cells to cadmium exposure explored by protein and metabolite profiling analyses. Proteomics. 2006, <i>6</i>, 2190-2199.</li> </ul> |
|---------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 541<br>542<br>543               | 13. | Fagioni, M. and Zolla, L., Does the different proteomic profile found in apical and basal leaves of spinach reveal a strategy of this plant toward cadmium pollution response? J Prot Res. 2009, <i>8</i> , 2519-2529.                                                                                                                                                                             |
| 544<br>545<br>546<br>547        | 14. | Tuomainen, M. H., Nunan, N., Lehesranta, S. J., Tervahauta, A. I., Hassinen, V. H.,<br>Schat, H., Koistinen, K. M., Auriola, S., McNicol, J., and Kärenlampi, S. O.,<br>Multivariate analysis of protein profiles of metal hyperaccumulator <i>Thlaspi</i><br><i>caerulescens</i> accessions. Proteomics. 2006, <i>6</i> , 3696-3706.                                                              |
| 548<br>549<br>550               | 15. | Ahsan, N., Renaut, J., and Komatsu, S., Recent developments in the application of proteomics to the analysis of plant responses to heavy metals. Proteomics. 2009, <i>9</i> , 2602-2621.                                                                                                                                                                                                           |
| 551<br>552<br>553               | 16. | Kieffer, P., Schröder, P., Dommes, J., Hoffmann, L., Renaut, J., and Hausman, J. F.,<br>Proteomic and enzymatic response of poplar to cadmium stress. J<br>Proteomics. 2009, 72, 379-396.                                                                                                                                                                                                          |
| 554<br>555<br>556<br>557        | 17. | Kieffer, P., Planchon, S., Oufir, M., Ziebel, J., Dommes, J., Hoffmann, L.,<br>Hausman, J. F., and Renaut, J., Combining proteomics and metabolite<br>analyses to unravel cadmium stress-response in poplar leaves. J Prot Res.<br>2009, 8, 400-417.                                                                                                                                               |
| 558<br>559<br>560               | 18. | Wang, W., Vinocur, B., Shoseyov, O., and Altman, A., Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 2004, <i>9</i> , 244-251.                                                                                                                                                                                                        |
| 561<br>562                      | 19. | Trovato, M., Mattioli, R., and Costantino, P., Multiple roles of proline in plant<br>stress tolerance and development. Rendiconti Lincei. 2008, 19, 325-346.                                                                                                                                                                                                                                       |
| 563<br>564<br>565               | 20. | Wasternack, C., Jasmonates: an update on biosynthesis, signal transduction and action in plant Stress Response, Growth and Development. Annals of Botany. 2007, mcm079.                                                                                                                                                                                                                            |
| 566<br>567<br>568               | 21. | Foyer, C. H. and Noctor, G., Oxidant and antioxidant signalling in plants: a re-<br>evaluation of the concept of oxidative stress in a physiological context. Plant<br>Cell Environ. 2005, 28, 1056.                                                                                                                                                                                               |
| 569                             | 22. | Selye, H., The General-Adaptation-Syndrome. Ann Rev Med. 1951, 2, 327-342.                                                                                                                                                                                                                                                                                                                         |
| 570<br>571<br>572               | 23. | Leshem, Y. Y., Kuiper, P. J. C., Erdei, L., Lurie, S., and Perl-Treves, R., Do Selye's mammalian "GAS" concept and "co-stress" response exist in plants? Ann NY Acad Sci. 1998, <i>851</i> , 199-208.                                                                                                                                                                                              |

19

| 573<br>574<br>575<br>576               | 24. | Küpper, H., Parameswaran, A., Leitenmaier, B., Trtílek, M., and Šetlík, I.,<br>Cadmium-induced inhibition of photosynthesis and long-term acclimation to<br>cadmium stress in the hyperaccumulator <i>Thlaspi caerulescens</i> . New Phytol.<br>2007, <i>175</i> , 655-674.                                                                                                                                                                                                                                                                   |
|----------------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 577<br>578<br>579<br>580<br>581        | 25. | Celedon, P. A. F., de Andrade, A., Meireles, K. G. X., Costa da Cruz Gallo de<br>Carvalho, M., Gregorio Gomes Caldas, D., Moon, D. H., Carneiro, R. T.,<br>Franceschini, L. M., Oda, S., and Labate, C. A., Proteomic analysis of the<br>cambial region in juvenile <i>Eucalyptus grandis</i> at three ages. Proteomics.<br>2007, 7, 2258-2274.                                                                                                                                                                                               |
| 582<br>583<br>584<br>585               | 26. | <ul> <li>Gion, JM., Lalanne, C., Le Provost, G., Ferry-Dumazet, H., Paiva, J., Chaumeil, P., Frigerio, JM., Brach, J., Barré, A., de Daruvar, A., Claverol, S., Bonneu, M., Sommerer, N., Negroni, L., and Plomion, C., The proteome of maritime pine wood forming tissue. Proteomics. 2005, <i>5</i>, 3731-3751.</li> </ul>                                                                                                                                                                                                                  |
| 586<br>587<br>588<br>589<br>590        | 27. | Lippert, D., Chowira, S., Ralph, S. G., Zhuang, J., Aeschliman, D., Ritland, C.,<br>Ritland, K., and Bohlmann, J., Conifer defense against insects: proteome<br>analysis of Sitka spruce ( <i>Picea sitchensis</i> ) bark induced by mechanical<br>wounding or feeding by white pine weevils ( <i>Pissodes strobi</i> ). Proteomics.<br>2007, 7, 248-270.                                                                                                                                                                                     |
| 591<br>592<br>593<br>594<br>595        | 28. | <ul> <li>Plomion, C., Lalanne, C., Claverol, S., Kohler, A., Bogeat-Triboulot, MB., Barre, A., Le Provost, G., Dumazet, H., Jacob, D., Bastien, C., Dreyer, E., de Daruvar, A., Guehl, JM., Schmitter, JM., Martin, F., and Bonneu, M., Mapping the proteome of poplar and application to the discovery of drought-stress responsive proteins. Proteomics. 2006, <i>6</i>, 6509-6527.</li> </ul>                                                                                                                                              |
| 596<br>597<br>598                      | 29. | Durand, T. C., Hausman, JF., Carpin, S., Albéric, P., Baillif, P., Label, P., and<br>Morabito, D., Zinc and cadmium effects on growth and ion distribution in<br><i>Populus tremula × Populus alba</i> . Biol Plant. 2009, <i>submitted</i> .,                                                                                                                                                                                                                                                                                                |
| 599<br>600<br>601<br>602               | 30. | Damerval, C., De Vienne, D., Zivy, M., and Thiellement, H., Technical<br>improvement in two-dimensional electrophoresis increase the level of<br>genetic variation detected in wheat-seedling proteins. Electrophoresis. 1986,<br>7, 52-54.                                                                                                                                                                                                                                                                                                   |
| 603<br>604<br>605<br>606               | 31. | Bohler, S., Bagard, M., Oufir, M., Planchon, S., Hoffmann, L., Jolivet, Y.,<br>Hausman, JF., Dizengremel, P., and Renaut, J., A DIGE analysis of<br>developing poplar leaves subjected to ozone reveals major changes in<br>carbon metabolism. Proteomics. 2007, 7, 1584-1599.                                                                                                                                                                                                                                                                |
| 607<br>608<br>609<br>610<br>611<br>612 | 32. | <ul> <li>Hunter, S., Apweiler, R., Attwood, T. K., Bairoch, A., Bateman, A., Binns, D.,</li> <li>Bork, P., Das, U., Daugherty, L., Duquenne, L., Finn, R. D., Gough, J., Haft,</li> <li>D., Hulo, N., Kahn, D., Kelly, E., Laugraud, A., Letunic, I., Lonsdale, D.,</li> <li>Lopez, R., Madera, M., Maslen, J., McAnulla, C., McDowall, J., Mistry, J.,</li> <li>Mitchell, A., Mulder, N., Natale, D., Orengo, C., Quinn, A. F., Selengut, J.</li> <li>D., Sigrist, C. J. A., Thimma, M., Thomas, P. D., Valentin, F., Wilson, D.,</li> </ul> |
|                                        |     | 20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| 613<br>614                      |     | Wu, C. H., and Yeats, C., InterPro: the integrative protein signature database. Nucl Acids Res. 2009, <i>37</i> , D211-D215.                                                                                                                                                                                                                  |
|---------------------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 615<br>616<br>617<br>618        | 33. | Anderson, R. H. and Basta, N. T., Application of ridge regression to quantify<br>marginal effects of collinear soil properties on phytoaccumulation of<br>arsenic, cadmium, lead, and zinc. Environ Toxicol Chem. 2009, 28, 619-<br>628.                                                                                                      |
| 619<br>620<br>621<br>622<br>623 | 34. | <ul> <li>Ruttens, A., Mench, M., Colpaert, J. V., Boisson, J., Carleer, R., and Vangronsveld, J., Phytostabilization of a metal contaminated sandy soil. I: Influence of compost and/or inorganic metal immobilizing soil amendments on phytotoxicity and plant availability of metals. Environ Pollut. 2006, <i>144</i>, 524-532.</li> </ul> |
| 624<br>625                      | 35. | Barcelo, J. and Poschenrieder, C., Plant water relations as affected by heavy metal stress: A review. J Plant Nutr. 1990, 13, 1-37.                                                                                                                                                                                                           |
| 626<br>627<br>628<br>629        | 36. | Chaffei, C., Pageau, K., Suzuki, A., Gouia, H., Ghorbel, M. H., and Masclaux-<br>Daubresse, C., Cadmium toxicity induced changes in nitrogen management<br>in <i>Lycopersicon esculentum</i> leading to a metabolic safeguard through an<br>amino acid storage strategy. Plant Cell Physiol. 2004, <i>45</i> , 1681-1693.                     |
| 630<br>631                      | 37. | Clemens, S., Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie. 2006, <i>88</i> , 1707-1719.                                                                                                                                                                                                   |
| 632<br>633                      | 38. | Shi, G. and Cai, Q., Photosynthetic and anatomic responses of peanut leaves to cadmium stress. Photosynthetica. 2008, <i>46</i> , 627-630.                                                                                                                                                                                                    |
| 634<br>635                      | 39. | Zhu, R., Macfie, S. M., and Ding, Z., Cadmium-induced plant stress investigated by scanning electrochemical microscopy. J exp Bot. 2005, <i>56</i> , 2831-2838.                                                                                                                                                                               |
| 636<br>637<br>638               | 40. | <ul><li>Lindahl, M., Spetea, C., Hundal, T., Oppenheim, A. B., Adam, Z., and Andersson,</li><li>B., The thylakoid FtsH protease plays a role in the light-induced turnover of the Photosystem II D1 protein. Plant Cell. 2000, <i>12</i>, 419-432.</li></ul>                                                                                  |
| 639<br>640<br>641               | 41. | Kieffer, P., Dommes, J., Hoffmann, L., Hausman, JF., and Renaut, J., Quantitative<br>changes in protein expression of cadmium-exposed poplar plants.<br>Proteomics. 2008, 8, 2514-2530.                                                                                                                                                       |
| 642<br>643<br>644               | 42. | He, X. Y., Fu, S. L., Chen, W., Zhao, T. H., Xu, S., and Tuba, Z., Changes in<br>effects of ozone exposure on growth, photosynthesis, and respiration of<br>Ginkgo biloba in Shenyang urban area. Photosynthetica. 2007, 45, 555-561.                                                                                                         |
| 645<br>646                      | 43. | Mittler, R., Abiotic stress, the field environment and stress combination. Trends<br>Plant Sci. 2006, 11, 15-19.                                                                                                                                                                                                                              |
| 647<br>648                      | 44. | Mendoza-Cozatl, D. G., Butko, E., Springer, F., Torpey, J. W., Komives, E., Kehr, J., and Schroeder, J. I., Identification of high levels of phytochelatins,                                                                                                                                                                                  |

| 649<br>650<br>651        |     | glutathione and cadmium in the phloem sap of <i>Brassica napus</i> . A role for thiol-peptides in the long-distance transport of cadmium and the effect of cadmium on iron translocation. Plant J. 2008, <i>54</i> , 249-259.                                                                                                   |
|--------------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 652<br>653<br>654<br>655 | 45. | Semane, B., Cuypers, A., Smeets, K., Van Belleghem, F., Horemans, N., Schat, H.,<br>and Vangronsveld, J., Cadmium responses in Arabidopsis thaliana:<br>glutathione metabolism and antioxidative defence system. Physiol Plant.<br>2007, 129, 519-528.                                                                          |
| 656<br>657               | 46. | Dixon, D. P., Cummins, I., Cole, D. J., and Edwards, R., Glutathione-mediated detoxification systems in plants. Curr Opin Plant Biol. 1998, <i>1</i> , 258-266.                                                                                                                                                                 |
| 658<br>659<br>660        | 47. | Chen, J. W., Dodia, C., Feinstein, S. I., Jain, M. K., and Fisher, A. B., 1-Cys peroxiredoxin, a bifunctional enzyme with glutathione peroxidase and phospholipase A2 activities. J Biol Chem. 2000, <i>275</i> , 28421-28427.                                                                                                  |
| 661<br>662<br>663        | 48. | Wahid, A., Ghani, A., and Javed, F., Effect of cadmium on photosynthesis, nutrition<br>and growth of mungbean. Agronomy for Sustained Development. 2008, 28,<br>273-280.                                                                                                                                                        |
| 664<br>665<br>666<br>667 | 49. | Crombie, H., Chengappa, S., Jarman, C., Sidebottom, C., Grant, R., and Reid, J. G.,<br>Molecular characterisation of a xyloglucan oligosaccharide-acting a-D-<br>xylosidase from nasturtium ( <i>Tropaeolum majus</i> L.) cotyledons that<br>resembles plant 'apoplastic' a-D-glucosidases. Planta. 2002, <i>214</i> , 406-413. |
| 668<br>669<br>670        | 50. | Rolland, F., Baena-Gonzalez, E., and Sheen, J., Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol. 2006, <i>57</i> , 675-709.                                                                                                                                                          |
| 671<br>672<br>673<br>674 | 51. | Jouve, L., Hoffmann, L., and Hausman, JF., Polyamine, carbohydrate, and proline<br>content changes during salt stress exposure of aspen ( <i>Populus tremula</i> L.):<br>involvement of oxidation and osmoregulation metabolism. Plant Biol. 2004,<br><i>6</i> , 74-80.                                                         |
| 675<br>676<br>677<br>678 | 52. | Wang, J., Ji, Q., Jiang, L., Shen, S., Fan, Y., and Zhang, C., Overexpression of a<br>cytosol-localized rhamnose biosynthesis protein encoded by Arabidopsis<br>RHM1 gene increases rhamnose content in cell wall. Plant Phys Biochem.<br>2009, 47, 86-93.                                                                      |
| 679<br>680<br>681        | 53. | <ul><li>Mijnsbrugge, K. V., Meyermans, H., Van Montagu, M., Bauw, G., and Boerjan,<br/>W., Wood formation in poplar: identification, characterization, and seasonal<br/>variation of xylem proteins. Planta. 2000, <i>210</i>, 589-598.</li></ul>                                                                               |
| 682<br>683<br>684        | 54. | Xu, S. L., Rahman, A., Baskin, T. I., and Kieber, J. J., Two Leucine-Rich Repeat<br>Receptor Kinases Mediate Signaling, Linking Cell Wall Biosynthesis and<br>ACC Synthase in Arabidopsis. Plant Cell. 2008, <i>20</i> , 3065-3079.                                                                                             |

| 685<br>686<br>687               | 55. | Sagi, G., Katz, A., Guenoune-Gelbart, D., and Epel, B. L., Class 1 reversibly gycosylated polypeptides are plasmodesmal-associated proteins delivered to plasmodesmata via the Golgi apparatus. Plant Cell. 2005, <i>17</i> , 1788-1800.                                                                                         |
|---------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 688<br>689<br>690               | 56. | De Pino, V., Boran, M., Norambuena, L., Gonzalez, M., Reyes, F., Orellana, A.,<br>and Moreno, S., Complex formation regulates the glycosylation of the<br>reversibly glycosylated polypeptide. Planta. 2007, <i>226</i> , 335-345.                                                                                               |
| 691<br>692<br>693<br>694        | 57. | Garnier, L., Simon-Plas, F., Thuleau, P., Agnel, JP., Blein, JP., Ranjeva, R., and<br>Montillet, JL., Cadmium affects tobacco cells by a series of three waves of<br>reactive oxygen species that contribute to cytotoxicity. Plant Cell Environ.<br>2006, 29, 1956-1969.                                                        |
| 695<br>696<br>697               | 58. | Kim, YO., Kim, J. S., and Kang, H., Cold-inducible zinc finger-containing<br>glycine-rich RNA-binding protein contributes to the enhancement of<br>freezing tolerance in Arabidopsis thaliana. Plant Journal. 2005, 42, 890-900.                                                                                                 |
| 698<br>699<br>700<br>701        | 59. | Battaglia, M., Solorzano, R., Hernandez, M., Cuellar-Ortiz, S., Garcia-Gomez, B.,<br>Marquez, J., and Covarrubias, A., Proline-rich cell wall proteins accumulate<br>in growing regions and phloem tissue in response to water deficit in<br>common bean seedlings. Planta. 2007, <i>225</i> , 1121-1133.                        |
| 702<br>703                      | 60. | Akoh, C. C., Lee, G. C., Liaw, Y. C., Huang, T. H., and Shaw, J. F., GDSL family of serine esterases/lipases. Prog Lipid Res. 2004, <i>43</i> , 534-552.                                                                                                                                                                         |
| 704<br>705<br>706<br>707<br>708 | 61. | Dalrymple, B. P., Cybinski, D. H., Layton, I., McSweeney, C. S., Xue, G. P.,<br>Swadling, Y. J., and Lowry, J. B., Three <i>Neocallimastix patriciarum</i><br>esterases associated with the degradation of complex polysaccharides are<br>members of a new family of hydrolases. Microbiology. 1997, <i>143</i> , 2605-<br>2614. |
| 709<br>710<br>711               | 62. | Hong, J., Choi, H., Hwang, I., Kim, D., Kim, N., Choi, D., Kim, Y., and Hwang, B.,<br>Function of a novel GDSL-type pepper lipase gene, CaGLIP1, in disease<br>susceptibility and abiotic stress tolerance. Planta. 2008, 227, 539-558.                                                                                          |
| 712<br>713                      | 63. | Broadley, M. R., White, P. J., Hammond, J. P., Zelko, I., and Lux, A., Zinc in plants. New Phytol. 2007, 173, 677-702.                                                                                                                                                                                                           |
| 714<br>715<br>716               | 64. | Kato, Y., Yamamoto, Y., Murakami, S., and Sato, F., Post-translational regulation<br>of CND41 protease activity in senescent tobacco leaves. Planta. 2005, 222,<br>643-651.                                                                                                                                                      |
| 717<br>718<br>719<br>720        | 65. | Goué, N., Lesage-Descauses, MC., Meller, E. J., Magel, E., Label, P., and<br>Sundberg, B., Microgenomic analysis reveals cell type-specific gene<br>expression patterns between ray and fusiform initials within the cambial<br>meristem of <i>Populus</i> . New Phytol. 2008, <i>180</i> , 45-56.                               |

| 721<br>722<br>723               | 66. | Xiao, X., Yang, F., Zhang, S., Korpelainen, H., and Li, C., Physiological and<br>proteomic responses of two contrasting Populus cathayana populations to<br>drought stress. Physiol Plant. 2009, 136, 150-168.                                                                                     |
|---------------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 724<br>725<br>726               | 67. | Renaut, J., Lutts, S., Hoffmann, L., and Hausman, JF., Responses of poplar to chilling temperatures : proteomic and physiological aspects. Plant Biol. 2004, <i>6</i> , 81-90.                                                                                                                     |
| 727<br>728<br>729<br>730        | 68. | Alvarez, S., Berla, B. M., Sheffield, J., Cahoon, R. E., Jez, J. M., and Hicks, L. M.,<br>Comprehensive analysis of the <i>Brassica juncea</i> root proteome in response to<br>cadmium exposure by complementary proteomic approaches. Proteomics.<br>2009, 9, 2419-2431.                          |
| 731<br>732<br>733<br>734        | 69. | <ul> <li>Bray, Elizabeth A., Bailey-Serres, Julia, and Weretilnyk, Elizabeth.</li> <li>Response to abiotic stresses. In: Buchanan, B., Gruissem, W., and Jones, R., editors. Biochemistry &amp; Molecular Biology of Plants: American Society of Plant Physiologists; 2000 p.1158-1203.</li> </ul> |
| 735<br>736<br>737<br>738        | 70. | <ul> <li>Vollenweider, P., Cosio, C., and Keller, C., Localization and effects of cadmium in leaves of a cadmium-tolerant willow (Salix viminalis L.): II.</li> <li>Microlocalization and cellular effects of cadmium. Environ exp Bot. 2006, 58, 64-74.</li> </ul>                                |
| 739<br>740<br>741<br>742<br>743 | 71. | Durand, T. C., Baillif, P., Albéric, P., Carpin, S., Label, P., Hausman, JF., and<br>Morabito, D., Cd and Zn are differentially distributed in <i>Populus tremula</i> x<br><i>P. alba</i> exposed to metal excess. Can J For Res. 2010, <i>submitted</i> ,                                         |

# 744 **CAPTION OF THE FIGURES**

745

- Fig. 1. 2D-electrophoresis gel with leaf proteins of *Populus tremula x P. alba* genotype
- 747 717-1B4labelled by CyDye 2. Identified proteins are indicated with their respective spot

number.

749

- **Fig. 2.** 2D-electrophoresis gel with cambial proteins of *Populus tremula x P. alba*
- 751 genotype 717-1B4 labelled by CyDye 2. Identified proteins are indicated with their
- respective spot number.

753

754

Comment citer ce document : **nuscrit d'auteur Author manuscript**anchon, S**Manuscrit d'auteur, Author, manuscript**, J.-F., **Manuscrit d'auteur / Author manusc** Renaut, J. (2010). Acute metal stress in Populus tremula x P. alba (717-1B4 genotype): leaf and cambial proteome changes induced by Cd2+. Proteomics, 10 (3), 349-368. DOI : 10.1002/pmic.200900484

755 Table 1: Differentially expressed proteins in the leaf proteome of *Populus tremula x P.alba* genotype 717-1B4 submitted during 61

days to a soil containing 360 mg Cd.kg<sup>-1</sup> DW (n=4, \*p<0.05, \*\*p<0.01, \*\*\*p<0.001). The average ratio of the protein abundance was

757 calculated between treated and control plants.

| Spot     | T 0 4 * 1 40* 4* 2                                              | Protein Accession Number |                  | on Number    | No of    | Sequence     | Cd / Ctr           |                      |
|----------|-----------------------------------------------------------------|--------------------------|------------------|--------------|----------|--------------|--------------------|----------------------|
| number 1 | Leaf protein identifications 2                                  | score 3                  | EST <sup>4</sup> | NCBI 5       | peptides | coverage (%) | ratio <sup>6</sup> | p value <sup>7</sup> |
|          | Photosynthesis                                                  |                          |                  |              |          |              |                    |                      |
| 1464     | RubisCO large subunit [Populus tomentosa]                       | 283                      |                  | gi 22001406  | 8        | 41           | -4,3***            | 0.000013             |
| 1681     | RubisCO large subunit                                           | 250                      |                  | gi 52001641  | 4        | 29           | -4.09*             | 0.039                |
| 677      | RubisCO large subunit                                           | 260                      |                  | gi 1223722   | 4        | 57           | -3.99***           | 0.00083              |
| 1742     | RubisCO large subunit                                           | 283                      |                  | gi 9623109   | 4        | 32           | -1.65*             | 0.039                |
| 1673     | RubisCO large subunit                                           | 291                      |                  | gi 30143303  | 6        | 29           | -3.11**            | 0.003                |
| 1748     | RubisCO large subunit                                           | 305                      |                  | gi 60101630  | 5        | 25           | -2.99**            | 0.0098               |
| 1750     | RubisCO large subunit                                           | 113                      |                  | gi 60101630  | 2        | 30           | -6.02**            | 0.0025               |
| 1778     | RubisCO large subunit [Malesherbia linearifolia]                | 123                      |                  | gi 1771273   | 3        | 30           | -2,91**            | 0.0032               |
| 1718     | RubisCO large subunit                                           | 207                      |                  | gi 1346967   | 3        | 36           | -2,77*             | 0.019                |
| 1195     | RubisCO large subunit                                           | 313                      |                  | gi 57338574  | 6        | 40           | -2.59*             | 0.014                |
| 1238     | RubisCO large subunit                                           | 466                      |                  | gi 60101630  | 7        | 36           | -2.39*             | 0.022                |
| 694      | RubisCO large subunit                                           | 138                      |                  | gi 2149483   | 3        | 39           | -2.36*             | 0.029                |
| 1686     | RubisCO large subunit                                           | 114                      |                  | gi 52001641  | 2        | 33           | -2.12*             | 0.011                |
| 1737     | Ribulose 1,5-bisphosphate carboxylase                           | 279                      |                  | gi 32442736  | 4        | 31           | -3.41*             | 0.016                |
| 683      | RubisCO large subunit [Populus alba]                            | 172                      |                  | gi 110227087 | 4        | 50           | -1,58*             | 0.042                |
| 593      | RubisCO large subunit [Populus alba]                            | 129                      |                  | gi 110227087 | 3        | 53           | 1,72***            | 0.00032              |
| 503      | Rubisco                                                         | 147                      |                  | gi 47680208  | 3        | 32           | 4.02*              | 0.046                |
| 648      | RubisCO large subunit                                           | 300                      |                  | gi 30143315  | 7        | 42           | 2.03*              | 0.012                |
| 853      | Rubisco activase precursor                                      | 137                      |                  | gi 3687676   | 2        | 40           | -2.22**            | 0.01                 |
| 1043     | Rubisco activase B                                              | 447                      |                  | gi 7960277   | 6        | 39           | -1.63*             | 0.025                |
| 939      | Rubisco activase B                                              | 168                      |                  | gi 7960277   | 2        | 33           | -2.2*              | 0.029                |
| 969      | Rubisco activase, chloroplast precursor                         | 202                      |                  | gi 10720249  | 2        | 39           | -1.62*             | 0.022                |
| 1048     | Rubisco activase 1                                              | 382 (+32)                |                  | gi 12620881  | 6        | 36           | -1.83**            | 0.0092               |
| 912      | RuBisCO activase                                                | 459                      | gi 52397711      | gi 94549022  | 6        |              | -2.02*             | 0.037                |
| 1578     | Chlorophyll a/b binding protein(Lhcb2) [Cicer arietinum]        | 219 (+70)                |                  | gi 3928140   | 6        | 69           | -10.26*            | 0.026                |
| 1602     | Chlorophyll a/b binding protein(Lhcb2) [Cicer arietinum]        | 196 (+87)                |                  | gi 3928140   | 7        | 71           | -7.67***           | 0.00093              |
| 1609     | Chlorophyll a/b binding protein (Lhcb2)                         | 163                      |                  | gi 398599    | 4        | 18           | -2.6**             | 0.0025               |
| 1584     | Chlorophyll a/b binding protein (Lhcb2)                         | 134 (+74)                |                  | gi 398599    | 5        | 26           | -2.08*             | 0.029                |
| 1608     | LHCII type II chlorophyll a/b-binding protein [Vigna radiata]   | 160 (+16)                |                  | gi 9587203   | 6        | 28           | -4.09****          | 0.00083              |
| 1517     | Light-harvesting complex II protein Lhcb1 [Populus trichocarpa] | 229                      | gi 52533657      | gi 224083006 | 5        | 65           | -11,02**           | 0.0035               |
| 1663     | Chlorophyll a/b-binding protein type III (Lhca3)                | 133 (+117)               |                  | gi 7271947   | 3        | 26           | -4.53**            | 0.00236              |
| 1658     | Chlorophyll a/b-binding protein type III (Lhca3)                | 370                      | gi 56824867      | gi 116519121 | 6        | 63           | -6.11***           | 0.0000043            |
| 1680     | Chlorophyll-a/b binding protein Lhcb3                           | 163                      | gi 50059931      | gi 169124051 | 3        | 70           | -3.77**            | 0.0017               |
| 1629     | LHCB5 - chlorophyll binding                                     | 301                      |                  | gi 15235029  | 3        | 46           | -2.69***           | 0.00067              |

| 1441 | Oxygen-evolving enhancer protein 1, chloroplast precursor                 | 392        | gi 38580986 | gi 30013657  | 6 | 51 | -7.03*** | 0.00028  |
|------|---------------------------------------------------------------------------|------------|-------------|--------------|---|----|----------|----------|
| 1439 | Oxygen-evolving complex protein 1                                         | 250 (+60)  |             | gi 739292    | 3 | 53 | -4.42**  | 0.0039   |
| 1471 | Oxygen-evolving enhancer protein 1, chloroplast precursor (OEE1           | 198        |             | gi 12644171  | 2 | 32 | -4.81**  | 0.0012   |
| 1480 | Oxygen-evolving enhancer protein 1                                        | 83 (+62)   | gi 27410837 | gi 223538464 | 4 | 54 | -3,65*** | 0.0005   |
| 1456 | Oxygen evolving enhancer protein 1 precursor                              | 203        | gi 57892741 | gi 119952178 | 4 | 59 | -2.75**  | 0.0028   |
| 1692 | Oxygen-evolving enhancer protein 2, chloroplast precursor (OEE2)          | 169        |             | gi 131390    | 3 | 30 | -5.51*** | 0.00019  |
| 1653 | PSBP-1 (OEE PROTEIN 2); calcium ion binding                               | 280        | gi 55735291 | gi 223539254 | 6 | 49 | -5.38*** | 0.000015 |
| 1672 | Oxygen-evolving enhancer protein 2, chloroplast precursor                 | 261        | gi 55734950 | gi 223539254 | 6 | 52 | -4,15*** | 0.00067  |
| 1661 | Oxygen-evolving enhancer protein 2, chloroplast precursor (OEE2)          | 215        | gi 55735137 | gi 131390    | 5 | 30 | -3.73**  | 0.0025   |
| 1699 | Oxygen-evolving enhancer protein 2, chloroplast precursor                 | 227        | gi 24099140 | gi 223539254 | 5 | 62 | -5,88*** | 0.00038  |
|      | Carbohydrate metabolism                                                   |            |             |              |   |    |          |          |
| 1571 | Triosephosphate isomerase, cytosolic (TIM)                                | 304        | gi 24060530 | Gi : 136057  | 6 | 76 | 1.99**   | 0.0026   |
| 1566 | Triosephosphate isomerase, cytosolic (TIM)                                | 180        |             | gi 136057    | 5 | 40 | 2.19**   | 0.0039   |
| 1120 | Sedoheptulose bisphosphatase                                              | 253        | gi 52530247 | gi 223530064 | 6 | 53 | -2.48*** | 0.00015  |
| 1116 | Sedoheptulose bisphosphatase                                              | 292        | gi 52530247 | gi 118175929 | 6 | 59 | -1.53*   | 0.03     |
| 284  | Transketolase 1                                                           | 256 (+68)  |             | gi 3559814   | 5 | 20 | -1.61*   | 0.015    |
| 1127 | Glyceraldehyde-3-phosphate dehydrogenase, cytosolic                       | 185 (+157) |             | gi 120671    | 7 | 32 | 1.91***  | 0.00027  |
| 1124 | Glyceraldehyde 3-phosphate dehydrogenase                                  | 122        | gi 57892956 | gi 51703306  | 5 | 81 | 2.07***  | 0.000093 |
| 1051 | 3-phosphoglycerate kinase [Populus tremuloides]                           | 135        |             | gi 29124969  | 3 | 46 | 2.45*    | 0.023    |
| 1275 | Phosphoglycerate kinase                                                   | 112 (+16)  |             | gi 2499497   | 5 | 30 | -1,75*   | 0.015    |
| 501  | glucose-6-phosphate isomerase [Solanum tuberosum]                         | 80         | gi 52620161 | gi 167909863 | 4 | 60 | 2.22**   | 0.0059   |
| 597  | UDP-glucose pyrophosphorylase [ <i>Populus tremula x P. tremuloides</i> ] | 226        |             | gi 32527831  | 4 | 37 | 1.49**   | 0.0015   |
| 553  | Glycosyl hydrolase family 38 protein                                      | 106        | gi 56833433 | gi 186510450 | 3 | 34 | 1.92**   | 0.0099   |
| 1340 | Ferredoxin-NADP oxidoreductase                                            | 314        |             | gi 170111    | 6 | 28 | -1.81*   | 0.014    |
| 1059 | Ferredoxin-NADP oxidoreductase                                            | 314 (+83)  |             | gi 170111    | 8 | 28 | -1.67*   | 0.017    |
| 1365 | Ferredoxin-NADP oxidoreductase                                            | 190        |             | gi 170111    | 3 | 30 | -1.55*   | 0.04     |
| 1342 | Ferredoxin-NADP oxidoreductase                                            | 257        | gi 52536292 | gi 4930123   | 6 | 58 | -1.38*   | 0.015    |
| 1359 | Putative ferredoxin-NADP(H) oxidoreductase                                | 96         | gi 27415025 | gi 224102711 | 4 | 62 | -1,5*    | 0.031    |
| 1332 | Ferredoxin-NADP oxidoreductase                                            | 141        |             | gi 170111    | 6 | 28 | 2.01**   | 0.003    |
| 1338 | Ferredoxin-NADP oxidoreductase                                            | 156 (+83)  |             | gi 119905    | 6 | 49 | 2.84***  | 0.00083  |
| 884  | AXS2 (UDP-D-Apiose/UDP-D-Xylose synthase 2)                               | 182        | gi 27422474 | gi 18390863  | 4 | 54 | 2.38*    | 0.027    |
| 1551 | Acid phosphatase [Glycine max]                                            | 90         | gi 55734561 | gi 3341443   | 3 | 54 | 1.78*    | 0.014    |
|      | Energy metabolism                                                         |            |             |              |   |    |          |          |
| 1598 | Carbonic anhydrase                                                        | 318        |             | gi 1354515   | 6 | 63 | -1.85*   | 0.014    |
| 1616 | Carbonic anhydrase                                                        | 570        |             | gi 1354517   | 6 | 53 | -1.43*   | 0.035    |
| 1592 | Carbonic anhydrase                                                        | 249        |             | gi 1354515   | 4 | 40 | -1.31*   | 0.049    |
| 1660 | Carbonic anhydrase                                                        | 118        |             | gi 1354515   | 2 | 47 | 2.21**   | 0.018    |
| 620  | ATPase beta subunit [Populus tomentosa] - chloroplast                     | 354        |             | gi 22094585  | 6 | 75 | -4,19*** | 0.00085  |
| 632  | ATPase beta subunit [Populus tomentosa] - chloroplast                     | 295        |             | gi 22094585  | 5 | 75 | -3,91*** | 0.000019 |
| 633  | ATPase beta subunit [Populus tomentosa] - chloroplast                     | 401 (+237) |             | gi 22094585  | 7 | 80 | -2.02**  | 0.0044   |
| 594  | ATPase alpha subunit [Didymeles perrieri] - mitochondrion                 | 240        |             | gi 6561625   | 6 | 38 | 1.83*    | 0.015    |

Comment citer ce document : Du**Manuscrit d'auteur / Author manuscript**, Label, P. **Manuscrit d'auteur / Author manuscript** Renaut, J. (2010). Acute metal stress in Populus tremula x P. alba (717-1B4 genotype): leaf and cambial proteome changes induced by Cd2+. Proteomics, 10 (3), 349-368. DOI : 10.1002/pmic.200900484

| 599        | ATPase alpha subunit [Didymeles perrieri] - mitochondrion                   | 137 (+71)      |             | gi 6561625                 | 4 | 33 | 2.51*    | 0.011    |
|------------|-----------------------------------------------------------------------------|----------------|-------------|----------------------------|---|----|----------|----------|
|            | Protein metabolism & catabolism                                             |                |             |                            |   |    |          |          |
| 1290       | Aminomethyltransferase, mitochondrial precursor                             | 162            |             | gi 3334196                 | 2 | 36 | -1.7*    | 0.028    |
| 548        | D-3-phosphoglycerate dehydrogenase, putative [ <i>Ricinus</i> communis]     | 72 (+22)       | gi 23995055 | gi 223542068               | 3 | 29 | 36,78*   | 0.025    |
| 435        | FtsH protease 8 / ATPase/Zn dependant metallopeptidase                      | 98             |             | gi 42561751                | 4 | 30 | -1.51*   | 0.014    |
| 1678       | PBD1 (PROTEASOME SUBUNIT PRGB); peptidase                                   | 146            |             | gi 15228805                | 2 | 20 | -1.49*   | 0.028    |
|            | Protein folding                                                             |                |             |                            |   |    |          |          |
| 1518       | Nascent polypeptide associated complex alpha chain [Nicotiana benthamiana]  | 199            | gi 52502629 | gi 124484511               | 2 | 60 | -3,72**  | 0.0081   |
| 1752       | Nascent polypeptide associated complex alpha chain ( <i>Oryza sativa</i> )  | 183            |             | gi 46575976                | 2 | 50 | -5,45**  | 0.0024   |
| 1011       | Heat shock protein 70                                                       | 214            |             | gi 48716124                | 3 | 41 | -1.59**  | 0.0064   |
| 357        | Heat shock protein 70                                                       | 535 (+81)      |             | gi 6911551                 | 8 | 38 | 1.6*     | 0.014    |
| 1635       | Chloroplast chaperonin 21 [Vitis vinifera].                                 | 188            | gi 52519679 | gi 50660327                | 5 |    | -2.23*   | 0.016    |
| 427        | Chaperonin, putative                                                        | 81             |             | gi 15232923                | 3 | 37 | 2.44     | 0.027    |
|            | Citarte Carls                                                               |                |             |                            |   |    |          |          |
| 1200       | VAD dependent melete debudrogenese                                          | 97 (+57)       |             | ail15092049                | 2 | 27 | 1 9/***  | 0.00027  |
| 1200       | Malete debudregenese, putetive [ <i>Biginus communis</i> ]                  | 87 (+37)<br>70 | ail52526152 | gi 13762746                | 2 | 37 | -1,04    | 0.00037  |
| 1310       | Citrate (si) supplies [Populus trichogarma]                                 | 177            | gi 52550155 | gi 223538050               | 5 | 22 | -1,/5**  | 0.0038   |
| 902        | Citrate (si) synthese [Populus trichocarpa]                                 | 1//            | gi 55785182 | gi 1648920                 | 2 | 27 | 2.11     | 0.0034   |
| 905<br>418 | Succinate dehydrogenase                                                     | 168            |             | gi 1048920<br>gi 115470493 | 4 | 25 | 1.99**   | 0.0091   |
| 410        | Succinitie denyarogentuse                                                   | 100            |             | 81110110199                | · | 23 | 1.15     | 0.010    |
|            | Oxidoreductase                                                              |                |             |                            |   |    |          |          |
| 936        | GDP-mannose 3,5-epimerase/ NAD binding                                      | 294            |             | gi 15241945                | 4 | 45 | 1.85**   | 0.0086   |
| 1202       | Aldo/keto reductase family-like protein                                     | 121            | gi 60216418 | gi 23495741                | 5 | 63 | -2.62**  | 0.0037   |
| 1061       | Formate dehydrogenase                                                       | 166 (+13)      | gi 38593943 | gi 224129102               | 5 | 51 | 2,08**   | 0.0043   |
| 1821       | Peroxiredoxin type 2, putative                                              | 187            | gi 52505836 | gi 15231718                | 2 | 57 | -2.09*   | 0.025    |
| 1637       | 1-cys peroxiredoxin [Xerophyta viscosa]                                     | 151            |             | gi 19423862                | 2 | 10 | 16.7***  | 0.000013 |
|            | Glutathione metabolism                                                      |                |             |                            |   |    |          |          |
| 1659       | Glutathione S-transferase                                                   | 417            | gi 55734403 | gi 161347485               | 7 | 48 | 2.11**   | 0.0071   |
| 1667       | Glutathione S-transferase                                                   | 196            | gi 24102869 | gi 161347485               | 4 | 55 | 2.12*    | 0.018    |
|            | Miscellaneous                                                               |                |             |                            |   |    |          |          |
| 1552       | Class IV chitinase [Galega orientalis].                                     | 285            | gi 57894645 | gi 33414046                | 3 | 63 | 1,99*    |          |
| 572        | Inositol-3-phosphate synthase (Myo-inositol-1-phosphate synthase)           | 391            |             | gi 14548095                | 6 | 21 | -1.99**  | 0.0082   |
| 1192       | Alpha tubulin [ <i>Nicotiana tabacum</i> ]                                  | 224 (+74)      |             | gi 11967906                | 6 | 38 | -2.94*   | 0.04     |
| 1300       | Potassium channel beta subunit                                              | 143 (+27)      |             | gi 3402279                 | 3 | 9  | 1.6**    | 0.0079   |
| 1756       | Auxin-binding protein ABP19a precursor, putative [ <i>Ricinus</i> communis] | 142            | gi 52530576 | gi 223539406               | 5 | 14 | -2,56*   | 0.037    |
| 225        | Translation elongation factor EF-G [Glycine max]                            | 354 (+47)      |             | gi 402753                  | 5 | 37 | -1.64*** | 0.00046  |

Comment citer ce document : Du**Manuscrit d'auteur / Author manuscript**, Label, P. **Manuscrit d'auteur, / Author manuscript** Renaut, J. (2010). Acute metal stress in Populus tremula x P. alba (717-1B4 genotype): leaf and cambial proteome changes induced by Cd2+. Proteomics, 10 (3), 349-368. DOI : 10.1002/pmic.200900484

|      | Spots presenting more than one protein identific | ation |             |    |                |
|------|--------------------------------------------------|-------|-------------|----|----------------|
| 1736 | Glutathione S-transferase + Germin-like          | 84    | gi 51556908 | 29 | -3,41* 0.074   |
| 1801 | Plastoquinol-plastocyanin reductase              | 71    | gi 4586598  | 25 | -4.93** 0.0036 |

758



760 2: Protein obtained by blasting the EST against the NCBInr database

761 3: MASCOT score (protein score as given by the GPS software (Applied Biosystems))

762 4: Accession number of the EST sequence in the NCBInr database

5: Accession number of the corresponding protein in the NCBInr database
6: Average ratio of the protein abundance (Cadmium/Control). Positive val

6: Average ratio of the protein abundance (Cadmium/Control). Positive values of ratio are given as such, negative values are given according to the following

765 formula : given value = -1/average ratio

7: p-value of Student's t-test.

766 767

768

772

769 Table 2: Differentially expressed proteins in the cambial zone proteome of *Populus tremula x P.alba* 717-1B4 genotype after 61 days

on a soil containing 360 mg Cd.kg<sup>-1</sup> DW (n=4). The average ratio of the protein abundance was calculated between treated and control

771 plants.

Version postprint

| Spot   | Cambial protein identifications <sup>2</sup>                                   |                    | Protein Accession Number |              | Nb of Sequence |              | Cd / Ctr           |                      |  |
|--------|--------------------------------------------------------------------------------|--------------------|--------------------------|--------------|----------------|--------------|--------------------|----------------------|--|
| number |                                                                                | score <sup>3</sup> | EST <sup>4</sup>         | NCBI 5       | peptides       | coverage (%) | ratio <sup>6</sup> | p value <sup>7</sup> |  |
|        |                                                                                |                    |                          |              |                |              |                    |                      |  |
| 70.4   | Carbon and carbohydrate metabolism                                             | 205                | 104075602                | 11/04/50207  | 6              | 01           | 1 20**             | 0.0012               |  |
| 798    | Enolase1 [Zea mays]                                                            | 395<br>249         | gi 240/5693              | gi 162458207 | 0<br>4         | 81<br>61     | -1.39**            | 0.0013               |  |
| 170    |                                                                                | 1.40               | gi 24020181              | EI 102450207 | -              | 01           | -1.50              | 0.0015               |  |
| 816    | Enolase [Brassica napus]                                                       | 142                | 51                       | gi 3459/332  | 4              |              | -1.73***           | 0.00048              |  |
| 802    | Enolase1 [Zea mays]                                                            | 358                |                          | gi 162458207 | 4              | 42           | -1.74***           | 0.00022              |  |
| 800    | Os06g0136600 [Oryza sativa (japonica cultivar-group)]                          | 130                |                          | gi 115466256 | 4              | 36           | -2.1***            | 0.00035              |  |
| 759    | Triosephosphate isomerase-like protein [Solanum tuberosum].                    | 96                 | gi 52505071              | gi 76573375  | 3              | 33           | -1.59*             | 0.01                 |  |
| 752    | UDP-glucose pyrophosphorylase [ <i>Populus tremula x P. tremuloides</i> ]      | 239                |                          | gi 32527831  | 3              | 19           | -1.52*             | 0.028                |  |
| 744    | UDP-glucose dehydrogenase [ <i>Populus tremula x P. tremuloides</i> ]          | 313                |                          | gi 6164591   | 6              | 66           | -1.58**            | 0.0015               |  |
| 809    | UDP-glucose dehydrogenase [ <i>Populus tremula x P. tremuloides</i> ]          | 132<br>(+61)       | gi 57892820              |              | 4              | 55           | -1.43**            | 0.0011               |  |
| 792    | UDP-glucose dehydrogenase                                                      | 151<br>(+59)       | gi 27415980              | gi 6164591   | 4              | 82           | -3.47**            | 0.0012               |  |
| 851    | Phosphofructokinase family protein [Arabidopsis thaliana]                      | 82 (+37)           | gi 27411363              | gi 15238818  | 5              | 44           | -2.04***           | 0.0002               |  |
| 526    | 2,3-bisphosphoglycerate-independent phosphoglycerate mutase                    | 110                | gi 52493827              | gi 223540739 | 2              | 59           | -1.82***           | 0.00036              |  |
| 288    | Alpha-D-xylosidase [Tropaeolum majus]                                          | 123                | gi 73928193              | gi 5725356   | 2              | 23           | 1.53*              | 0.012                |  |
| 1892   | Alpha-D-xylosidase precursor [Arabidopsis thaliana]                            | 111                | gi 28606907              | gi 4163997   | 3              |              | 1.51*              | 0.01                 |  |
| 390    | Alpha-mannosidase [Arabidopsis thaliana]                                       | 113                |                          | gi 10177664  | 3              | 10           | 1.77**             | 0.0015               |  |
| 433    | Alpha-mannosidase [Arabidopsis thaliana]                                       | 79                 |                          | gi 1017/664  | 2              | 12           | 1.44**             | 0.0085               |  |
| 480    | glucose 4,6-dehydratase/ catalytic [ <i>A. thaliana</i> ]                      | 123                |                          | gi 15218420  | 3              | 17           | -1.4**             | 0.0029               |  |
| 481    | RHM1/ROL1 (RHAMNOSE BIOSYNTHESIS1); UDP-<br>glucose 4,6-dehydratase/ catalytic | 106                |                          | gi 15218420  | 3              | 19           | 1.64**             | 0.001                |  |
| 487    | RHM1/ROL1 (RHAMNOSE BIOSYNTHESIS1); UDP-<br>glucose 4,6-dehydratase/ catalytic | 130                |                          | gi 15218420  | 4              | 19           | -1.8***            | 0.00013              |  |
| 1202   | Fructokinase, putative [Ricinus communis]                                      | 170                | gi 60697528              | gi 223526803 | 5              | 62           | -1,9***            |                      |  |

Comment citer ce document : Du**Manuscrit g'auteur / Author manuscript**, Label, P. **Manuscrit d'auteur / Author manuscript** Renaut, J. (2010). Acute metal stress in Populus tremula x P. alba (717-1B4 genotype): leaf and cambial proteome changes induced by Cd2+. Proteomics, 10 (3), 349-368. DOI : 10.1002/pmic.200900484

# Version définitive du manuscrit publié dans / Final version of the manuscript published in : Proteomics, 2010, 10(3), 349-368

| 1069 | Alcohol dehydrogenase [Populus tremula]                                          | 130          |             | gi 52851038  | 2 | 29 | 2.13***  | 0.00052  |
|------|----------------------------------------------------------------------------------|--------------|-------------|--------------|---|----|----------|----------|
| 1070 | Alcohol dehydrogenase [Populus tremula]                                          | 220          |             | gi 52851054  | 5 | 74 | 1.62***  | 0.00071  |
|      | Protein metabolism                                                               |              |             |              |   |    |          |          |
| 381  | Methionine synthase [Solanum tuberosum]                                          | 146<br>(+96) |             | gi 8439545   | 5 | 30 | -2.58*** | 0.0009   |
| 385  | Vitamin-b12 independent methionine synthase, [ <i>Populus trichocarpa</i> ]      | 328          | gi 27414927 | gi 224104961 | 6 | 67 | -1.98**  | 0.0011   |
| 383  | Methionine synthase [Zea mays]                                                   | 170          |             | gi 17017263  | 5 | 33 | -1.99**  | 0.0022   |
| 391  | Methionine synthase [Carica papaya]                                              | 138          | gi 24107875 | gi 151347486 | 3 | 66 | -1.58**  | 0.0045   |
| 885  | S-adenosylmethionine synthetase                                                  | 98           |             | gi 15450421  | 4 | 24 | -2.02*** | 0.0003   |
| 891  | S-adenosylmethionine synthetase [Phaseolus lunatus]                              | 170          | gi 24065013 | gi 1346524   | 2 | 60 | -1.83*   | 0.018    |
| 881  | S-adenosylmethionine synthetase 1 [Arabidopsis thaliana]                         | 100          |             | gi 30683070  | 3 | 34 | -1.88*** | 0.000026 |
| 1240 | O-acetylserine (thiol)lyase [ <i>Populus alba x Populus tremula</i> ]            | 121          |             | gi 34099833  | 3 | 34 | -1.38*** | 0.00075  |
| 1302 | 60S acidic ribosomal protein P0 [Zea mays]                                       | 167          |             | gi 162460698 | 3 | 32 | -1.63*   | 0.039    |
|      | Protein catabolism                                                               |              |             |              |   |    |          |          |
| 896  | 26S proteasome ATPase subunit [Pisum sativum]                                    | 243          |             | gi 49175787  | 5 | 82 | -1.82*** | 0.00016  |
| 1555 | Proteasome subunit alpha type, putative [ <i>Ricinus communis</i> ]              | 154          | gi 24076896 | gi 223529618 | 3 | 76 | -1,49*   | 0.034    |
| 796  | Leucine aminopeptidase, putative [Ricinus communis]                              | 140          | gi 73877305 | gi 223531128 | 2 | 62 | -1,47**  | 0.0037   |
|      | Protein folding                                                                  |              |             |              |   |    |          |          |
| 537  | Protein disulfide-isomerase precursor (PDI)                                      | 387          | gi 24065613 | gi 11133775  | 5 | 63 | -1.69*   | 0.012    |
| 541  | Protein disulfide-isomerase precursor (PDI)                                      | 433          | gi 24065613 | gi 11133775  | 5 | 63 | -1.99*** | 0.00056  |
| 1161 | Protein disulfide isomerase, putative [Ricinus communis]                         | 101<br>(+18) | gi 23994033 | gi 223545789 | 3 | 65 | -1,71*** | 0.0015   |
| 715  | Calreticulin-1 [Glycine max]                                                     | 156          | gi 60214695 | gi 117165712 | 5 | 47 | -1.88**  | 0.0045   |
|      | Transcription and translation factors                                            |              |             |              |   |    |          |          |
| 892  | Elongation factor 1-gamma [Glycine max]                                          | 116          | gi 24069167 | gi 18958499  | 2 | 20 | -1.83*** | 0.00015  |
| 911  | Elongation factor 1-gamma [ <i>Glycine max</i> ]                                 | 103          |             | gi 18958499  | 2 | 20 | -1.55*   | 0.012    |
| 332  | Elongation factor 1-gamma [Oryza sativa Japonica<br>Group]                       | 114          | gi 24103246 | gi 169244489 | 3 | 60 | 1.65     | 0.073    |
| 877  | DEAD box RNA helicase [Pisum sativum]                                            | 105          |             | gi 25809054  | 3 | 33 | 1.45**   | 0.0023   |
| 920  | Eukaryotic initiation factor 4A [ <i>Oryza sativa</i> (japonica cultivar-group)] | 156<br>(+51) |             | gi 303844    | 3 | 53 | -1.85*   | 0.01     |
| 1830 | RNA-binding glycine-rich protein-1a [Nicotiana sylvestris]                       | 118          | gi 52512794 | gi 469070    | 2 | 52 | -1.62*   | 0.037    |
| 1836 | Glycine-rich RNA-binding protein [Euphorbia esula]                               | 126<br>(+26) | gi 56819713 | gi 2674201   | 2 | 48 | 6.41**   | 0.0021   |
| 1838 | Glycine-rich RNA-binding protein [Euphorbia esula]                               | 137          | gi 24008735 | gi 2674201   | 4 | 50 | -1.89**  | 0.0095   |
|      | Cytoskeleton & cell wall                                                         |              |             |              |   |    |          |          |
| 772  | Alpha tubulin 1 [Pseudotsuga menziesii var. menziesii]                           | 341          |             | gi 56481443  | 6 | 71 | -1.49**  | 0.0045   |
| 773  | Alpha-tubulin [Trifolium repens]                                                 | 366          |             | gi 37789885  | 6 | 71 | -1.53**  | 0.0042   |
| 782  | Alpha-tubulin 1 [Populus tremuloides]                                            | 342          |             | gi 29124983  | 5 | 52 | -1.71*** | 0.0009   |

31

Comment citer ce document : Du**Manuscrit d'auteur / Author manuscript**, Label, P. **Manuscrit d'auteur / Author manuscript** Renaut, J. (2010). Acute metal stress in Populus tremula x P. alba (717-1B4 genotype): leaf and cambial proteome changes induced by Cd2+. Proteomics, 10 (3), 349-368. DOI : 10.1002/pmic.200900484

| 708  | Beta-6 tubulin [Zea mays]                                                  | 451          |             | gi 162459800 | 8 | 67 | -1.77*** | 0.00051  |
|------|----------------------------------------------------------------------------|--------------|-------------|--------------|---|----|----------|----------|
| 695  | Beta-6 tubulin [Zea mays]                                                  | 370          |             | gi 162462765 | 7 | 59 | -1.68**  | 0.0017   |
| 702  | Tubulin beta-5 chain (Beta-5-tubulin)                                      | 456          |             | gi 8928427   | 7 | 58 | -1.5**   | 0.0026   |
| 710  | Tubulin beta-5 chain (Beta-5-tubulin)                                      | 383          |             | gi 8928427   | 7 | 59 | -1.62**  | 0.0036   |
| 1319 | Phenylcoumaran benzylic ether reductase [Populus trichocarpa]              | 603          | gi 33453463 | gi 3114901   | 7 | 84 | -1.57**  | 0.0046   |
| 1323 | Phenylcoumaran benzylic ether reductase [Populus trichocarpa]              | 122          | gi 33453463 | gi 224066197 | 5 | 65 | -1.62*   | 0.03     |
| 1340 | Phenylcoumaran benzylic ether reductase [Populus trichocarpa]              | 415          | gi 33453463 | gi 224066197 | 5 | 56 | -1.67*   | 0.012    |
| 1168 | Reversibly glycosylated polypeptide                                        | 112<br>(+38) | gi 23978092 | gi 2317729   | 2 | 11 | -2.72*** | 0.000046 |
| 1187 | Reversibly glycosylated polypeptide-1                                      | 170          | gi 57894464 | gi 2317729   | 2 | 76 | -3.93*** | 0.000017 |
| 1317 | Leucine rich repeat protein [Populus tremula]                              | 134<br>(+26) | gi 33451847 | gi 190897438 | 4 | 52 | -1,6***  | 0.00065  |
| 977  | Actin [Stevia rebaudiana]                                                  | 133          |             | gi 23955912  | 3 | 58 | 2.15***  | 0.00048  |
| 990  | Actin [Gossypium hirsutum]                                                 | 650          |             | gi 32186906  | 8 | 77 | -1.54**  | 0.0024   |
| 1057 | Putative proline-rich protein [ <i>Oryza sativa</i> Japonica<br>Group]     | 193          | gi 38594177 | gi 14209541  | 2 | 16 | -2.13*   | 0.027    |
| 926  | Putative proline-rich protein [ <i>Oryza sativa</i> Japonica<br>Group]     | 83 (+46)     | gi 38594177 | gi 14209541  | 3 | 22 | 2.08**   | 0.0094   |
| 1324 | Cinnamoyl-CoA reductase [Jatropha curcas]                                  | 247          | gi 73869335 | gi 239909311 | 5 | 27 | -1.46*   | 0.02     |
|      | Stress response - defense                                                  |              |             |              |   |    |          |          |
| 1179 | Cupin family protein                                                       | 140          | gi 24106291 | gi 15226926  | 6 | 30 | -1.54*** | 0.00016  |
|      | Citrate Cycle                                                              |              |             |              |   |    |          |          |
| 1268 | NAD-dependent malate dehydrogenase [Prunus persica]                        | 157          | gi 52521122 | gi 15982948  | 4 | 33 | -1.41**  | 0.0037   |
| 1290 | Malate dehydrogenase precursor [Medicago sativa]                           | 132          | gi 24062191 | gi 2827080   | 3 | 54 | -1.58*   | 0.036    |
| 1336 | Malate dehydrogenase [Glycine max]                                         | 133          | gi /38/1484 | gi 5929964   | 5 | 47 | -1.61**  | 0.0062   |
|      | Oxidoreductase                                                             |              |             |              |   |    |          |          |
| 1137 | Peroxidase [Nicotiana tabacum]                                             | 147          | gi 57894628 | gi 14031049  | 4 | 42 | 2.93*    | 0.015    |
|      | Glutathione metabolism                                                     |              |             |              |   |    |          |          |
| 1657 | Glutathione-s-transferase theta, gst, putative [ <i>Ricinus communis</i> ] | 120          | gi 24100781 | gi 223551315 | 3 | 57 | 1,66*    | 0.027    |
| 908  | 6-phosphogluconate dehydrogenase, putative [ <i>Ricinus communis</i> ]     | 146<br>(+32) | gi 50069101 | gi 223529624 | 4 | 70 | -1.54*** | 0.00033  |
| 909  | 6-phosphogluconate dehydrogenase family protein                            | 149<br>(+39) | gi 50069101 | gi 223529624 | 3 | 70 | -1.51**  | 0.0012   |
|      | Lipid metabolism                                                           |              |             |              |   |    |          |          |
| 1059 | Acetylcholinesterase [Macroptilium atropurpureum]                          | 128          | gi 24064109 | gi 168274274 | 6 | 38 | 1.46**   | 0.0029   |
| 1064 | Acetylcholinesterase [Macroptilium atropurpureum]                          | 212          | gi 24064109 | gi 168274274 | 5 | 38 | 1.59***  | 0.00077  |
| 1066 | Acetylcholinesterase [Macroptilium atropurpureum]                          | 323          | gi 24064109 | gi 168274274 | 5 | 39 | 1.89***  | 0.00019  |
| 572  | GDSL-motif lipase/hydrolase family protein [ <i>Arabidopsis</i> thaliana]  | 227          | gi 38594604 | gi 15242458  | 2 | 33 | -1.73*   | 0.023    |

Comment citer ce document : Du**Manuscrit d'auteur / Author manuscript**, Label, P. **Manuscrit d'auteur, / Author manuscript** Renaut, J. (2010). Acute metal stress in Populus tremula x P. alba (717-1B4 genotype): leaf and cambial proteome changes induced by Cd2+. Proteomics, 10 (3), 349-368. DOI : 10.1002/pmic.200900484

| 576  | GDSL-motif lipase/hydrolase family protein [Arabidopsis thaliana] | 218          | gi 23976058 | gi 21553940  | 3 | 42 | -1.63**  | 0.0042   |
|------|-------------------------------------------------------------------|--------------|-------------|--------------|---|----|----------|----------|
|      | DNA-binding aspartyl peptidase                                    |              |             |              |   |    |          |          |
| 1140 | Aspartyl protease family protein [Arabidopsis thaliana]           | 92           | gi 38572690 | gi 18412482  | 2 | 17 | -1.66*** | 0.00027  |
| 913  | Aspartyl protease family protein [Arabidopsis thaliana]           | 228          | gi 33184151 | gi 15232503  | 5 | 30 | -1.46**  | 0.0037   |
| 996  | Aspartyl protease family protein [Arabidopsis thaliana]           | 191          | gi 33450735 | gi 15232503  | 5 | 48 | -1.64*   | 0.01     |
| 1157 | Aspartyl protease family protein [Arabidopsis thaliana]           | 93           | gi 38572403 | gi 15238250  | 2 | 25 | -1.34*   | 0.016    |
| 1146 | Aspartyl protease family protein [Arabidopsis thaliana]           | 201          | gi 23994041 | gi 15238250  | 3 | 44 | 2.15***  | 0.00015  |
| 398  | Aspartyl protease family protein [Arabidopsis thaliana]           | 148          | gi 33453642 | gi 15232503  | 5 | 52 | 5.05*    | 0.041    |
| 1488 | Aspartyl protease family protein [Arabidopsis thaliana]           | 78 (+19)     | gi 52514491 | gi 15232503  | 4 | 27 | 2.59*    | 0.026    |
| 1495 | Aspartyl protease family protein [Arabidopsis thaliana]           | 120          | gi 27421141 | gi 15232503  | 4 | 24 | 2.94***  | 0.00063  |
| 1106 | 41 kD chloroplast nucleoid DNA binding protein<br>(CND41          | 133          | gi 23994041 | gi 24430421  | 3 | 31 | 1.58***  | 0.00021  |
| 1115 | Nucleoid DNA-binding protein cnd41-like protein                   | 153          | gi 38572403 | gi 110740049 | 2 | 30 | 1.78***  | 0.00033  |
| 1206 | Nucleoid DNA-binding protein cnd41-like protein [A. thaliana]     | 171          | gi 38572403 | gi 110740049 | 3 | 26 | 1.67*    | 0.012    |
| 1142 | Nucleoid DNA-binding protein cnd41-like protein                   | 226          | gi 23989413 | gi 8979711   | 2 | 75 | 2.13***  | 0.00029  |
| 1148 | Nucleoid DNA-binding protein cnd41-like protein                   | 113<br>(+71) | gi 38572403 | gi 110740049 | 4 | 30 | 1.85**   | 0.0076   |
| 1149 | Nucleoid DNA-binding protein cnd41-like protein                   | 170          | gi 38572403 | gi 110740049 | 2 | 30 | 2.09**   | 0.0048   |
| 1169 | Nucleoid DNA-binding protein cnd41-like protein                   | 202          | gi 23989413 | gi 8979711   | 2 | 59 | 2.01**   | 0.0058   |
| 1177 | Nucleoid DNA-binding protein cnd41-like protein                   | 163          | gi 38572403 | gi 110740049 | 3 | 26 | 1.7*     | 0.04     |
|      |                                                                   |              |             |              |   |    |          |          |
|      | Nucleotides metabolism                                            |              |             |              |   |    |          |          |
| 1129 | Putative adenosine kinase [Populus alba x Populus tremula]        | 66 (+54)     |             | gi 41350585  | 3 | 55 | -1,34**  | 0.0071   |
| 1135 | Putative adenosine kinase [Populus alba x Populus tremula]        | 129          |             | gi 41350585  | 3 | 56 | -1.41**  | 0.0023   |
|      | Miscellaneous                                                     |              |             |              |   |    |          |          |
| 1375 | Putative beta-subunit of K+ channels [Solanum tuberosum]          | 180<br>(+32) | gi 57892112 | gi 223542738 | 4 | 51 | -1.69**  | 0.0014   |
| 1376 | potassium channel beta, putative [Ricinus communis].              | 118<br>(+14) | gi 57892112 | gi 223542738 | 3 | 51 | -1,78**  | 0.0012   |
| 1492 | Phi-1 [Nicotiana tabacum]                                         | 120<br>(+36) | gi 18014334 | gi 3759184   | 3 | 59 | 1.99*    | 0.035    |
| 491  | Vacuolar ATP synthase catalytic subunit A (V-ATPase subunit A)    | 306          |             | gi 137460    | 6 | 55 | -1.8***  | 0.00022  |
| 519  | Vacuolar proton pump subunit alpha                                | 220          | gi 56834889 | gi 137460    | 6 | 61 | -1.48**  | 0.0028   |
| 1411 | predicted protein [Populus trichocarpa]                           | 150          | gi 90190382 | gi 224144967 | 3 | 43 | -1,64*   | 0.012    |
|      | Spots presenting more than one protein identification             |              |             |              |   |    |          |          |
| 880  | Eukaryotic initiation factor 4A + predicted protein               | 115          |             | gi 303844    |   |    | 2.69***  | 0.00077  |
| 1112 | aspartyl protease family protein + acid alpha<br>galactosidase 1  | 116          | gi 23989413 | gi 8979711   |   |    | 2.58***  | 0.000013 |
|      | 0                                                                 |              |             |              |   |    |          |          |

Version postprint

Comment citer ce document : Du**Manuscrit d'auteur / Author manuscript**, Label, P. **Manuscrit d'auteur / Author manuscript** Renaut, J. (2010). Acute metal stress in Populus tremula x P. alba (717-1B4 genotype): leaf and cambial proteome changes induced by Cd2+. Proteomics, 10 (3), 349-368. DOI : 10.1002/pmic.200900484

| 1118 | Alcohol dehydrogenase [Populus tremula] + Aspartic<br>proteinase nepenthesin-2 precursor, putative | 82       |             | gi 52851028 | 2,64**  | 0.003  |
|------|----------------------------------------------------------------------------------------------------|----------|-------------|-------------|---------|--------|
| 1236 | Aspartyl protease family protein + glycosylated protein                                            | 88       | gi 38572690 | gi 15238250 | -1.89** | 0.0012 |
| 785  | Adenosylhomocysteinase + Enolase + 20S proteasome<br>subunit alpha-1                               | 98       | gi 60206618 |             | -2.51** | 0.0023 |
| 796  | Glutamate decarboxylase + leucine aminopeptidase, putative                                         | 80 (+67) | gi 38581604 | gi 21536919 | -1.47** | 0.0037 |

1: spot number on the master gel

2: Protein obtained by blasting the EST against the NCBInr database

3: MASCOT score (protein score as given by the GPS software (Applied Biosystems))

4: Accession number of the EST sequence in the NCBInr database

5: Accession number of the corresponding protein in the NCBInr database

6: Average ratio of the protein abundance (Cadmium/control). Positive values of ratio are given as such, negative values are given according to the following

780 formula : given value = -1/average ratio

781

Table 3 : Effect of 61 days of exposure to 360 mg  $Cd.kg^{-1}$  SDW on different physiological parameters of *Populus tremula* x *P. alba*, genotype 717-1B4.

784

| Physiological parameter                  | Effect of Cd treatment    |
|------------------------------------------|---------------------------|
| Stem height                              | -64%                      |
| Radial growth                            | -95%                      |
|                                          |                           |
| $CO_2$ assimilation                      | -94%                      |
| Stomatal conductance                     | -56%                      |
|                                          |                           |
| $Cd^{2+}$ content in leaves              | $84.0 \text{ mg.kg}^{-1}$ |
| Cd <sup>2+</sup> content in cambial zone | 123 mg.kg <sup>-1</sup>   |
| $Zn^{2+}$ content in leaves              | +127%                     |
| $Mg^{2+}$ content in leaves              | +91%                      |
| Ca <sup>2+</sup> in leaves               | +49%                      |
| K <sup>+</sup> content in leaves         | +132%                     |
| K <sup>+</sup> content in cutting        | -48%                      |

785

Comment citer ce document : **nuscrit d'auteur Author manuscript**anchon, S**Manuscrit d'auteur Author manuscript**, J.-F., **Manuscrit d'auteur / Author manusc** Renaut, J. (2010). Acute metal stress in Populus tremula x P. alba (717-1B4 genotype): leaf and cambial proteome changes induced by Cd2+. Proteomics, 10 (3), 349-368. DOI : 10.1002/pmic.200900484

Table 4 : Summary of the principle proteome changes in the leaf and in the cambial zone of *Populus tremula x P.alba*, genotype 717-1B4 exposed 61 days to 360 mg Cd.kg<sup>-1</sup><sub>SDW</sub>.

| Metabolic functions     | Leaf                                        | Cambial zone                                   |  |  |
|-------------------------|---------------------------------------------|------------------------------------------------|--|--|
| Photosynthesis          | <b>3</b> ↑ (593, 503, 648)                  | 0                                              |  |  |
| 1 notosyntnesis         | <b>41</b> ↓ (e.g. 1464, 1043)               | 0                                              |  |  |
| Carbon and carbohydrate | <b>12</b> ↑ (e.g. 501, 1127, 1571)          | 7↑ ( <i>e.g.</i> 288, 1892, 390,<br>481, 1070) |  |  |
| metabolism              | <b>9</b> ↓ (e.g. 284, 1120, 1200)           | <b>15</b> ↓ (e.g. 480, 802, 851)               |  |  |
|                         | <b>3</b> ↑(1660, 594, 599)                  | 0                                              |  |  |
| Energy metabolism       | <b>6</b> ↓(620, 632, 633, 1598, 1616, 1592) | 0                                              |  |  |
|                         | <b>1</b> ↑ (548)                            | 0                                              |  |  |
| Protein metabolism      | <b>1</b> ↓(1290                             | <b>8</b> ↓ (e.g. 381, 885, 1302, 1240)         |  |  |
| Protain actabalism      | 0                                           | 0                                              |  |  |
| FIOTEIII Catabolisiii   | <b>2</b> ↓ (1678, 435)                      | <b>3</b> ↓ (796, 896, 1555)                    |  |  |
|                         | <b>1</b> ↑ (357)                            | 0                                              |  |  |
| Protein folding         | <b>4</b> ↓ (1011, 1635, 1518, 1752)         | <b>4</b> ↓ (537, 541, 715, 1161)               |  |  |
| Transcription &         | 0                                           | <b>2</b> ↑ (1836, 877)                         |  |  |
| translation factors     | <b>1</b> ↓ (225)                            | <b>6</b> ↓ (332, 920, 892, 911, 1830, 1838)    |  |  |
| Cytoskeleton & cell     | 0                                           | <b>2</b> ↑ (926, 977)                          |  |  |
| wall                    | <b>1</b> ↓ (1192)                           | <b>16</b> ↓ ( <i>e.g.</i> 772, 1168, 990)      |  |  |
| Stress Response –       | <b>1</b> ↑ (1552)                           | 0                                              |  |  |
| defense                 | 0                                           | <b>1</b> ↓ (1179)                              |  |  |
| Citrata Cuala           | <b>3</b> ↑ (418, 902, 903)                  | 0                                              |  |  |
| Chrate Cycle            | <b>2</b> ↓ (1200, 1316)                     | <b>3</b> ↓ (1268, 1290, 1336)                  |  |  |
| Ouideneduction          | <b>3</b> ↑(1061, 936, 1637)                 | 1↑ (1137)                                      |  |  |
| Oxidoreduction          | <b>2</b> ↓ (1202, 1821)                     | 0                                              |  |  |
|                         | <b>2</b> ↑(1659, 1667)                      | <b>2</b> ↑ (1657, 1744)                        |  |  |
| Giutathione metabolism  | 0                                           | <b>2</b> ↓ (908, 909)                          |  |  |
| T inid match alians     | 0                                           | <b>3</b> ↑ (1064, 1066, 1059)                  |  |  |
| Lipid metabolism        | 0                                           | <b>2</b> ↓ (572, 576)                          |  |  |
| DNA-hinding Aspartul    | 0                                           | <b>4</b> ↑ (1140, 913, 996, 1157)              |  |  |
| Peptidase               | 0                                           | <b>12</b> ↓ ( <i>e.g.</i> 1146, 1106, 1169)    |  |  |
| N 1 ( 1. 1'             | 0                                           | 0                                              |  |  |
|                         | 0                                           | <b>2</b> ↓ (1129, 1135)                        |  |  |

Comment citer ce document : **nuscrit d'auteur Author manuscript**anchon, S**Manuscrit d'auteur Author manuscript**, J.-F., **Manuscrit d'auteur / Author manusc** Renaut, J. (2010). Acute metal stress in Populus tremula x P. alba (717-1B4 genotype): leaf and cambial proteome changes induced by Cd2+. Proteomics, 10 (3), 349-368. DOI : 10.1002/pmic.200900484



Figure 1. 2D-electrophoresis gel with **Leaf** proteins of *Populus tremula x P. alba* genotype 717-1B4 colored by CyDye 2. Identified proteins are labelled with their respective spot number.



# Figure 2. 2D-electrophoresis gel with **Cambial** proteins of *Populus tremula x P. alba* genotype 717-1B4 colored by CyDye 2. Identified proteins are labelled with their respective spot number.

Manuscrit d'auteur / Author manuscript Manuscrit d'auteur / Author manuscript

cambial proteome changes induced by Cd2+. Proteomics, 10 (3), 349-368. DOI : 10.1002/pmic.200900484

Manuscrit d'auteur / Author manuscript

Renaut, J. (2010). Acute metal stress in Populus tremula x P. alba (717-1B4 genotype): leaf and