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Abstract The acylation of amino acids by acid chlorides with from 8 to 12 carbon atoms, 

in alkaline aqueous medium following Shotten-Baumann reaction, results in sodium salts of 

Nα-acylamino acids and fatty acids mixture. These lastest are present in proportion from 40 to 

60%. These compositions represent mixtures of amphiphilic anionic surfactants. They 

contribute together to the properties of the formulation. Measurements of the surface-active 

properties of these formulations, such as critical micelle concentration (CMC), surface tension 

at the CMC (TS), foaming capacity (FC) and foaming stability (FS), show that surfactant 

mixtures with the longest chain have the most desirable properties. They are comparable to 

commercial petroleum-based surfactants. Thus, the CMC, TS and CM values of the 

formulation obtained starting from leucine and dodecanoyl chloride (310 mg/L, 30.1 mN/m 

and 200%, respectively) are similar, even better than, sodium dodecylsulfate (290 mg/L, 

39.1 mN/m and 230%, respectively). 

 

 

Keywords: Surfactants, amino acids, acylation, critical micelle concentration (CMC), 

foaming properties 
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Introduction 

Surfactants, or surface-active agents, are among the most widespread and widely used 

chemical products in the world today. In 2002, total surfactant production volume worldwide 

was 11 million tonnes. Derivatives of plant origin accounted for approximately 20% of this 

production. Within a context of sustainable development, there is an urgent need to produce 

environmentally-friendly surfactants.  

These surfactants can be obtained from molecules that mimic natural amphiphilic structures. 

The association of a polar amino acid (hydrophilic moiety) and a non polar long chain 

compound (hydrophobic moiety) to built amphiphilic structures allows to obtain molecules 

with a high surface activity (1). Thus, lipoamino acids obtained from natural raw materials are 

the choice surface-active molecules for applications in the food, pharmaceutical and cosmetic 

industries. As a result of their structure, they have a low degree of toxicity, improved 

resistance to hard water, antimicrobial activity (2), are gentle and not irritating to the skin and 

are easily biodegradable (1, 3). 

If we consider the chemical structure of an amino acid, the fatty chain can be introduced via 

the amine or carboxylic function. However, the reactivity of the amine function in aqueous 

medium is widely higher than the one of carboxylic acid. We were interested in Nα-acylamino 

acids obtained by fat chain grafting on the amine function of amino acid. Many synthesis 

pathways use organic solvents (3-6). Another pathway consists of synthesis by acylation using 

an acid chloride in water, following the Schotten-Baumann reaction (2, 7, 8). In parallel, in 

operating conditions (alkaline aqueous medium), the acid chloride hydrolyses in carboxylate 

ion (Figure 1). It is therefore necessary to determine the quantity of fatty acid formed during 

the secondary reaction in order to determine the composition of the final mixture. The aim is 

to acylate the greatest proportion of amino acid possible. To do this, an excess of acid 

chloride in relation to amino acids, is added. The presence of sodium (do)decanoate and 
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octanoate contributes also to the mixture properties, because they have an amphiphilic 

capacity. 

We were particularly interested in the acylation of a neutral amino acid with a non-ionic side 

chain (leucine), of an amino acid with a negatively-charged side chain (glutamic acid) and a 

basic amino acid with a positively-charged side chain (arginine), and acid chlorides with from 

8 to 12 carbon atoms. The Nα-acylamino acids/fatty acid sodium salts ratio of the mixture 

obtained was determined by NMR and UV spectroscopy methods. Then, we studied the 

surfactant properties of these different formulations. Indeed, only few of these surfactants 

were studied: Takehara et al. (9-11) and George et al. (2) were interested in the surface-active 

properties of few Nα-acylamino acid salts. 

 

Experimental Procedures 

 

Materials 

 

L-leucine (99%), L-glutamic acid (99%), L-arginine (98%), octanoyl chloride (>97%), 

decanoyl chloride (98%), dodecanoyl chloride (98%), o-phtaldialdehyde (OPA), sodium 

phosphate, sodium tetraborate, sodium dodecyl sulphate (SDS), β-mercaptoethanol and 

hexadecyl-trimethylammoniumbromid (CTAB) were purchased from Sigma-Aldrich (Saint 

Quentin Fallavier, France). D2O (99.90%) was supplied by Eurisotop (Gif-sur-Yvette, 

France). 

 

Preparation of Nα-acylamino acid sodium salts 

Sodium hydroxide (2.72 g/68 mmol) – except for synthesis with glutamic acid 

(4.08 g/102 mmol) – and amino acid (34 mmol) were dissolved in 30 mL of water in a 250-
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mL two-necked flask equipped with a cooling agent and mechanical stirring. The mixture was 

stirred at room temperature. Acid chloride (51 mmol) was added after the amino acid and the 

sodium hydroxide were totally dissolved. The reaction temperature was thus maintained at 

50°C for 3 h. At the end of the reaction, the pH was adjusted to 2-3 with a 4N hydrochloric 

acid solution. Water was eliminated using a rotary evaporator. A purification step of reaction 

mixture in order to eliminate the sodium chloride was then performed. For that purpose, 50 

mL of ethanol was added to the mixture. Then, the ethyl-alcoholic solution was heated under 

reflux for 30 min. The mixture is vacuum-filtered. The dry matter and mineral content of the 

solid (obtained after the former filtration) was determined using the AFNOR standard, NF 

VO3-706, and the insoluble fraction was analysed by infrared spectrometry. The ethanol was 

then eliminated from the filtrate using the rotary evaporator. The residue obtained was 

dissolved in a saturated sodium hydroxide aqueous solution (4 to 6 g) and in 10 to 20 mL of 

ethanol. The Nα-acylamino acid and fatty acid of sodium salts mixture were precipitated after 

adding 30 mL of acetone (2). Finally, a filtration is performed in order to recover and vacuum 

dry the product mixture. 

 

Determination of the dry matter and mineral content by AFNOR standard, NF VO3-706 

2.5 g of product was put down in porcelain crucible. It was placed in an incubator at 105°C 

until to a constant weight. Then, it cooled in a desiccator. The percentage in dry matter is 

determined by the relation: 

100/% ×= mimMS dry  

mi: masse of the initial product (g) 

mdry: masse of the dry product after a stay in an incubator at 105°C (g) 

After the determination of the dry matter rate, the crucibles are placed in an oven at 550°C for 

3 hours. The percentage of mineral is figured by the following relation: 
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100% ×=
dry

ashes

m

m
MM  

mdry: masse of the dry product after a stay in an incubator at 105°C (g) 

mashes: masse of ashes from dry product after calcination at 550°C (g) 

 

Analysis of amino groups and determination of the acylation rate 

 

Free amino acid groups were quantified using the reliable OPA method (12), described by 

Frister et al. (13). The sample to be analysed was dissolved in a buffer solution of 12.5 mM 

sodium tetraborate and 2% SDS (w:w) at pH 8.5. 2 mL of a reagent solution prepared the 

same day were added to 1 mL of unknown solution. The reagent solution was prepared by 

introducing the following into a 50 mL volumetric flask: 25 mL 0.1 M sodium tetraborate 

solution (pH 9.2), 2.5 mL 20% SDS (w:w), 40 mg OPA dissolved in 1 mL methanol, 100 µg 

β-mercaptoethanol. The final volume was completed up to 50 mL with demineralised water. 

The absorbance of the mixture was measured at 340 nm after 2 min incubation. The number 

of amine groups was calculated using a calibration curve obtained with L-leucine. The 

acylation rate (AR) was determined using the following formula: 

AR = (Ni-Nf)/Ni*100 

where Ni is the number of free amine groups in the amino acid before acylation, and Nf is the 

number of free amine groups in the final product determined by OPA. 

 

Nuclear magnetic resonance (1H and 13C NMR) analysis 

 

All the NMR measurements were performed with in 7.05 Tesla Bruker AVANCE 300 

spectrometer. All the proton and carbon-13 spectra were acquired at 300.1312 MHz and 

75.4764 MHz, respectively, in a 5 mm direct probe (PH QNP-300SB F/P/C-H-D -05 – Zgrad 
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-BTO 2000). The experiments were carried out at 293.1 ± 0.1 K. The sample (20-50 mg of 

salt) was dissolved in 0.6 mL of D2O. The chemical shifts were referenced to 

tetramethylsilane (TMS) for 1H and 13C nuclei. The proton spectra were collected with a 

solvent suppression experiment (Pulse programme 1H: zgpr) with a 90° (P1=2.70 µs ; PL1=0 

dB and PL9=45 dB) pulse as 32K points over 6.172 KHz spectral width. 

All the carbon-13 spectra were acquired using standard proton–decoupled carbon-13 

acquisition with pulse-gradient (Pulse programme 13C: zgpg30). For this purpose, a carbon-13 

length pulse of typically 9.70 µs (PL=-1 dB) and 18.115 KHz proton decoupling were applied 

during acquisition. The number of scan is 1,536 for carbon-13 experiments and 64 for proton 

analysis. 

 

Measurement of the Critical Micelle Concentration (CMC) 

 

Surface tension was measured using a GBX-TEN 089 tensiometer equipped with a Wilhelmy 

plate. Mixtures consisting of Nα-acylamino acid and fatty acid sodium salts (2.5 g/L) were 

dissolved in a 0.1 M sodium phosphate buffer solution at pH 7.0 to obtain 200 mL of solution. 

Drops of 400 µL of this solution were added to 50 mL of the same phosphate buffer solution. 

Surface tension was continuously measured and recorded at 20°C until a constant surface 

tension value was observed. The CMC was obtained at the breaking point of the surface 

tension curve in relation to the logarithm of the mixture concentration. 

 

Measurement of foaming properties 

 

Foaming properties were measured using the method described by Padmashree et al. (14). 3 g 

of surfactants were mixed with 300 mL of water in a graduated 1-L cylinder. The solution was 
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stirred at 1600 r/min. The volume was measured 30 s after stirring. The foaming capacity 

(FC) was expressed as the percentage of volume according to the following formula: 

100×−=
stirringbeforeVolume

stirringbeforeVolumestirringafterVolume
FC  

The foam volume was recorded at 5, 30, 60, 120 and 300 min after stirring. Foaming stability 

(FS) was calculated using the following formula:  

100
"" ×=

volumefoamInitial

ttimeaaftervolumeFoam
FS  

 

Results and discussion 

 

Purification of acylation reaction products 

 

The aim of this step is to eliminate all compounds that have no surface-active properties 

(sodium chloride, amino acids). After the elimination of water, the reaction products are 

dissolved in ethanol under reflux. By simple filtration of the medium, the totality of sodium 

chloride, not soluble in ethanol is eliminated. The mineral matter determination of solid 

obtained gives values of about 100% for synthesis performed with leucine and glutamic acid 

and above 60% for the synthesis carried out with arginine. In the last case, the infrared 

showed that the precipitate also contained an arginine fraction, slightly soluble in ethanol. 

The second step of purification consists in obtaining the surface-active molecules under salt 

form and it permits to eliminate the amino acids that have not reacted. These latest do not 

precipitate during acetone addition. Therefore, the final mixture contains only the Nα-

acylamino acid sodium salts and the fatty acid sodium salts. In the case of mixture obtained 

starting from glutamic acid, the precipitation of this amino acid is observed in acetone. The 

surfactant mixtures are thus contaminated by glutamic acid (Table1). 
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Determination of the conversion rate of the acylation reaction and the final formulation 

composition 

 

In the operating conditions involving 1.5 equivalent of acid chloride for 1 equivalent of amino 

acid in presence of 2 equivalents of sodium hydroxide (3 for the synthesis with glutamic acid 

in reason of the presence of two carboxylic functions), the conversion in relation to amino 

acid (ηAA) is determined by OPA method, for the different reactions. ηAA are raised for 

arginine (77-90%) and for leucine (87-88%) and lowered for glutamic acid (53-75%) 

(Table1). This lower conversion rate is due to higher basicity of reaction medium during the 

synthesis with glutamic acid, because of the presence of its two carboxylate functions, 

favouring the chloride hydrolysis. The influence of hydrophilic element is perceptible in the 

case of arginine acylation because the acylation rate is proportional to the fatty chain length. 

The Nα-acylation by acid chloride is an efficient way to constitute amphiphilic compounds. 

The ratio of Nα-acylamino acids to the total quantity of Nα-acylamino acids and fatty acid salts 

formed in the final composition (RAA) and the fatty acid salts to the total quantity of Nα-

acylamino acids and fatty acid salts formed in the final composition (RFA) is determined by 

NMR. A preliminary study of 1H (zgpr) and 13C (zgig) signals, completed with 2D studies 

(COSY, HSQC, HMBC) led to the attribution of the HNMR signals. To allow quantitative 

HNMR determination, all NMR measurements have been carried out with a delay time D1 = 

60 sec. This delay time permits the full relaxation of all the nuclei concerned by the assay. 

The values of integration on the 1H spectra are determined in order to allow the calculation of 

the assay of our mixtures. I1 and I2 the value of the integral corresponding to one proton of 

Nα-acylamino acid sodium salts and fatty acid sodium salts, respectively. For the three Nα-

acylleucine acids, the Nα-octanoylarginine acid and the Nα-decanoylarginine acid-based 
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mixtures, the integrals chosen correspond to the CH2 (protons H3) in alpha of the amide 

function (integral I1) or in alpha of carboxylic function (integral I2) for the Nα-acylamino acid 

sodium salts or the fatty acid sodium salts, respectively (Figure 2). Concerning the Nα-

dodecanoylarginine acid sodium salt and the three Nα-acylglutamic acid sodium salt-based 

mixtures, the integrals chosen correspond to the terminal methyl group (protons H1) of the 

hydrophobic part of our components (integral I1+I2) and to the proton (H4) signals grafted on 

the asymmetric carbon of the Nα-acylamino acid sodium salts (integral I1). The integrals I1 

and I2 of the spectrum of the mixture containing the Nα-octanoylglutamate sodium salt and the 

octanoate sodium salt are illustrated on Figure 3. The assay of the mixture is expressed by the 

yield (RAA and RFA) calculated with the following formula: 

100
21

1 ×
+

=
II

I
RAA  

 

100
21

2 ×
+

=
II

I
RFA  

RAA and RFA are gathered in Table 1. The yield (RAA) obtained after purification are different 

from conversion rate (ηAA) obtained by OPA before purification. According to our 

experimental conditions, RAA can not exceed 66%. The lower yields observed for the 

derivates of glutamic acid may be explained by a content of sodium hydroxide greater during 

the synthesis with this amino acid that would lead to a premature hydrolysis of the chloride 

acid. The chain length does not seem to have any influence on the yield of the synthesis, 

regarding the uncertainty of about 10% on these values. 

 

 

Measurement of the critical micelle concentration 
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A linear decrease in surface tension is observed when the concentration of the mixture is 

increased for all surfactants, up to the CMC (Figure 4 ), beyond which there is no observable 

change in surface tension. This behaviour is common to surfactants in solution. The high 

CMC values observed for the Nα-octanoylamino acid-based formulations are due to the fact 

that the Nα-octanoylamino acids have a less hydrophobic chain than that of Nα-decanoylamino 

and Nα-lauroylamino acids (Table 2). In fact, a longer, more hydrophobic chain results in 

lower surface tension. This is attributed to the increase in the affinity of lipophilic molecules 

for interfaces (15). Regardless of the nature of the hydrophilic head of the amino acid, Nα-

lauroylamino acids have the lowest CMC. The charge of the polar head also seems to have an 

influence on the CMC. For the same chain length, the CMC of the leucine derivates mixture is 

inferior to the one of arginine derivates, which is inferior to the one of glutamic acid 

derivates. The Nα-acylleucine sodium salts have an anionic hydrophilic head, whereas Nα-

acylarginine sodium salts have an amphoteric one and Nα-glutamic acid sodium salts have one 

with two negative charges. Likewise, the higher values of CMC for the glutamic acid 

derivates are explained by the presence of residual glutamic acid. This amino acid has no 

surface-active properties, so its presence increases the CMC values  

Nα-lauroylamino acid- and Nα-decanoylamino acid-based formulations have a surface tension 

at the CMC comparable and sometimes even lower than that of SDS and CTAB. They 

therefore have interesting surface-active properties. 

 

Measurements of foaming properties 

 

The results of foaming properties are given on Table 3. Regardless of the amino acid used, the 

shorter the chain is, the lower the FC will be, implying that less foam will be produced. By 

extending the length of the chain, the lipophilic character of the molecule is increased and the 



 12 

tension at the water/air interface is lowered at the same time. The Nα-lauroylarginine sodium 

salt-based mixtures and the Nα-decanoylarginine sodium salt-based mixtures have a good 

foaming capacity. Indeed, the anionic and amphoteric surfactants are known for their good 

foaming capacity (16). The foam volume value obtained for these mixtures is comparable to 

the value obtained with commercial SDS. This is proof that these are good foaming agents. 

Moreover, some Nα-acylamino acids are sold as cosmetic ingredients for shower gels and 

cleansers (17). The stirring with Nα-acylglutamate sodium salts have less good foaming 

capacity for the same reasons that previously (presence of sodium glutamate in the mixture).   

A second major parameter when studying foaming properties concerns their stability (Figure 

5). Foams are thermodynamically unstable systems. Their stability and their fracture depend 

on a series of complex phenomena that begin with the hydrodynamic drainage of the liquid, 

the dilution of the aqueous film and the coalescence of bubbles (18). An arginine hydrophilic 

head combined with a C10 or C12 hydrophobic chain confer good stability on Nα-acylarginine 

due to the amphoteric nature of their polar head. Indeed, the amphoteric surfactants improve 

the foaming capacity, as well as the foaming stability (19). 
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Figure 1: Two competitive reactions: acylation and hydrolysis of acid chloride  
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Figure 2 : Nα-acylamino acid and alcanoate sodium salts 
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 arginine leucine glutamic acid 

 
ηAA RAA RFA ηAA RAA RFA ηAA RAA RFA 

residual acid 

glutamic (%) 

C8 77 45 55 88 45 55 75 55 45 40 

C10 84 42 58 87 51 49 53 24 76 46 

C12 90 39 61 87 55 45 64 38 62 43 

 

ηAA: conversion rate of acylation reaction in relation to the amino acid determined by OPA 

RAA: molar composition of the final mixture (ratio of Nα-acylated amino acids to the total quantity of Nα-acylated 

amino acids and fatty acid salt) determined by NMR 

RFA: molar composition of the final mixture (ratio of fatty acid salt to the total quantity of Nα-acylated amino 

acids and fatty acid salt) determined by NMR 

residual acid glutamic (%): percentage of residual glutamic acid in relation to Nα-acylglutamic acid determined by 

NMR 

 

Table1: Acylation reaction yield and the final composition of the mixture in relation to the amino acid and 

acid chloride used 
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 arginine leucine glutamic acid carboxylic acid 

 
CMC 

(mg/L) 

TS 

(mN/m) 

CMC 

(mg/L) 

TS 

(mN/m) 

CMC 

(mg/L) 

TS 

(mN/m) 

CMC 

(mg/L) 

TS 

(mN/m) 

C8 >2500 / 1100±100 34.1±0.5 >2500 / >2500 / 

C10 1500±150 26.0±0.5 560±40 37.8±0.5 1930±90 27.5 2700±150 27.7±0.5 

C12 410±40 30.2±0.5 310±80 30.1±0.5 800±60 38.7 140±50 31.0±0.5 

SDS: CMC = 290±30 mg/L; TS = 39.1 mN/m 

CTAB: CMC = 280±30 mg/L; TS = 37.2 mN/m 

Table 2: Critical micelle concentration of Nα-acylamino acid-based formulations and references 

 
 

 arginine leucine glutamic acid carboxylic acid 

C8 160±5 0 0 150±5 

C10 180±5 140±5 70±5 190±5 

C12 180±5 200±5 120±5 200±5 

SDS: 230±5% 

CTAB: 210±5% 

Table 3: Foaming capacity (%) of Nα-acylamino acid-based formulations and references 
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