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ABSTRACT13

14

This paper aimed at estimating albedo and Leaf Area Index (LAI) from FORMOSAT-2 satellite that 15

offers a unique source of high spatial resolution (eight meters) images with a high revisit frequency 16

(one to three days). It mainly consisted of assessing the FORMOSAT-2 spectral and directional 17

configurations that are unusual, with a single off nadir viewing angle over four visible – near infra 18

red wavebands. Images were collected over an agricultural region located in South Eastern France, 19

with a three day frequency from the growing season to post-harvest. Simultaneously, numerous 20

ground based measurements were performed over various crops such as wheat, meadow, rice and 21

maize. Albedo and LAI were estimated using empirical approaches that have been widely used for 22

usual directional and spectral configurations (i.e. multidirectional or single nadir viewing angle over 23

visible – near infrared wavebands). Two methods devoted to albedo estimation were assessed, 24

based on stepwise multiple regression and neural network (NNT). Although both methods gave 25

satisfactory results, the NNT performed better (relative RMSE =3.5% versus 7.3%), especially for 26
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low vegetation covers over dark or wet soils that corresponded to albedo values lower than 0.20.27

Four approaches for LAI estimation were assessed. The first approach based on a stepwise multiple 28

regression over reflectances had the worst performance (relative RMSE = 65%), when compared to29

the equally performing NDVI based heuristic relationship and reflectance based NNT approach 30

(relative RMSE ≈ 34%). The NDVI based neural network approach had the best performance 31

(relative RMSE =27.5%), due to the combination of NDVI efficient normalization properties and 32

NNT flexibility. The high FORMOSAT-2 revisit frequency allowed next replicating the dynamics 33

of albedo and LAI, and detecting to some extents cultural practices like vegetation cuts. It also 34

allowed investigating possible relationships between albedo and LAI. The latter depicted specific 35

trends according to vegetation types, and were very similar when derived from ground based data, 36

remotely sensed observations or radiative transfer simulations. These relationships also depicted 37

large albedo variabilities for low LAI values, which confirmed that estimating one variable from the 38

other would yield poor performances for low vegetation cover with varying soil backgrounds. 39

Finally, this empirical study demonstrated, in the context of exhaustively describing the 40

spatiotemporal variability of surface properties, the potential synergy between 1) ground based 41

web-sensors that continuously monitor specific biophysical variables over few locations, and 42

2) high spatial resolution satellite with high revisit frequencies.43

44

1 Introduction45

46

Several applications may exploit remote sensing estimates of land surface variables. They include 47

agriculture, forestry or land management as well as hydrological and meteorological forecasts. Due 48

to the high level of spatial heterogeneity, the size of agricultural fields or natural vegetation patches, 49

and the large dynamic of vegetation, observations made frequently at high spatial resolution are 50

desirable. However, because of technological and economical constraints, only high spatial 51



3

resolution sensors (10-30 m) with low revisit frequency (15-30 days) or low spatial resolution (250-52

1000 m) with high revisit frequency (between one and three days) have been available over the last 53

three decades. With the continuous technological advances that reduce mass and cost of sensors and 54

satellite platforms, new missions are planned or launched such as FORMOSAT-2 (Chern et al., 55

2006), Rapid-eye (Scherer and Kriscke 2001), Venµs (Dedieu et al., 2006) and Sentinel-2 56

(Martimort et al., 2007).57

58

Among the several surface variables that are accessible from remote sensing observations, Leaf 59

Area Index (LAI) and albedo are key players involved in the main processes that drive soil-plant-60

atmosphere exchanges and biomass accumulation, including light and rain interception, evaporation 61

and transpiration, as well as photosynthesis and respiration. These two variables are part of the 62

essential climate variables identified by the Global Climate Observing system (GCOS, 2006). LAI63

is defined as half the developed leaf area per unit of horizontal ground area, where leaf area 64

includes both leaf faces (Chen and Black 1992). Albedo is defined as the fraction of solar irradiance 65

(diffuse and direct fractions) reflected by the surface in the upper hemisphere, and integrated over a 66

given broad spectral domain (Jacob and Olioso 2005). For energy balance related applications, the 67

integration domain is [0.3-3.0] µm to derive solar albedo, although this domain is often split for 68

meteorological modeling into shortwave ([0.3-0.7] µm) and infrared ([0.7-3.0] µm) sub-domains, to 69

derive visible and near-infrared albedos respectively. While surface albedo is partly influenced by 70

LAI, several other variables have to be included for its computation, in addition to illumination 71

conditions: canopy structure (leaf area density, vegetation height, clumping and orientation…), and 72

leaf and soil optical properties (Jacobs and van Pul 1990; Olioso 1992; Weiss et al., 1999). For this 73

reason no simple and general relationship between albedo and LAI is a priori expected.74

75

Estimating LAI from remote sensing may be achieved using empirical relationships or radiative 76

transfer model based algorithms, as recently reviewed by Baret and Buis (2008). Empirical 77
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relationships may either use bidirectional reflectance measurements along with parametric inverse 78

models such as multiple linear regression (Eklundh et al., 2003) and neural networks (Baret et al., 79

1995), or combine bands into vegetation indices used as input for parametric modeling (Baret and 80

Guyot, 1991; Walthall et al., 2004). Such approaches are limited by data dependence and therefore 81

have a limited extrapolation capacity. Radiative transfer model inversion is potentially a very 82

powerful approach (Goel, 1989, Weiss et al., 2000; Meroni et al., 2004; Schlerf and Atzberger, 83

2006; Darvishzadeh et al., 2008), able to explicitly account for available information such as known 84

peculiarities of targeted canopies thanks to a priori knowledge. However, radiative transfer model 85

inversion is often limited by the realism of canopies structure description, and is known to be 86

severely ill-posed, which induces equifinality problems (Combal et al., 2002; Durbha et al., 2007).87

88

Albedo can also be estimated from remote sensing by inverting radiative transfer models, but the 89

difficulties are the same than those faced when retrieving LAI. Another possibility is using 90

statistical relationships to perform a spectral extrapolation, so called Narrowband-To-Broadband 91

(NTB) conversion. NTB conversion can be applied to nadir bidirectional reflectance (Brest and 92

Goward, 1987; Russell et al., 1997; Liang et al., 1999; Song and Gao 1999; Liang, 2001; 2003; 93

Liang et al., 2005; Susaki et al., 2007) or, more adequately, on hemispherical reflectance (Wanner 94

et al., 1997; Weiss et al., 1999; Jacob et al., 2002a; van Leeuwen and Roujan, 2002; Greuell and 95

Oerlemans, 2004), where the latter is derived from Bidirectional Reflectance Distribution Function 96

(BDRF) parametric modeling along with directional integration over the upper hemisphere (Lucht, 97

1998; Lucht and Roujean, 2000; Jacob et al. 2002b; Pokrovsky and Roujean, 2003). Although 98

proved efficient when the directional dimension is sufficiently sampled, BRDF modeling can not be 99

applied to sensors such as FORMOSAT-2 or Venµs because the latter have single viewing 100

configurations. Besides, applying NTB conversion to FORMOSAT-2 or Sentinel data is not 101

straightforward regarding limited spectral samplings but especially single off nadir viewing angles.102

Indeed, NTB conversion has been widely used for multidirectional observations or single nadir 103
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viewing directions as abovementioned, but never for single off nadir viewing angles.104

105

In the context of the high spatial resolution and revisit frequency offered by the FORMOSAT-2 106

sensor, the objective of this study was to explore its potentialities for the retrieval of solar albedo107

and LAI, regarding the specificities of its spectral and directional configurations. Rather than 108

elaborating complex approaches based on radiative transfer model inversion, we concentrated on 109

empirical approaches based on continuous ground measurements over few representative fields. 110

Remote sensing and ground based datasets were collected over the Crau-Camargue experimental 111

site. The latter embraced a wide range of vegetation and soil moisture conditions, from dry wheat 112

and bare soil fields to irrigated meadow and flooded rice plantations. This allowed investigating the 113

robustness of the empirical methods considered for albedo and LAI retrieval. Furthermore, the high114

revisit frequency of the collected FORMOSAT-2 dataset provided unique and detailed information 115

about evolution of land surface variables, over a large period ranging from the growing season to 116

post-harvest of major crops. From these chronicles of spatialized measurements, it was therefore 117

interesting to characterize the dynamics of albedo and LAI over different crop cycles, to analyze 118

possible links between these two variables, and to detect possible characteristic trends for different 119

vegetation covers according to anthropogenic forcing such as agricultural practices.120

121

The paper is structured as follows. Section 2 describes the experiment and the resulting data set. 122

Section 3 presents the empirical methods developed to retrieve albedo and LAI from FORMOSAT-123

2 data. Section 4 provides the performances of albedo and LAI retrieval methods, and discusses the 124

temporal dynamics of both variables for the several crops we considered. The best performing 125

methods for albedo and LAI retrieval are next selected and applied to the whole image set. This 126

allows analyzing the possible relationships between albedo and LAI for several crops throughout 127

their cultural cycles. Finally, conclusions are drawn with due attention to potential applications and 128

need for further investigations.129
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130

2 Materials 131

2.1 The Crau-Camargue experimental site132

133

The study area was located in the “Crau-Camargue” area, South Eastern France (43.53°N; 4.66°E; 134

3 m above sea level, see Figure 1). Climate was typically Mediterranean, with irregular 135

precipitations, long dry periods in spring and summer, and strong winds. This flat area was 136

characterized by a wide range of soil and irrigation practices. The experiment took place in 2006, 137

including intensive ground measurements simultaneously collected with satellite data on various 138

crop types (Courault et al., 2008). Low cumulative precipitation was observed in 2006 (456 mm) as 139

compared to the regional average (548 mm in 2005). The weather was especially dry from April 1st140

to mid-September, with one rainfall event only occurring in early June (28 mm).141

142

[Figure 1]143

144

The land cover was classified using a maximum likelihood supervised classification. The latter 145

relied on 1/ the four FORMOSAT-2 wavebands, 2/ five images distributed along the experimental 146

period, and 3/ reference areas of known field occupation within the study area. Image number and 147

repartition was driven by the temporal dynamics of vegetation cover, especially that resulting from 148

anthropogenic forcing such as meadow cuts throughout the cultural cycle (three to four cuts per 149

season, leaving 10 cm vegetation height). Twelve classes were identified, which included the main 150

vegetation covers, free water and bare soil surfaces. Although this map was improved with ground 151

based information, it was undeniably subject to uncertainties, with a 20% training residual error. 152

Figure 1 displays the major vegetation classes that represented about 40% of the whole study area. 153
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The remaining 60% included natural marshlands, the Rhone River and other minor cultures.154

155

2.2 The five sampled fields156

157

Five fields that corresponded to the major crops within the region of interest (Figure 1) were chosen 158

for intensive ground based measurements. The two wheat fields (#1 and #2) were sown on 159

November 11th and December 15th, and harvested on June 27th and July 4th, respectively. They were 160

not irrigated, and turned to bare soils after harvest around DOY 179 (28th of June). The meadow 161

field (#3) was flooded every 11 days according to a regional water management designed for high 162

yields and quality. Three cuts were performed during the growing season, on May 5th, July 7th, and 163

August 11th. The maize field (#4) was sown on May 5th, was intermittently irrigated by sprinklers 164

depending on weather conditions, and was finally harvested on August 8th. This field was located on 165

poor soils that were very stony at some locations, which induced large heterogeneities in vegetation 166

cover that affected the representativeness of ground based measurements. The rice field (#5) was 167

sown on dry soil on April 27th, then continuously submerged from May 5th till October 6th with a 168

0.10 ± 0.05 m water height, and finally harvested on October 18th. Due to stem lodging within the 169

rice field after August 30th caused by strong winds, LAI measurements and FORMOSAT-2 170

reflectances were biased. Therefore, the data collected afterwards were discarded from analysis.171

172

2.3 Ground based measurements173

174

Albedo was measured with Kipp & Zonen CM7 sensors mounted between 1.5 m and 2 m above top 175

of canopy. Measurements were averaged over 10 minute periods throughout vegetation cycles. The 176

measurement footprints were circular, with radii between 25 and 35 m. Albedometers were 177

calibrated to measure incoming radiation over the whole solar spectrum (300 to 3000 nm).178



8

179

Leaf Area Index (LAI) was derived from hemispherical images that provided Effective LAI. The 180

latter was closer to remote sensing estimates than the true LAI because of leaf clumping (Weiss 181

et al., 2004). The hemispherical images were collected with time intervals of about 10 days, for 182

capturing canopy structure dynamics. In order to represent field average LAI, a cross-pattern 183

sampling protocol was adopted. It consisted of 50 hemispherical images acquired within each study 184

field at each date of measurement. Table 1 gives the main characteristics of the ground 185

measurements performed within the different above mentioned fields.186

187

[Table 1]188

189

The CAN-EYE software (http://www.avignon.inra.fr/can_eye/page5.php) was used to process the 190

hemispherical images. CAN-EYE allowed computing the gap fraction from a series of RGB color 191

images through a simple interactive supervised classification process. LAI was then derived from 192

the resulting gap fractions, using look-up-table techniques based on the Poisson model (Nilson, 193

1971). A strong correlation (R²=0.98) was observed when comparing those estimates against 194

planimetry based destructive LAI measurements that were simultaneously collected over few 195

locations. However a systematic underestimation of LAI due to leaf clumping was observed, with a 196

clumping coefficient of 0.68. This was consistent with the study from Demarez et al. (2008) who 197

reported a value of 0.71 over wheat, maize and sunflower.198

199

2.4 FORMOSAT-2 Data200

201

FORMOSAT-2 is a high spatial resolution satellite that collects images with an 8 m nadir spatial 202

resolution over a 24 km swath, in four 90 nm width wavebands centered at 488, 555, 650 and 203
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830 nm. The orbital cycle is completed within one day. The sensor may deviate from nadir in order 204

to point at sites close to the ground track. Therefore, accessible locations at Earth’s surface are 205

observed under a unique viewing direction. In our case, the Crau-Camargue site was targeted with 206

zenith (relative to nadir) and azimuth (relative to north) viewing angles around 41° and 239°, 207

respectively. Images were collected every three to four days at 10:30 UTC from March to October 208

2006. They were processed for geolocation, radiometric calibration and atmospheric perturbations 209

following Hagolle et al. (2008). Clouds and related shadows were discarded following Baillarin et 210

al. (2004). Over the 36 images collected between March and October, 30 images were cloudless, 211

with a temporal gap spanning from April 17th to May 14th because of cloudy conditions.212

213

2.5 Matching ground measurements with FORMOSAT-2 data214

215

To consistently calibrate and validate the empirical methods we considered; it was necessary216

performing spatial and temporal matching between ground based and FORMOSAT-2 data.217

218

For albedo, the four FORMOSAT-2 pixels included in each albedometer footprint were extracted 219

and averaged. Albedo values acquired at 10:30 UTC were selected for comparisons, since they 220

matched satellite overpasses. According to the starting and ending dates of data collection that 221

varied from one field to another, the resulting dataset included 130 ground samples. Table 1 shows 222

very low values for the albedo coefficient of variation (CV, equal to the ratio of standard deviation 223

to mean value) derived from FORMOSAT-2 retrievals (retrieving method explained in Section 3) 224

over the albedometer footprints. Albedo could therefore be considered quite homogeneous, even for 225

the maize field that depicted an albedo CV twice larger than those depicted by the other fields.226

227

For LAI, ground based measurements and FORMOSAT-2 pixels were collected or selected in order 228
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to consider representative values at the field scale. Ground samples were collected within each field 229

according to a cross-pattern protocol, and next averaged. For each field, FORMOSAT-2 overlaying 230

pixels were selected by excluding borders, and the corresponding waveband reflectances were231

averaged. Table 1 shows the LAI CV over the field extensions, derived from FORMOSAT-2 232

retrievals on a pixel basis (retrieving methods explained in Section 3). The low LAI CV values for 233

the wheat, meadow and rice fields confirmed that comparing ground based and satellite data was 234

consistent. However, the LAI CV for the maize field was significantly larger than those for the 235

other fields, due to large heterogeneities for soil properties (Section 2.1.2). Calibration and 236

validation results for this field were therefore carefully analyzed (Section 4 and 5). Overall, because 237

of low heterogeneities for four fields over the fives, we expected calibration and validation results 238

would not be affected by non linearity between LAI and reflectance values (Garrigues et al., 2007).239

240

The quite low 10 day frequency of LAI ground based measurements induced a temporal 241

interpolation was necessary, in order to obtain concurrent ground and satellite LAI estimates. For 242

this purpose, the LAI dynamic model proposed by Koetz et al. (2005) was applied: 243

»¼

º
«¬

ª �
�

 ��
��

)TsT(a

)TiT(b
e

e

.kLAI

1
1 (1)244

T is the cumulated daily mean air temperature above vegetation zero, starting from the sowing date. 245

The growth period is defined by a logistic equation which parameter b is the relative growth rate at 246

the inflexion point Ti. The senescence is determined by an exponential equation which parameter a247

is the relative growth rate at the cumulated temperature Ts when all leaves are senescent. The k248

parameter is the maximal leaf area. These parameters were estimated using the simplex iterative 249

optimization method (Nelder and Mead, 1965), with a 5% residual calibration error. For irrigated 250

meadow, this empirical model did not allow representing the cuts. Therefore, a simple linear 251

interpolation was applied, benefiting from more frequent ground based data on this field. Figure 9 252

(later in the result section) illustrates LAI chronicles for the five fields. According to the starting 253

and ending dates of data collection that varied from one field to another, the resulting dataset 254
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included 72 ground based estimates that matched FORMOSAT-2 retrievals, completed with 25 data 255

for which the background was bare for sure, corresponding to LAI=0.256

257

A summary on the available albedo and LAI ground measurement datasets is given in Table 2. It is 258

shown albedo values were within the range of usual values reported in the literature, for both bare 259

soil and vegetation cover conditions. Values for LAI were up to almost seven, which yielded us 260

expecting saturation problems when retrieving LAI from FORMOSAT-2 reflectances, especially 261

for these specific situations of large vegetation cover.262

263

[Table 2]264

265

3 Methods266

267

When choosing the methods to be implemented for the retrieval of albedo and LAI from 268

FORMOSAT-2 data, we concentrated on empirical approaches based on continuous ground based 269

measurements over few representative fields. The motivations for choosing empirical approaches 270

were multiple. In the context of exhaustively describing the spatiotemporal variability of surface 271

properties, the FORMOSAT-2 spatial and temporal configurations allowed assessing the potentials 272

of synergy between 1/ ground based web-sensors that continuously monitor specific biophysical 273

variables over few locations, and 2/ high revisit frequency and high spatial resolution satellite 274

images. Second, although using deterministic approaches has more portability, it required first 275

inversion strategies that face the ill-posed problem and related equifinality troubles. Finally, the 276

FORMOSAT-2 spectral and especially directional configurations allowed enlarging the assessment 277

of empirical approaches that have been widely used for usual configurations (i.e. nadir viewing).278

279
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For albedo, the considered empirical approaches were the Narrowband-To-Broadband (NTB) 280

conversion and the NNT based method. NTB conversion has been widely used for recovering 281

albedo. NNT based method has been extensively employed for the retrieval of biophysical variables282

(fraction cover, chlorophyll content…) as reviewed by Baret and Buis (2008), and was therefore 283

considered as a candidate method for albedo retrieval. When dealing with LAI, we considered 284

multiple linear regressions similar to NTB conversion and recently proposed by Eklundh et al. 285

(2003) for application over forests. We also assessed NNT based methods that have been widely 286

used for retrieving LAI. In this last case, we considered to ways for applying NNT, either from 287

reflectances to LAI, or from NDVI to LAI given NDVI has efficient normalization properties.288

289

3.1 Stepwise multiple regression method290

291

For a given sun direction :s, albedo a(:s) over a considered spectral range can be approximated as 292

the weighed summation of hemispherical reflectances � �
s

h

j
:U (Jacob and Olioso, 2005):293

� � � � � � � �
s

n

j

h

jsjss
a ::�: : ¦

 1
0 .UJJ (2)294

A specific spectral band amongst n is labeled j. The weighting coefficients Jj(:s) may vary as a 295

function of :s, and have to be adjusted through stepwise multiple regressions. As explained in 296

Introduction, hemispherical reflectances � �
s

h

j
:U may be derived from multidirectional observations 297

through the parametric modeling of BRDF. When observations are available in a single viewing 298

direction only, several studies proposed directly applying Equation 2 on bidirectional 299

reflectances � �
osj

,::U , where the latter are collected with close nadir viewing: 300

� � ¦
 

:::�: :
n

j

osjsjss

1
0 ),().()( UEED (3)301
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This relies on assuming hemispherical and nadir bidirectional reflectances are linearly related, 302

either because spatial variabilities do not significantly affect the ratio of nadir to hemispherical 303

reflected radiances, or because it is possible considering a constant BRDF shape that is scaled to the 304

observed bidirectional reflectance. This strong assumption was directly validated over a limited 305

range of environmental conditions only (Russell et al., 1997; Weiss et al. 2002a; Schaaf et al. 2002). 306

However, indirect validations were performed over a large range of environmental conditions, 307

through the comparisons of albedo products derived from Equation 3 against reference estimates308

(Brest and Goward, 1987; Russell et al., 1997; Liang et al., 1999; Song and Gao 1999; Liang, 2001; 309

Liang et al., 2002; Liang, 2003; Liang et al., 2005; Susaki et al., 2007). For the current study, the 310

additional difficulty was using off nadir bidirectional reflectance (zenith and azimuth angles of 41° 311

and 239°, respectively), which yielded foreseeing NTB conversion may perform poorly.312

313

The stepwise multiple linear regression method has been applied by several authors for different 314

spectral and angular configurations. Given no coefficient set were available for the FORMOSAT 315

specific configuration over the Crau-Camargue study site, we assessed the performances of a 316

coefficient set calibrated over the collected dataset, and compared against existing coefficient sets317

proposed by Weiss et al. (1999), Liang et al. (1999), and Jacob et al. (2002a). These coefficients 318

sets were obtained by considering different spectral configurations (waveband locations and 319

widths), different directional configurations (using Equation 2 and 3 for hemispherical or nadir320

reflectances respectively), and by considering or not the diffuse component of solar irradiance.321

322

LAI was derived from multiple linear regression applied over bidirectional reflectances by using the 323

same formalism as Equation 3. As compared to Eklundh et al. (2003) who validated the concept 324

with Landsat data over coniferous and deciduous forest canopies, assessing this approach was 325

interesting with regards to the large differences in experimental conditions, whether it was the 326

considered biomes (agricultural lands versus forests), the directional configuration (off nadir versus 327
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nadir viewing), or the spectral configuration (no shortwave infrared band with FORMOSAT-2).328

329

For both LAI and albedo retrievals, we suspected a significant limitation when using the coefficient 330

set calibrated over the whole Crau-Camargue dataset, with regards to changes in solar direction at 331

the time of satellite overpass. Indeed, solar zenith (respectively azimuth) angle varied throughout 332

the experimental period from 25° to 45° (respectively from 135° to 160°). Equation 3 was therefore 333

adjusted for each individual date, using the five pairs of matching ground albedo measurements / 334

FORMOSAT-2 bidirectional reflectances. Results displayed in Figure 2 showed that coefficients 335

Ej(:s) devoted to albedo did not exhibit specific features as a function of solar direction, indicating 336

these coefficients could be assumed independent on :s. The same independency was observed for 337

the coefficients devoted to LAI (results not shown for sake of brevity). Therefore, E coefficients 338

were also assumed independent on :s for LAI in Equation 3.339

340

[Figure 2]341

342

3.2 Neural network based method (NNT)343

344

Neural networks enabled relating the FORMOSAT-2 Green, Red and NIR waveband reflectances to 345

either ground based albedo values or interpolated LAI (labeled NNTRef). The Blue waveband was 346

omitted because it considerably degraded the performances of both albedo and LAI estimations 347

(results not reported here). Moreover, Jiang et al. (2008) demonstrated that, for a large range of 348

vegetation conditions at the global scale, the inclusion of the Blue band does not significantly 349

improve the vegetation characterization. We used the feed-forward back-propagation algorithm350

detailed in Hagan and Menhaj (1994). It was made of made of a single hidden layer with two351

tangent-sigmoid neurons, and one output layer with a single linear neuron (Figure 3). Prior to 352
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training, inputs and outputs were normalized by their minimum and maximum values. The learning 353

process was achieved using the Levenberg-Marquardt back-propagation method. Twenty random 354

initializations were tested and the one providing the best performance was selected. Implementing 355

the neural network required 11 coefficients to be tuned over the training data set (eight weights and 356

three biases, Figure 3a). Hyper specialization was not evaluated due to the lack of independent data. 357

It was however reduced by the minimal architecture selected for the network.358

359

[Figure 3]360

361

Neural networks were also used for relating NDVI to interpolated LAI (labeled NNTNDVI). In this 362

case, the implementation of the neural network required seven coefficients only to be tuned over the 363

training data set (four weights and three biases, Figure 3b). Indeed, this implementation was based 364

on a unique NDVI independent variable, whereas the previous NNT design was based on three 365

independent variables as inputs, i.e. the Green, Red and NIR reflectances (Figure 3a).366

367

3.3 Exponential law based method368

369

Among the various relationships between NDVI and LAI proposed in the literature, we considered 370

for the current study the exponential law derived from the studies of Asrar et al. (1984), Baret and 371

Guyot (1991) and Wilson and Meyer (2007), and which has been widely used.372

¸
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NDVIf is the asymptotic value of NDVI when LAI tends towards a maximum value, NDVIs is the 374

bare soil NDVI value and KLAI is an extinction coefficient. The simplex optimization approach was 375

used to adjust parameters NDVIf, NDVIs, and KLAI by minimizing the Root Mean Square Error 376

(RMSE) between measured and estimated LAI.377
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378

3.4 Calibration and validation procedures and performance metrics379

380

The experimental data set (sample number N=130 for albedo and 97 for LAI) was not large enough 381

to be split into independent calibration and validation datasets. Therefore, a “leave-one-out” cross-382

validation method (Stone 1974; Geisser 1975) was used for validation. It consisted in calibrating 383

over n-1 data, and validating over the remaining “left-out” data. This process was repeated N times384

to cover the whole dataset. Then, performances were assessed using standards metrics:385

x Absolute Mean Error (MEA), was the bias between measured (Mi) and estimated (Ei) values,386
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x Absolute Root Mean Square Error (RMSEA) quantified the scatter between measured and 388

estimated values, and Relative Root Mean Square error (RMSER) was the ratio of RMSEA to 389

the mean of measured values ¢Mi².390
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392

3.5 LAI versus Albedo393

394

The large dataset of albedo and LAI, that included spatialized estimates spreading over entire crop 395

cycles, allowed analyzing a possible relationship between these two biophysical variables. To be 396

able to compare and understand such a possible relationship, radiative transfer simulations were 397

carried out for conditions similar to those prevailing during the experiment. LAI and albedo values 398

were simulated using the canopy reflectance model PROSAIL (Jacquemoud et al. 2008) for three 399

types of ground surfaces (water, dry soil and wet soil), and a range of leaf inclination angles (20°, 400

58° and 70°) under a constant zenith angle of 30°. These values corresponded to averaged values 401
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that were representative of the experimental conditions. Diffuse fraction and spectral irradiance 402

were simulated using the 6S atmosphere radiative transfer model (Vermote et al., 1997) with mid-403

latitude summer atmosphere and clear conditions (aerosol optical thickness at 550 nm set to 404

0.2347). All the other variables used for the simulations corresponded to typical average values 405

representative of soil and vegetation conditions similar to the Crau-Camargue conditions (Table 3). 406

407

[Table 3]408

409

4 Results and discussion410

411

This section presents the results we obtained when retrieving albedo (§ 4.1) and LAI (§ 4.2), as well 412

as when analyzing a possible relationship between both (§ 4.3). For the retrieving of albedo and 413

LAI, results are reported by separating method performances (§ 4.1.1 for albedo, § 4.2.1 for 414

reflectance based LAI, § 4.2.2 for NDVI based LAI) and analysis of chronicles captured by both415

ground based and FORMOSAT-2 observations (§ 4.1.2 for albedo and § 4.2.3 for LAI).416

417

4.1 Albedo estimates from FORMOSAT-2 data418

4.1.1 Comparison of the different method performances419

420

Table 4 displays the results we obtained for the retrieval of albedo, when calibrating NTB 421

conversion and NNT method over the Crau-Camargue dataset (Set 1 and NNT), and when 422

validating coefficient sets proposed by previous studies for other sensors with different spectral and 423

direction configurations. Set 2 and 3 were calibrated over a simulated dataset, and designed for 424

hemispherical reflectances collected within generic wavebands (Weiss et al., 1999). Set 4 was 425
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calibrated over a measured dataset, and designed for hemispherical reflectances collected within 426

PolDER wavebands (Jacob et al., 2002a). Set 5 was calibrated over a measured dataset, and 427

designed for nadir bidirectional reflectances collected within MISR waveband (Liang et al., 1999).428

429

[Table 4]430

431

The stepwise multiple regression (Equation 3) calibrated over the Crau-Camargue dataset was 432

obtained by selecting positive and statistically significant bands only (Set 1). Best performances 433

were obtained when using the Red and NIR bands only, with a corresponding offset equal to 0.434

Thus, absolute bias MEA was almost negligible and Relative Root Mean Square Error RMSER was 435

acceptable, around 7.5%. These validation results were comparable to calibration residual errors 436

reported by Weiss et al. (1999), Liang et al. (1999) and Jacob et al. (2002a), and were close to 437

relative accuracy of albedometer measurements and FORMOSAT-2 corrected data (around 5%).438

439

Similarities in performances for Set 1 versus Set 2 and 4 were explained by similarities in 440

coefficient values, the latter varying of about 8 and 14% in relative for the red and near infrared 441

bands, respectively. When applying coefficients Set 3 and 5 that included the Green band; 442

performances were even worse as compared to Set 2 that included Red and NIR bands only. This 443

indicated the Green band could have added more noise than information in albedo estimation.444

445

We could not discriminate performances according to the consideration of hemispherical or nadir 446

bidirectional reflectances, whereas the best performances were observed with the data set of 447

FORMOSAT-2 off nadir bidirectional reflectance. These both elements contributed to strengthen 448

the directional approximations formulated in Section 3.1, when assuming NTB conversion could 449

also be applied to off nadir bidirectional reflectances. However, this positive report ought to be 450

moderated because of additional complexities when comparing the different coefficient sets, such as 451
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the combined effects between differences in spectral configurations and land surface properties.452

453

When dealing with the coefficient Set 1 that was calibrated over the Crau-Camargue dataset, the 454

sum of the coefficients appeared to be almost equal to one (column 6E in Table 4). This was in 455

agreement with Brest and Goward (1987), and Jacob et al. (2002a). Indeed, the whole solar 456

spectrum could be split into nominal spectral intervals, and supposedly fully scanned through the 457

corresponding wavebands. Then, the associated weighting coefficients corresponded to the fractions458

of solar irradiance over these intervals. However, this physical assumption might be far from reality 459

when characterizing the whole spectral domain by using a visible and a near infrared band only. 460

The Blue band was never significant in the considered coefficient sets: its weight might be 461

relatively small due to the low radiation level. Further, it might also be considerably disturbed by 462

residual atmospheric effects due to inappropriate aerosol corrections. Moreover, this band might not 463

provide additional information. Indeed, Jiang et al. (2008) reported strong correlations with the Red464

band for a for a large range of vegetation conditions at the global scale.465

466

Inspecting performances from one field to another showed that those were lower over rice and 467

meadow, with RMSER of 10.5% and 10.1% respectively. Figure 4a emphasizes the difficulties for 468

the regression to fit the scattering induced by very different situations between meadow and rice, 469

with an overestimation (respectively underestimation) for rice albedo (respectively freshly cut 470

meadow albedo). These poor performances could be explained by the lack of water sensitive 471

shortwave infrared (SWIR) wavebands within the FORMOSAT-2 configuration. Indeed, inclusion 472

of such bands might improve albedo estimation under conditions of wet soil and free water 473

background. To our knowledge, very few studies tried to estimate rice albedo from remote sensing, 474

probably because of additional difficulties induced by the presence of water background. Very 475

recently, Susaki et al. (2007) obtained a RMSER of 15.1 % with ASTER data over rice cultures in 476

Japan, when applying the appropriate coefficient set proposed by Liang et al. (2001). This error was 477
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larger than that obtained here, indicating our calibrated coefficient set was acceptable, despite 1/ the 478

consideration of complex surfaces that combined water and vegetation, 2/ the absence of 479

FORMOSAT-2 SWIR waveband, and 3/ the consideration of off nadir bidirectional reflectances.480

481

[Figure 4]482

483

Table 4 also indicates the NNT method had the best performance. The improvement mainly 484

occurred for meadow (RMSER decreasing from 10.3% to 4.3%), and in a lesser extent for rice and 485

maize (Figure 4b). Performance improvement systematically corresponded to albedo values lower 486

than 0.2, i.e. for crops with low amount of vegetation and wet or dark soil background. As 487

compared to the simple linear multiple regression, the NNT were more flexible, thanks to both their 488

non linear character and their larger degree of freedom (number of coefficients to be tuned, see last 489

column of Table 4). This could explain the better performances observed in complex situations,490

with variable background properties and low amount of vegetation. Even if the obtained RMSER491

was 3.5%, it could be set to 5%, which corresponded to the accuracy of both albedometer 492

measurements and FORMOSAT-2 corrected data. It is worth noting this NNT based empirical 493

approach has never been applied to albedo estimation, and such results are quite encouraging. 494

Further applications on other datasets would be necessary for additional validations.495

496

4.1.2 Dynamics of Albedo as estimated from FORMOSAT-2 data497

498

Figure 5 displays albedo dynamics captured throughout the study period from ground based 499

measurements and NNT based FORMOSAT-2 retrievals, when considering all fields apart from 500

meadow (Field #3). It confirms the close agreement previously observed on Figure 4b, since we 501

selected estimates from the best performing retrieval method. Dynamics of ground based albedo 502

values measured at 10:30 UTC showed large variations, mainly due to daily changes in diffuse 503
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fraction of solar irradiance, and in a lesser extent to changes in surface properties. Conversely, 504

albedo estimates from FORMOSAT-2 depicted a reduced variability, because they corresponded to 505

data collection under clear sky conditions with a low diffuse component of solar irradiance.506

507

Both wheat fields had comparable albedo dynamics, while bare soils exhibited contrasted time 508

courses after harvesting (DOY 179), and especially after DOY 220 (pointed by an arrow in bottom 509

left subplot of Figure 5). This was mainly due to green vegetation re-emergence in wheat Field #1. 510

Maize field dynamics showed limited amplitudes of variation, the few large changes being ascribed 511

to irrigation practices. Dynamics of albedo for rice showed a significant increase when the canopy 512

developed. This was in agreement with observations from Maruyama et al. (2007) over rice crops. 513

Indeed, they reported a first period with low albedo values (around 0.10) that corresponded to low 514

vegetation cover overlaying a water or very wet soil background, and followed by an albedo 515

increase during vegetation growth, until it stabilized around a value of 0.18 to 0.20.516

517

[Figure 5]518

519

Figure 6 displays albedo dynamics captured throughout the study period from ground based 520

measurements and NNT based FORMOSAT-2 retrievals, when considering Field #3 (meadow)521

only. It is shown the good agreement between ground based observations and remotely sensed 522

estimates. The amplitude of variation was limited, with almost neither seasonal trend nor large 523

variations. This was mainly explained by irrigation or rainfall events, which induced a systematic 524

albedo drop (between 0.01 and 0.04) that vanished after two or three days. Note that the cuts did not 525

induce large albedo variation, probably because a significant fraction of green vegetation was kept.526

527

[Figure 6]528

529



22

4.2 LAI estimates from FORMOSAT-2 data530

4.2.1 LAI as a function of individual reflectances531

532

Table 5 displays the parameters we obtained when calibrating the various empirical methods to be 533

considered when retrieving LAI from FORMOSAT-2 data. Are also indicated the corresponding 534

performances in terms of absolute bias, absolute and relative root mean square errors. We recall 535

LAI references were obtained from ground based measurements through a temporal interpolation 536

(§2.1.5). Statistical analysis through stepwise regression retained the Red and NIR wavebands only. 537

As illustrated by Figure 7a that displays the “leave-one-out” cross-validation, the corresponding 538

performances were significantly poor. Further, the RMSER values displayed in Table 5 were larger 539

than those obtained by Fassnacht et al. (1995), Eklundh et al. (2003) and Jensen and Binford (2004).540

541

[Table 5]542

543

[Figure 7]544

545

As compared to the previous studies abovementioned, the lower performances we observed were 546

explained by differences in land surface properties and remotely sensed information. Indeed, these 547

former studies were devoted to the monitoring of forests from Landsat Thematic Mapper (TM), thus 548

benefiting from both lower spatial heterogeneities, and from additional spectral information through 549

shortwave infrared (SWIR) wavebands. For the current study, the significantly poor performances550

were ascribed to several factors. The first one was the large variabilities of canopy structure and soil 551

background properties, to be both taken into account with three freedom degrees only (Table5).552

Second, the absence of FORMOSAT-2 SWIR waveband may contribute to the poorer performances 553

in LAI estimation. Indeed, Eklundh et al. (2003) obtained a significant contribution of the SWIR554
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wavebands while estimating the LAI over a forest using the multiple regression approach. 555

556

Rice was the unique field for which albedo was reasonably well estimated, all the other fields 557

corresponding to large scattering between measured and estimated values. Although stepwise 558

multiple linear regression could have been independently applied over each of the four land cover 559

classes, the restricted data set would have prevented from obtaining robust relationships. 560

Additionally, the maize field was quite heterogeneous, and the ground sampling was probably too 561

small to obtain a representative value of the field LAI.562

563

Training of neural networks over individual reflectances (NNTRef) showed significant 564

improvements of retrieval performances. The RMSE values were indeed twice lower (Table 5 first 565

line as compared to second one, and Figure 7c as compared to Figure 7a). This was ascribed to the 566

larger number of coefficients to be tuned (Table 5). Regardless of the considered field, the 567

scattering between estimated and measured LAI values (Figure 7c) was similar.568

569

4.2.2 LAI as a function of NDVI570

571

Table 5 and Figure 7b show that both the NDVI based heuristic formulation (exponential shape) 572

approach and the NDVI based neural network approach NNTNDVI performed better than the 573

reflectances based approaches, whether it was NTB conversion or NNT. 574

575

A unique set of parameters for the heuristic formulation (Equation 4) was adjusted over the whole 576

set of (ground based LAI, FORMOSAT-2 NDVI) pairs. Value of NDVIf (Table 5) was very 577

comparable to those obtained by Weiss et al. (2002b) and Wilson and Meyers (2007) over similar 578

vegetation types but with different viewing angles (nadir looking with these former studies, against 579
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41° zenith / 239° azimuth with the current study), and probably different solar directions. This may 580

explain why KLAI value obtained in the current study (0.71) was slightly larger than that obtained581

(0.67) by Weiss et al. (2002b). The NDVI normalization properties appeared to be efficient. With 582

three freedom degrees only, better performances were obtained than with the 11 freedom degree of 583

the reflectance based NNT method, the RMSER dropping down by 20% in relative.584

585

Training a neural network with measured LAI and NDVI values allows more flexibility in the shape 586

of the relationship between these two variables. Seven parameters had indeed to be tuned, as 587

compared to three parameters when using heuristic formulation (Equation 4). Results show this 588

method performed best, with a RMSER value of 27.54% (Table 5 and Figure 7d). These good 589

performances were ascribed to the combined effect of NDVI efficient normalization properties and 590

the NNT flexibility. However, saturation problems still were observed for LAI values larger than 4, 591

a problem that may result from the saturation of the remotely sensed signal over the optical domain.592

593

Figure 8 illustrates the LAI – NDVI relationship generated by both the NNTNDVI and the heuristic 594

formulation (Equation 4). Both methods followed a smooth exponential trend in compliance with 595

Equation 4. The figure also shows how the heterogeneous, row-planted maize crop exhibited a 596

different behavior than the other homogeneous vegetation covers. This heterogeneity in structure 597

and field cover could have made the LAI – NDVI relationship quite different over this crop. 598

Consequently, the latter was not well characterized through the multi-crop calibrated relationship.599

600

[Figure 8]601

602

4.2.3 Dynamics of LAI as estimated from FORMOSAT-2 data603

604

Dynamics of FORMOSAT-2 LAI retrieved from the best performing NNTNDVI approach was very 605
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smooth, as expected (Figure 9). Dynamics showed a classical temporal pattern for wheat, maize and 606

rice, with increase LAI during the vegetative growth, followed by a relatively rapid senescence.607

Rice and maize crops depicted bare soil conditions (LAI=0) at the beginning. Wheat fields showed 608

significant amount of green vegetation after harvest (LAI|0.4), presumably corresponding to weeds609

that developed after the rainfall events observed around DOY 255. Dynamics of meadow shows the 610

three cuts and the re-emergence just afterwards. Note that since LAI was around one just after the 611

cuts, this explains why the albedo dynamics was not affected by these cuts.612

613

[Figure 9]614

615

4.3 LAI versus Albedo616

617

NNT based FORMOSAT-2 retrievals of both LAI and albedo over the whole study area were 618

matched for all vegetation types and for all acquisition dates. Figure 10 displays the resulting 619

boxplots along with the corresponding statistics (mean value, lower and upper quartiles), and the 620

ground based measurements. It is shown when LAI increases, albedo follows almost the same trend 621

for wheat, meadow and maize. However, rice behaves differently, and especially for LAI values 622

lower than 2.5. The general trend observed over the whole area from FORMOSAT-2 retrievals was 623

similar to that observed over the five fields where measurements were collected. However, most of 624

the field data were outside the 95% confidence interval of albedo variation within each LAI class. 625

This indicated although ground based data were representative of each field as shown by the low 626

CV values in Table 1, the fields were not representative of the land use classes. Although this was 627

not expected, consequences on the empirical models calibrated for estimating LAI and albedo might 628

be marginal. Indeed, calibrations were performed by including all crops and dates, while LAI and 629

albedo measured values covered most of the ranges observed across the study area and period.630
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631

[Figure 10]632

633

Figure 11 displays the LAI – albedo relationship simulated from radiative transfer modeling (§ 3.5). 634

For the investigated crops, these simulations agree very well with observations displayed on 635

Figure 10. The soil background played a major role for low to moderate LAI values (LAI<3), which 636

could explain the differences observed between the four different crop types. For larger LAI values, 637

albedo tends towards an asymptotic value that may depend on canopy architecture (leaf inclination) 638

as well as on other variables not investigated here like chlorophyll content and mesophyll structure 639

parameter. The largest albedo variability within a LAI class, depicted in Figure 10, corresponded to 640

intermediate LAI values (1<LAI<2.5), where both soil background and vegetation influence the 641

reflected radiation. The albedo ranges were slightly lower for LAI lower than 1, because the main 642

influence was due to different soil surface reflectance properties. For LAI larger than 2.5, the albedo 643

range kept on decreasing with increasing LAI where the vegetation reflectance properties dominate.644

645

[Figure 11]646

647

5 Conclusion 648

649

This study demonstrated that it is possible accurately retrieving albedo and LAI from the specific 650

FORMOSAT-2 observations, along with empirical approaches based on restricted spatial sampling 651

but continuous monitoring. Although calibrations were performed by including all data collection 652

dates and all crops (wheat, maize, rice and meadow), very good performances were achieved. 653

Further, the advantages of the neural network techniques (NNT) over linear multiple regressions or 654

heuristic formulations was demonstrated. For the first time an NNT based method was used to 655
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retrieve albedo, and the results were quite encouraging.656

657

Due to the relatively small sample size, the empirical models established for retrieving LAI and 658

albedo probably need additional independent evaluation about their robustness, with emphasis on 659

the sampling strategy that optimizes the number, locations and dates of the ground based 660

measurements. When applied over orchards and vineyards, attention should also be paid to row661

orientations relatively to solar or viewing directions. Furthermore, these relationships were 662

calibrated under the specific FORMOSAT-2 viewing conditions that are latitude / longitude 663

dependent (here, zenith angle = 41° and azimuth angle = 239°). Application to other conditions may 664

require adaptations, either by using radiative transfer models if well calibrated over the considered 665

surfaces, or by replicating the whole experimental process under these new conditions. 666

667

Alternative approaches based on radiative transfer model inversion were not considered in this 668

study, and should require further efforts. This might be possible under conditions of well defined 669

prior information, given single multi-date and multi-crop calibration of empirical approaches 670

yielded accurate estimates of LAI and albedo, and this in spite of limited information provided by 671

the FORMOSAT-2 samplings (three wave bands and a single off nadir viewing direction).672

673

Another original output of this study was the possibility to investigate the spatial correlation 674

between albedo and LAI. We observed great consistencies when comparing albedo – LAI 675

relationships derived from ground based data, remotely sensed observations, or radiative transfer 676

simulations; with specific trends according to vegetation types. However, we observed large albedo677

variabilities within most LAI classes, particularly for low leaf area indices. It appeared therefore 678

that estimating one variable from the other would yield poor performances, particularly for low LAI 679

values under varying soil background conditions. Conversely, albedo may be estimated to be 680

around 0.2 for LAI values larger than 4, at least for the canopy we considered.681
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682

This study also highlighted the interest of frequent observations at high spatial resolution for 683

vegetation monitoring. It allowed obtaining detailed features of the dynamics from which several 684

information could be derived; in relation with either brutal changes resulting from cultural practices 685

(cuts, irrigation under certain conditions) or more smooth evolutions resulting from canopy 686

phenology and functioning. In the context of exhaustively describing the spatiotemporal variability 687

of surface properties, this study finally demonstrated the potentials of the synergy between 688

1/ ground based web-sensors that continuously monitor specific biophysical variables over few 689

locations, and 2/ high revisit frequency and high spatial resolution satellite images.690

691
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Figure 1: Land use map of the “Crau-Camargue” study area. The major cultivations are represented with their 886

occupation occurrence over the experimental area. Ground measurements took place from March to October 887

2006 over fields that were numbered #1 and #2 for wheat (turning to bare soils at the end of June), #3 for 888

meadow, #4 for maize and #5 for rice.889
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Figure 2: Narrowband-To-Broadband (NTB) conversion coefficients Ej in the Red and NIR bands, computed for 895

albedo retrieval, for each individual observation date as a function of the solar zenith angle (Ts) cosine.896
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Figure 3: Neural network architecture when inputs were a) the green, red, and near infrared reflectances (U) and 902

b) NDVI only. The squares represent the input and output variables, and the circles represent both the two903

tangent sigmoid neurons of the hidden layer and the single linear neuron of the output layer. The network 904

structure required for a) 11 coefficients to be tuned: eight weights (w1…w8) and three biases (b1…b3) and for905

b) seven coefficients to be tuned: four weights (w1…4) and three biases (b1…b3).906
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Figure 4: Comparison, over the four considered crops, between ground based measured albedo and 912

FORMOSAT-2 retrievals based on (a) the coefficient Set 1 and (b) the NNT. Scatterplots correspond to the 913

leave-one-out validation data set. The 5 fields are identified by different symbols.914
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Figure 5: Albedo dynamics captured throughout the study period from ground based measurements (labeled 920

observed) and FORMOSAT-2 retrievals using the neural network method (labeled estimated), when considering 921

wheat / bare soil (Field #1 and 2), maize (Field #4) and rice (Field #5). Dotted vertical lines indicate the harvest922

dates. DOY 220 discussed in the text is pointed by an arrow on the Wheat 2 figure (bottom left subplot).923
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Figure 6: Albedo dynamics captured throughout the study period from ground based measurements (labeled 929

observed) and FORMOSAT-2 retrievals using the neural network method (labeled estimated), when considering 930

irrigated meadow (Field #3). For analysis, albedo dynamics (bottom) is plotted with rainfall and irrigation events 931

(top). Meadow cuts are illustrated by vertical arrows.932
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Figure 7: Leave-one-out cross-validation, over the four considered crops, of FORMOSAT-2 LAI retrievals 938

against ground based measurements, where the latter were temporally interpolated through Equation 1. 939

Estimates are derived from a) multiple regression, b) neural network technique (NNT) based method with 940

reflectances as inputs, c) NDVI based heuristic formulation (Equation 4), and d) NNT based method with NDVI 941

as input.942
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Figure 8: Comparison between the LAI versus NDVI relationships, as obtained by the NDVI exponential law 948

method (LAINDVI) or by the neural network method (LAINNT). 949
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Figure 9: Dynamics of LAI over a) wheat1, b) wheat2, c) maize, d) rice, and e) meadow. Values of LAI are either 955

measured (dots), interpolated between measurements (solid line), or derived from FORMOSAT-2 data by using 956

NNTNDVI approach (x). Vertical bars illustrate the 95% confidence interval around the ground based 957

measurements mean. Vertical arrows in e) represent meadow cutting dates.958
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Figure 10: Boxplots of FORMOSAT-2 albedo retrievals as a function of FORMOSAT-2 estimated leaf area 964

index LAI classes (0.2 LAI steps), for all available observations and for each vegetation type derived from the 965

land use classification (section 2.1.1). (+) symbols represent the mean estimated albedo for each estimated LAI966

class, and (x) symbols represent albedo versus LAI measured in the field. The rectangles limit the lower and 967

upper quartiles. The vertical bars limit the largest non-outlier observations.968
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Figure 11: Theoretical relationship between albedo and LAI as simulated by the radiative transfer model 974

PROSAIL over three contrasted back-ground surfaces and three leaf inclination angles (Parameterization 975

details in Table 5).976
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981

Table 1: Overview of vegetation characteristics observed for the five study fields. Coefficient of Variation (CV) 982

was derived from FORMOSAT-2 pixels by considering the whole field (borders excluded) for LAI (LAI CV) and 983

the albedometer footprint for albedo (Albedo CV). For meadow (Field #3), 1st and 2nd cycle corresponded to 984

growth cycles after cuts. Values of LAI and albedo CV are discussed in Section 2.1.5.985

986

Studied Fields Field area 
(ha)

Period of 
data collection

Number of days 
with collection 

of ground based 
LAI data 

Maximum LAI LAI
CV (%)

Albedo 
CV (%)

#1 - Wheat 1 30 March 10th – May 30th 6 1.55 1.0 1.5
#2 - Wheat 2 10 March 10th – May 30th 6 2.0 1.5 1.0

#3 - Meadow 30 March 10th – October 10th 14 6.3 (1st cycle),
4.8 (2nd cycle) 3.6 1.1

#4 - Maize 2 June 1st – August 8th 5 2.5 17.1 2.6
#5 - Rice 4 June 1st – August 27th 5 4.8 2.1 1.2

987
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989

Table 2: Description of datasets for albedo and LAI ground based measurements, after spatial and temporal 990

matching with FORMOSAT-2 data.991

992

Variable Ground
measurements Spatial matching Temporal matching Dataset 

size
Range of 

values

Albedo Albedometer Measurement footprint
(4u4 pixels) Measurements at 10:30 UT 130 [ 0.10 0.27 ] 

LAI Hemispherical images Entire field (|300 pixels) Temporal interpolation 
using equation (1) 97 [ 0.00 6.8 ]

993

994
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Table 3: Models and variables used for simulating of albedo and LAI. Values corresponded to typical average 996

soil and vegetation characteristics representative of our experimental conditions.997

998

MODELS & Variables Values

PROSPECT (Leaf optical characteristics)
Chlorophyll content 60 µg/cm²
Dry matter 0.0075
Relative water content 80 %
Mesophyll structure parameter 1.2
Simulation spectrum 300 to 2400 nm

SAIL (radiative model)
Zenith angle 30°
Diffuse fraction Derived from 6S (See below)
Hot spot parameter 0.01
Leaf inclination angles 20°, 58° and 70° with ellipsoidal distribution
LAI values 0 to 6 (Step = 0.2)
Soil background Water, wet soil, dry soil

6S (radiative transfer model)
Aerosol model Continental
Aerosol optical thickness 0.2347 at 550 nm 
Environmental reflectance Equal to the reflectance of the target

999
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Table 4: Coefficients sets used to compute albedo as a linear combination of waveband FORMOSAT-2 1002

reflectances. Set 1 and NNT were calibrated over the Crau-Camargue dataset using FORMOSAT-2 off nadir 1003

bidirectional reflectances. Sets 2 and 3 were designed for generic spectral configurations, and calibrated over 1004

simulated data set by considering hemispherical reflectances. Set 4 was devoted to the PolDER derived 1005

hemispherical reflectances, and calibrated over the Alpilles-Reseda measured dataset. Set 5 was devoted to the 1006

MISR sensor, and calibrated over a simulated dataset by considering nadir bidirectional reflectances. The 1007

waveband limits (in nm) considered for each coefficient set are reported. Are also indicated the sum of 1008

coefficients (6E), the performances of each coefficients set in terms of absolute bias (MEA), absolute (RMSEA) 1009

and relative (RMSER) root mean square errors. The last column corresponds to the number of coefficients to be 1010

adjusted in each empirical model.1011

1012

Green Red NIR E0 6E MEA RMSEA RMSER
Freedom
degree

FORMOSAT 520-600 630-690 760-900
Set 1 0.000 0.619 0.402 0.000 1.021 0.000 0.015 7.3 % 3

NNT - - - - 0.000 0.007 3.5 % 11

Weiss et al. (1999) 560 665 855

Set 2 0.000 0.570 0.460 0.000 1.030 -0.012 0.019 9.7 % 2

Set 3 0.680 0.080 0.350 0.000 1.110 0.021 0.029 14.2 % 3

Jacob et al. (2002a) 530-570 650-690 845-885
Set 4 0.000 0.591 0.374 -0.001 0.965 0.014 0.020 9.7 % 3

Liang et al.(1999) 544-571 662-682 847-886

Set 5 0.126 0.343 0.415 0.004 0.884 0.018 0.027 13.4 % 4

1013

1014
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Table 5: Obtained parameters when calibrating the various empirical methods we considered for the retrieval of 1016

LAI from FORMOSAT-2 data. Are also indicated the performances of each method in terms of absolute bias1017

(MEA), absolute (RMSEA) and relative (RMSER) root mean square errors. The last column corresponds to the 1018

number of coefficients to be adjusted in each empirical model. First is the multiple linear regression over 1019

FORMOSAT-2 reflectances. Second is the NNT based method that uses as inputs FORMOSAT-2 reflectances. 1020

Third is the heuristic formulation of LAI as a function of NDVI. Fourth and last is the NNT based method that 1021

uses as input FORMOSAT-2 NDVI.1022

1023

Coefficients Red NIR E0 KLAI NDVIf NDVIs MEA RMSEA RMSER (%) Freedom
degree

Multiple regression -17.91 12.26 0 - - - 0.03 1.29 64.58 3
NNTRef - - - - - - -0.03 0.69 34.63 11
NDVI based method - - - 0.71 0.89 0.10 0.05 0.66 33.37 3
NNTNDVI - - - - - - 0.02 0.55 27.54 7

1024


