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Detailed information about stage-specific changes in gene expression is crucial for the understanding of the gene
regulatory networks underlying development. Here, we describe the global gene expression dynamics during early
flower development, a key process in the life cycle of a plant, during which floral patterning and the specification of
floral organs is established. We used a novel floral induction system in Arabidopsis, which allows the isolation of a large
number of synchronized floral buds, in conjunction with whole-genome microarray analysis to identify genes with
differential expression at distinct stages of flower development. We found that the onset of flower formation is
characterized by a massive downregulation of genes in incipient floral primordia, which is followed by a predominance
of gene activation during the differentiation of floral organs. Among the genes we identified as differentially
expressed in the experiment, we detected a significant enrichment of closely related members of gene families. The
expression profiles of these related genes were often highly correlated, indicating similar temporal expression
patterns. Moreover, we found that the majority of these genes is specifically up-regulated during certain
developmental stages. Because co-expressed members of gene families in Arabidopsis frequently act in a redundant
manner, these results suggest a high degree of functional redundancy during early flower development, but also that
its extent may vary in a stage-specific manner.
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Introduction

Over the past two decades, flower development has
attracted widespread attention as an excellent model system
for studying organogenesis in plants at a molecular level [1].
Extensive genetic analyses, especially in the model plant
Arabidopsis thaliana and in Antirrhinum majus have led to the
identification of several key regulatory genes of this impor-
tant biological process, and the regulatory interactions
between these genes have been, in many cases, elucidated
through genetic and molecular analysis [2–4]. The vast
majority of the floral regulatory genes identified to date
encode transcription factors or other proteins involved in the
regulation of gene expression, indicating the existence of a
complex gene regulatory network that underlies flower
development (Figure 1). Most of these genes act during the
very early steps of flower formation, in processes such as the
establishment of floral meristem identity, or in the patterning
of the floral meristem into distinct domains that give rise to
the different types of floral organs (i.e. sepals, petals, stamens,
and carpels) [2–4] (Figure 1). In contrast, comparatively few
genes have been identified through genetic analysis that
function specifically at later stages of flower development,
and that control floral organ formation. One possible reason
for why these genes might have been missed in genetic
screens is that their loss of function might result in subtle
phenotypes, so that the corresponding mutant plants are
easily missed, or they are excluded from further analysis
because of the concomitant isolation of (potentially more
interesting) mutants with more severe phenotypic alterations.

Another explanation is based on the fact that in plants, as
well as in other organisms, the disruption of a single gene
often results in no discernable mutant phenotype, because
the loss of its activity can be readily compensated by other

genes that control the affected developmental process in an,
at least partially, redundant manner. Functional redundancy
is frequently mediated by closely related genes that have
originated from gene (or genome) duplications and that have
retained similar or identical functions [5]. Compared to other
eukaryotes, plant genomes are strongly enriched for dupli-
cated genes because of frequent segmental duplications and
polyploidization events [6], suggesting a high potential for
functional redundancy. However, it is thought that such gene
duplicates functionally diverge over time. In fact, it appears
that one of the duplicates is frequently lost (indicating that its
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retention is not beneficial for the organism) or that it may
acquire novel functions that were not mediated by the
corresponding progenitor gene. Alternatively, disruption of
certain regulatory elements in the promoters of the dupli-
cated genes may lead to altered expression patterns and
hence to sub-functionalization [6].

In addition to duplicated genes, functional redundancy can
also originate from unrelated genes or pathways that are part
of buffering mechanisms that protect regulatory networks
from the effects of perturbations caused by random
mutations [5]. Although there are several examples for genes
acting in a redundant manner during flower development [7],
the full extent of redundant gene activities in the formation
of flowers is currently unknown.
The invention of DNA microarray technology has opened

the possibility to study gene expression during development
on a genome-wide scale, and rapid advances are being made
toward the understanding of the transcriptional programs of
several model organisms [8,9], including Arabidopsis [10–12].
Several recent studies have aimed at the characterization of
the Arabidopsis floral transcriptome [11,13–17], leading to the
identification of novel flower-expressed genes and in some
cases to first insights in how the expression of these genes is
controlled by known floral regulators. However, these studies
provided only limited information about where and when
genes are expressed during flower development. As detailed
knowledge about spatio-temporal gene expression is pivotal
for a comprehensive understanding of development [8,9],
new experimental approaches are needed to improve the
resolution of the available expression data, and to obtain a
more comprehensive view of the developmental mechanisms
and the genes that control flower formation.
The analysis of gene expression during flower development

has been hampered mainly by difficulties in isolating

Figure 1. Gene Regulatory Network Controlling Early Flower Development

Genes involved in the establishment of floral meristem identity, floral patterning, or floral organ formation, and their regulatory interactions are shown.
Certain floral regulators were not included in the diagram, because their positions in the gene regulatory network relative to the genes shown are
currently not well understood. Individual genes are represented by horizontal lines with bent arrows and gene symbols (see Table S11 for full gene
names). For each gene, upstream inputs and downstream targets are indicated. Activators are connected to their targets by arrows, repressors by blunted
lines. Blue dots underneath gene symbols indicate that direct binding to these genes has been demonstrated by chromatin immunoprecipitation or by a
combination of in vitro binding studies and in vivo binding site disruptions. Note their small number in the diagram, indicating the limited availability of
binding data. White circles represent protein complexes. ASK1 and UFO are part of an ubiquitin ligase complex (‘‘Ubiq. lig.’’). SEU, LEU, and perhaps BLR
(question marks indicate that a direct interaction of BLR to SEU and/or LEU has not yet been demonstrated) are part of a transcriptional co-repressor
complex (‘‘transcrip. corepress. compl.’’) controlling AG expression. Protein interactions between MADS-box transcription factors [41] are not depicted
(with the exception of AP3 and PI, which are thought to act as an oligate heterodimer [58]), to simplify the diagram.
Arrows for FT symbolize a long-range transport of FT mRNA from leaves to shoot apices [59]. Dashed lines indicate that gene products do not function
as transcriptional regulators. A red arrow marks the position of AP1 in the gene regulatory network. Diagram was generated using BioTapestry [60] and
is based on published data (see Table S11 for selected references).
DOI: 10.1371/journal.pgen.0020117.g001
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Synopsis

The development of flowers is one of the characteristic features of
higher plants. In an effort to gain detailed insights into the
molecular processes underlying flower development, the authors
have analyzed the expression of the genes of the small plant
Arabidopsis thaliana, which is widely used by biologists for the study
of plant development, during the early stages of flower formation.
To this end, they used DNA microarray analysis, a technology that
allows the simultaneous detection of thousands of gene transcripts
in a single experiment. Because young floral buds of Arabidopsis are
minute and are difficult to dissect, the authors established a system
that allows the simultaneous induction of a large number of flowers
on a single plant. Using this system, they identified groups of genes,
many of them novel or uncharacterized, that are highly active
during distinct stages of flower development. These genes are likely
involved in controlling the various developmental changes that take
place during the formation of flowers. The authors also found that
many of these genes are closely related in sequence, suggesting
that they might be involved in similar or identical processes, and
thus uncovering a large degree of potential functional redundancy
during flower development.



sufficient amounts of tissue from distinct floral stages for
microarray analysis. This problem is especially pronounced
for early flower development in Arabidopsis, because floral
primordia are minute and are initiated successively so that
only one floral bud in an inflorescence is at a given
developmental stage [18]. Also, young floral buds are hidden
by older, more mature flowers, representing an additional
challenge for their dissection.

Here, we describe a novel floral induction system that
allows the induction of a large number of synchronized floral
buds on a single plant and thus, enables the collection of
floral bud populations of distinct developmental stages. We
have used this system to analyze gene expression during early
flower development on a genome-wide scale by microarray
analysis and have identified genes with significant expression
changes at different stages of flower development. Among
these genes we found a significant enrichment of genes with
putative regulatory functions, most of which have not yet
been identified through genetic approaches. We also found
significant differences in the representation of transcripts
from closely related genes at different floral stages, suggesting
varying degrees of functional redundancy during distinct
stages of flower development.

Results/Discussion

Induction of Synchronized Flower Development
The system for the induction of synchronized floral

development (Figure 2) is based on plants with loss-of-
function mutations in the closely related genes APETALA1
(AP1) and CAULIFLOWER (CAL), which regulate the initiation
of flower development in a redundant manner [19,20]. Flower
formation in ap1 cal double mutants is (temporarily) blocked
and instead, these plants undergo a massive over-prolifer-
ation of inflorescence-like meristems, leading to a cauli-
flower-like appearance (Figure 2A). ap1 cal plants eventually
flower after a long delay compared to wild-type plants, but
the flowers are abnormal and lack sepals and petals (Figure
2C). Because ectopic expression of AP1 in wild-type plants
causes the transformation of vegetative and inflorescence
meristems into floral meristems [21] (Figure S1), we reasoned
that a specific activation of AP1 in the inflorescence-like
meristems of ap1 cal double mutants might lead to their
simultaneous transformation and subsequently to synchro-
nous flower development. To test this, we generated trans-
genic ap1 cal plants expressing a fusion protein of AP1 and
the hormone-binding domain of the rat glucocorticoid
receptor (GR) from the constitutive cauliflower mosaic virus
35S promoter. Treatment of 35S:AP1-GR ap1 cal inflorescen-
ces with the synthetic steroid hormone dexamethasone,
which activates the AP1-GR fusion protein [22], led to a
massive formation of floral buds (Figure 2B), whereas mock-
treated control plants showed no phenotypic response
(Figure 2A). Examination of the floral buds at different time
points after the dexamethasone treatment revealed that they
closely resemble those of wild-type plants (as described in
[18]), both morphologically and with respect to their
temporal progression through the different stages of flower
development (Figure 2E–2H). In addition, the hundreds of
floral buds that were produced on a single plant were
relatively synchronized (Figure 2I), at least until day 5 after
the treatment, when most buds had reached stage 7 of flower

development. At this stage, all floral organs have been
initiated and are undergoing rapid differentiation. After
day 5, synchronization was gradually lost (unpublished data),
possibly due to space constraints within the compact
inflorescence. In contrast to flowers eventually generated by
mock-treated 35S:AP1-GR ap1 cal plants after a long delay
(Figure 2C), mature flowers of dexamethasone-treated plants
had formed sepals and petals (Figure 2D) and resembled wild-
type flowers (although certain developmental defects, e.g.
narrow petals, petalloid sepals, or a reduction in the number
of floral organs were observed as well). Thus, activation of
AP1-GR by a single dexamethasone treatment not only
induced synchronous flower development but was also
sufficient to rescue the organ identity defects of ap1 cal
mutant flowers.
The floral induction system presented here has several

conceptual and experimental advantages compared to a
previously described approach that allows the induction of
synchronized reproductive organ development by specific
activation of the floral homeotic factor AGAMOUS (AG) in
an ap1 cal background [14]: i) Activation of AP1 leads to the
formation of flowers with all four types of floral organs and
not only to that of stamens and carpels, as in the case of AG,
allowing the analysis of all aspects of early flower develop-
ment; ii) Only a subset of plants exhibit a phenotypic

Figure 2. Floral Induction in ap1 cal Double Mutant Plants by AP1-GR

Activation

While no phenotypic response was observed in mock-treated (mock)
plants (A), the activation of AP1-GR in the inflorescences of ap1 cal plants
by dexamethasone (dex) treatment led to a massive induction of floral
primordia (B). Images were taken 6 d after a single dexamethasone
treatment. (C–D) Fertile flowers of 35S:AP1-GR ap1 cal plants 4 wk after
treatment with a mock solution (C) and 13 d after a single
dexamethasone treatment (D). AP1-GR activation restores the organ
identity defects of ap1 cal mutant flowers. (E–I) Scanning electron
micrographs of floral buds of 35S:AP1-GR ap1 cal plants at different time
points (as indicated) after a single dexamethasone treatment. In (H), an
asterisk indicates the position of a sepal that was removed for a better
visibility of the inner whorl organs. Scale bars: 20 lm in (E) to (H) and 100
lm in (I).
DOI: 10.1371/journal.pgen.0020117.g002
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response to AG activation, while all AP1-GR ap1 cal plants
treated with dexamethasone initiate flower development; iii)
In the AP1-GR based system, the blockage of flower develop-
ment that occurs in ap1 cal double mutants is released by
simply compensating for the loss of endogenous AP1/CAL
activity. In contrast, endogenous AG is not expressed during
the earliest stages of flower formation [15,23], and the
mechanism by which ectopic AG activity is able to override
the normal requirement for AP1/CAL during the initiation of
flower development is currently unknown.

Global Analysis of Stage-Specific Gene Expression
We used the 35S:AP1-GR ap1 cal floral induction system to

analyze gene expression during early flower development on
a genome-wide scale (Figure 3). To this end, we treated
inflorescences with dexamethasone and then collected tissue
immediately after the treatment, as well as at 1-d intervals for
the following 5 d. For the detection of stage-specific changes
in gene expression, RNA derived from consecutive time
points was co-hybridized to microarrays representing
;26,700 Arabidopsis genes (Figure 3A). Most of the previously
characterized floral regulators (Table S1) were among the
1,653 genes that were detected as differentially expressed in
this experiment (Table S2). We compared the microarray
results for these genes (Figure 4) to their published
expression patterns and found them, in general, to be in
good agreement. For example, up-regulation of the floral
homeotic genes AG, APETALA3 (AP3), and PISTILLATA (PI),
which are involved in specifying floral organ identity [2,3,4]
(Figure 1), was detected within the first 2 d after AP1-GR

activation and subsequently, their expression levels remained
high throughout the rest of the experiment (Figure 4C). These
expression profiles are in agreement with the reported
induction of these genes in floral meristems at stage 3 and
their continued expression in developing floral organs [23–
25]. We also found a moderate upregulation of the floral
homeotic gene APETALA2 (AP2) (Figure 4C), which is broadly
expressed in inflorescence meristems and developing floral
buds [26]. Thus, AP1 activity is not required to induce AP2
expression but appears to promote AP2 expression during
early flower development.
Expression of the meristem regulatory genes WUSCHEL

(WUS) and CLAVATA3 (CLV3) was gradually reduced during
the course of the experiment (Figure 4F) in accordance with
the progressive decrease, and eventual termination, of
meristematic activity in developing flowers [27,28]. In con-
trast, expression levels of SHATTERPROOF 1 and 2 (SHP1/2),
CRABS CLAW (CRC), and NOZZLE/SPOROCYTELESS (NZZ/
SPL), which are involved in the development of the
reproductive floral organs, remained unchanged during the
first few days of the experiments, but started to increase after
day 3 when stamen and carpel primordia were initiated
(Figure 4E). Furthermore, the expression profiles of FILA-
MENTOUS FLOWER (FIL) and YABBY3 (YAB3) (Figure 4G),
for which largely identical expression patterns in flowers have
been reported [29], were highly correlated, indicating that co-
expression of genes was reliably detected by the microarray
analysis. We also detected a simultaneous and rapid upregu-
lation of JAGGED (JAG) and NUBBIN (NUB) (Figure 4H), two
closely related C2H2 zinc-finger protein-coding genes that

Figure 3. Experimental Design and Results

(A) Calculation of expression ratios. RNA samples from tissues collected on two consecutive days were co-hybridized to microarrays. Thus, ratios r1 to r5

are direct experimental ratios that were calculated for each gene represented on the array using its normalized signal intensities (s) at the individual
time points.
(B) Summary of gene expression changes observed in the experiment. The number of genes that were up- or down-regulated 1, 2, 3, 4, or 5 days after
AP1-GR activation relative to the previous time point is indicated. Black bars represent up-regulated and gray bars down-regulated genes.
(C) Heat map representing Z-score normalized signal intensities of 1,653 genes showing significant expression changes in the experiment (as derived
from ratios r1-r5). Yellow indicates high, and blue indicates low expression. Genes were clustered into five groups (A–E; indicated on the left) with
predominant expression during certain stages of early flower development (indicated on the right). The approximate developmental stage of the floral
buds at the different time points is indicated in (A) and (C). IM: inflorescence-like meristem.
DOI: 10.1371/journal.pgen.0020117.g003
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act (in a partially redundant manner) in the control of floral
organ differentiation [30–32]. Results of in situ hybridizations
have shown that expression of JAG commences in late-stage 2
flowers [30,31] and that NUB is expressed from stage 5
onward [32]. Our microarray data suggest, however, that NUB
expression is initiated significantly earlier in flower develop-
ment and temporally parallels that of JAG. This discrepancy
could be a result of non-localized NUB expression in very
young floral buds, which would be difficult to detect by in situ
hybridizations. A similar idea has been put forward for
inconsistencies between the reported expression pattern of
CRC and its gene expression profile as determined by
microarray analysis [17].

We also found that the expression profiles of genes
previously identified as being regulated by AP1 during the
establishment of floral meristem identity (Figure 1) changed
rapidly after activation of the AP1-GR fusion protein.
Expression of the floral meristem identity regulator LEAFY
(LFY) was up-regulated, whereas expression of the shoot-
identity gene TERMINAL FLOWER 1 (TFL1) and of AGA-
MOUS-LIKE 24 (AGL24) (a regulator of inflorescence fate and
a putative direct target of AP1 [22]) were strongly repressed

(Figure 4A). In contrast, we observed only a weak effect of AP1
activity on the expression of FRUITFULL (FUL) (Figure 4A),
which acts redundantly with AP1 and CAL during the
establishment of floral meristem identity [20]. FUL is ex-
pressed ectopically in meristems of ap1 and ap1 cal mutant
plants, suggesting that AP1 is a repressor of FUL [20]. Other
genes with known or presumed roles in flower development
whose expression responded rapidly to AP1-GR activation
included the MADS-box transcription factor-coding genes
SUPPRESSOR OF CO-OVEREXPRESSION 1 (SOC1), the SOC1
paralog AGAMOUS-LIKE 42 (AGL42), and SHORT VEGETA-
TIVE PHASE (SVP) (Figure 4B), all of which were repressed. It
is noteworthy that the repression of the floral pathway
integrator SOC1 by AP1 is in agreement with the down-
regulation of SOC1 expression in stage 1 floral buds [33] when
AP1 becomes active. Further experimentation will be required
to determine whether this interaction is direct or indirect.
Taken together, the results of our analysis validate the

microarray data, and show that the development of the floral
buds induced by AP1-GR activation closely resembles that of
wild-type flowers, not only at the morphological but also at
the molecular level.

Figure 4. Microarray Results for Selected Floral Regulatory Genes

Log10-transformed signal intensities at the individual time points of the experiment are shown.
(A) Expression dynamics of previously identified AP1 response genes that regulate the initiation of flower formation (see Figure 1). The floral meristem
identity gene LEAFY (LFY) is rapidly upregulated upon AP1-GR activation, whereas TERMINAL FLOWER1 (TFL1) and AGAMOUS-LIKE 24 (AGL24) are
repressed. The slight reduction in expression of FRUITFULL (FUL) was not judged statistically significant in our analysis.
(B) Repression of AGAMOUS-LIKE42 (AGL42), SHORT VEGETATIVE PHASE (SVP), and SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1).
(C) Expression dynamics of genes involved in specifying the identity of floral organs. AP3: APETALA3; PI: PISTILLATA; AG: AGAMOUS; SEP3: SEPALLATA3;
AP2: APETALA2.
(D) Activation of genes involved in floral patterning (SUP: SUPERMAN) or organ primordia formation (RBE: RABBIT EARS; PRS: PRESSED FLOWERS).
(E) Induction of genes involved in carpel or stamen primordia development was detected towards the end of the time course experiment (SHP1:
SHATTERPROOF1; SHP2: SHATTERPROOF2; CRC: CRABS CLAW; NZZ/SPL: NOZZLE/SPOROCYTELESS). Expression of SHP1 was not judged significantly
changed in the experiment in contrast to that of its paralog SHP2. This result is in agreement with the reported induction of SHP2 at stage 6, one stage
earlier than that of SHP1 [61,62].
(F) The meristem regulatory genes WUSCHEL (WUS) and CLAVATA3 (CLV3) were gradually downregulated during the course of the experiment. The
increase in WUS expression on day 5 likely marks the onset of its expression in stamen primordia [16].
(G) Similar expression profiles (correlation coefficient of 0.84) were observed for FILAMENTOUS FLOWER (FIL) and YABBY3 (YAB3) in agreement with their
largely identical expression patterns in developing flowers [29].
(H) Co-expression of JAGGED (JAG) and its paralog NUBBIN (NUB). Gene identifiers and references are listed in Table S1.
DOI: 10.1371/journal.pgen.0020117.g004
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We next investigated whether our results could be used to
accurately predict the expression dynamics of genes not
previously characterized. To this end, we determined by in
situ hybridization the expression patterns of several of the
differentially expressed genes in wild-type flowers (Figures 5
and 6). For this analysis, we focused on genes that were up-
regulated in response to AP1-GR activation. We found that
the expression patterns of the genes tested were, in general,
in good agreement with our microarray data. For example,
several closely related members of the plant-specific family of
B3 domain proteins were detected as induced at different
time points after AP1-GR activation, suggesting that they
might have distinct expression patterns during early flower
development. In fact, when we analyzed in detail the
expression of four of these genes (Figure 5B–5I), we found
that they all are expressed in developing stamens and carpels,
as previously predicted [14], but that their temporal and
spatial expression shows only partial overlap. For instance,
expression of At5g57720 was first detected in strips adjacent
to the emerging sepals (likely marking the cells that give rise
to stamen primordia) at stage 3 of flower development
(Figure 5F), whereas expression of At3g46770 in stamens and
carpels was not observed before stage 7 (Figure 5H). Taken
together, the results of the in situ hybridization experiments
lend further credence to the validity of our approach and
demonstrate the usefulness of the 35S:AP1-GR ap1 cal system
for the identification of genes with distinct expression
patterns during early flower development.

Gene Expression Dynamics
Among the differentially expressed genes identified in the

experiment we found an approximately equal number of
genes that were activated or repressed. However, we detected
considerable differences in the gene expression dynamics
between different developmental stages. During the first day
after AP1-GR activation, the expression of a large number of
genes was down-regulated whereas comparatively few genes
were activated (Figure 3B), indicating that the onset of flower
development is accompanied by the repression of many
genes. This ratio subsequently shifted and from day 3 to day 5,
considerably more genes were activated than repressed
(Figure 3B). This shift coincided with the initiation of organ
primordia and likely marks the activation of specific sets of
genes in the developing floral organs [16]. Data from a recent
study of xylem vessel element formation also showed a
predominant down-regulation of genes at early developmen-
tal stages, followed by a predominance of gene activation [34].
Thus, gene repression preceding gene activation upon path-
way induction might be a common feature of developmental
processes in plants.

The observed predominance of gene repression during the
onset of flower formation is in agreement with the findings of
a previous study, which identified a large group of genes as
repressed in the Arabidopsis shoot apex (which is composed of
the shoot apical meristem, leaf and floral primordia) upon
floral induction after a shift from short day to long day
conditions [17]. However, the exact region(s) of the shoot
apex in which the identified genes were repressed remained
unspecified. Our results strongly suggest that primary sites
for gene repression in the shoot apex are those cells of the
shoot apical meristem that will give rise to floral primordia,
and that the down-regulation of these genes depends, directly

or indirectly, on AP1 activity. The limited overlap between
the datasets from our study and that of the previous one
(Figure S2) implies, however, that gene repression upon floral
induction might not be limited to incipient floral primordia
but might occur in other parts of the shoot apex as well.

Transcriptome Analysis
Only a minority of genes that showed differential expres-

sion during early flower development were also identified in
one of our previous studies as having floral organ-specific
expression [16] (Figure S3). Because the vast majority of those
organ-specific transcripts are expressed in the reproductive
floral organs, and are likely primarily involved in sporogenesis
[16] (a process that occurs relatively late in flower develop-
ment), the limited overlap between the datasets of our two
studies is likely a consequence of an extreme specialization of
the floral transcriptome during gametophyte formation.
We found a larger (but not an extensive) overlap (Figure

S4A) of our dataset with a list of genes that had been
previously predicted as being expressed in stamen and carpel
primordia formed after a specific activation of the floral
homeotic factor AG in ap1 cal inflorescences [14]. However,
the time points (or developmental stages) at which differ-
ential expression was first detected for these genes varied
considerably between the two studies. For example, the
majority of genes that, in the AG experiment, were detected

Figure 5. Expression Patterns of Four Genes Encoding B3-Domain-

Containing Proteins in Early-Stage Wild-Type Flowers

(A) Microarray results: log10-transformed signal intensities at the
individual time points are shown for the genes tested.
(B–I) Results of in situ hybridizations. Expression patterns were analyzed
in early-stage flowers of wild-type plants. Arrows point to regions of
expression. Expression of At2g35310 was first detected throughout the
center of young floral buds (B). At later stages, expression was confined
to stamen and carpel primordia (C). Expression of At3g53310 was first
detected at stage 4 throughout very young stamen primordia (D). At
stage 6, expression was observed in stamen, as well as in carpel
primordia (E). Expression of At5g57720 was first detected in stage 3 floral
buds adjacent to the emerging sepal primordia (F). Its expression at later
stages resembled that of At2g35310 (compare panels [G and C]). Weak
expression of At3g46770 in stamen and carpel primordia was first
observed in stage 7 floral buds (H). At later stages, expression was
confined to the margins of the central septum of the gynoecium (I). (C, G,
and I) show transverse sections; in all other panels, longitudinal sections
are shown. Numbers indicate approximate floral stages.
Scale bars: 30 lm (B, D, and F); 50 lm (E); 100 lm in all others.
ca, carpel; se, sepal; st, stamen.
DOI: 10.1371/journal.pgen.0020117.g005
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as differentially expressed 7 d after AG activation (when
stamen and carpel development had progressed at least as far
as in the oldest floral buds included in this study) showed
significant expression changes already within the first 2 d
after activation of AP1 (Figure S4B). To rule out the
possibility that these discrepancies were due to precocious
effects on gene expression caused by AP1-GR activation, we
included several of the genes that had been identified in both
studies in the in situ hybridization experiments outlined
above (Figures 5 and 6), and found that their expression
patterns were in good agreement with our microarray results,
thus confirming the validity of the information on temporal
gene expression that we have obtained.
Clustering of the genes in the dataset based on their

expression profiles revealed groups of genes expressed
predominantly during distinct stages of early flower develop-
ment (Figure 3C). We analyzed these groups of co-expressed
genes with respect to the distribution of functional categories
using Gene Ontology (GO) annotations and found that genes
encoding transcription factors were over-represented in all
groups. In total, 222 genes, or 13.4% of the genes in the
dataset, encode transcription factors (Table S3) compared to
;6% in the Arabidopsis genome [35], representing a statisti-
cally significant enrichment (p value ,1 3 10�4; v2-test). We
found most of the known floral regulators among the
transcription factor-coding genes (see above). However, the
majority of these genes had not been associated with flower
development before, implying that the gene regulatory
network underlying early flower development is far more
complex than previously thought [14].
We next analyzed the distribution of members of gene

families among the transcription factor-coding genes to
determine whether certain classes of regulatory genes have
been co-opted during evolution to control early flower
development. MIKCc-type MADS-box transcription factors
are a prominent example of such genes, as many of the floral
regulators identified to date encode members of this family
[36]. Seventeen (of 39) MIKCc-type MADS-box transcription
factors were present in the dataset, representing a statistically
significant enrichment (p value , 0.001; v2-test). In addition,
we found that homeodomain proteins were slightly over-
represented compared to their genome-wide distribution (21
family members compared to 90 genome-wide; p value ,0.05;
v2-test). Furthermore, seven of 11 class II TCP transcription
factors were present among the differentially expressed genes
(p value ,0.001; v2-test). While genes encoding C2H2 zinc-
finger transcription factors were not overrepresented in the
dataset, we found that all but one of the 18 family members

Figure 6. Results of In Situ Hybridizations for Selected Genes

Expression patterns were analyzed in early-stage wild-type flowers.
Arrows point to regions of expression.
(A and J) Log10-transformed signal intensities at the individual time
points are shown for the genes tested.
(B) Expression of At3g04290, which encodes a lipase, was first detected at
stage 4 in the epidermis of emerging sepals. At later stages, expression
was also observed in the epidermis of stamens (C).
(D to G) Expression of At1g05480, which encodes a SNF2-domain
containing protein, was detected in developing stamens and carpels.
(H) Expression of At5g22430, which encodes a protein of unknown
function, was first detected in the tip of sepals around stage 6 of flower
development.
(I) Expression of At3g26744, encoding the bHLH transcription factor
INDUCER OF CBF EXPRESSION 1, was found in the inflorescence meristem
and throughout developing flowers.
(K and L) Expression of At2g04570, encoding a lipase related to
At3g04290 (see above), was first detected in stage 7 floral buds in the
epidermis of sepals and, in contrast to At3g04290, appeared to be
confined to sepals also at later stages of flower development (compare L
and C).
(M–O) Expression of At5g65590, which encodes a Dof-type zinc-finger
protein, was first observed in a small number of cells in stage 2 floral
meristems (M). At stage 3 (N), expression was detected in incipient sepal
primordia, and expression appeared to continue exclusively in develop-
ing sepals at later stages of development.
(P–R) Expression of At1g21460, encoding a nodulin MtN3 family protein,
was found at early stage 3 in a few cells in the center of the floral apex (P).
At late stage 3, the expression domain of this gene was significantly

enlarged (Q). No signal was found in the upper cell layers of the meristem.
At later stages, expression was detected in stamen primordia (R).
(S–U) Expression of At5g66940, which encodes a Dof-type zinc-finger
containing protein, was observed in a small number of cells in very
young floral buds (S), as well as in patchy pattern in young floral organ
primordia (T). At later stages, its expression was confined to stamens and
carpels (U).
(V) Expression of At1g12080, which encodes a protein of unknown
function, was first detected in a region at the base of stamen primordia,
which gives rise to the filament. (G) and (I) are transverse sections; in all
others longitudinal sections are shown. Numbers indicate approximate
floral stages.
Scale bars: 30 lm (B and M–Q); 100 lm (C, I, S, U, and V); 50 lm in all
other panels.
ca, carpel; IM, inflorescence meristem; pe, petal; se, sepal; st, stamen.
DOI: 10.1371/journal.pgen.0020117.g006
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identified in the experiment belong to two distinct subgroups
(as defined in [37]). Ten genes are members of the C1-1i
subgroup, which includes several known floral regulators,
namely JAG, NUB, KNUCKLES (KNU), SUPERMAN (SUP), and
RABBIT EARS (RBE). Seven genes belong to the A1a
subgroup, none of which has been before associated with
flower development.

We next searched in the dataset for genes involved in
defined biological processes and found a considerable
number of genes that encode proteins with known roles in
the metabolism of, or in the response to, the plant hormones
auxin and gibberellin (GA) (Table S4). Both hormones had
been previously implicated in mediating distinct processes
during flower development [38,39]. For example, the floral
homeotic factor AG activates GA4, a gene encoding a GA3-b-
hydroxylase that catalyzes the formation of biologically active
GA, suggesting that AG induces GA biosynthesis during early
flower development [14]. In addition to a rapid activation of
GA4, we found an up-regulation of a gene encoding a GA2-
oxidase, which is involved in the degradation of GA and thus
counteracts GA4 activity. The expression profiles of both
genes were highly correlated (correlation coefficient of 0.96;
Figure 7A), suggesting that the regulation of GA levels in
floral meristems is a complex process that involves both
positive and negative components. Genes involved in auxin
production, transport, or response exhibited in general
uncorrelated expression profiles. Exceptions were detected
for four members of the PINFORMED family of putative
auxin efflux carriers (Figure 7B). These proteins are thought
to mediate polar auxin transport, a process that is involved in
primordial patterning and outgrowth [40]. The concomitant
upregulation of these genes at a developmental stage when
floral organs arise suggests their possible involvement in the
auxin-mediated initiation of floral organ primordia.

Floral Organ Specification
A key event during early flower development is the

specification of the different types of floral organs, a process
that is mediated by the floral homeotic genes (see above).
These genes encode transcription factors that act in a

combinatorial manner to control the developmental pro-
grams required for organ formation [41–44]. In spite of
extensive efforts [14,15,45,46], only few target genes of these
factors have been identified to date (Figure 1), so that the
developmental mechanisms by which these factors control
organogenesis have remained largely elusive. The known
direct target genes of the floral homeotic factors have in
common that their promoters contain the previously
identified binding site (the so-called CArG box; consensus:
59-CC(A/T)6GG-39) for members of the MADS box tran-
scription factor family [14,15,47,48], to which most of the
floral homeotic factors belong.
As the floral homeotic genes were rapidly activated after

the synchronized induction of flower development (Figure
4B), we expected to find their known target genes among the
genes that showed significant expression changes in our
experiment. Indeed, most of these genes were present in our
dataset (Table S5). This result suggests that additional target
genes of the floral homeotic factors are likely among the
genes we identified as differentially expressed in our experi-
ment. In an attempt to identify candidates for such genes, we
searched in the promoters of the differentially expressed
genes for the occurrence of CArG box-like sequences (Table
S6). Because of the predominant role that the floral homeotic
factors play during early flower development, we expected to
find these sites to be over-represented in the dataset.
However, the occurrence of CArG boxes in the promoters
of the genes we identified in the experiment was not
significantly different compared to their genome-wide
distribution (Table S6). Thus, the floral homeotic factors
might either have a limited number of target genes during
early flower development, or they might be able to bind to
sites other, or less conserved, than the CArG box consensus
sequence we have screened for in our analysis.

Enrichment of Members of Gene Families in Groups of Co-
Expressed Genes
Because members of gene families have been reported to

be frequently expressed in the same tissues [11], we searched
for genes in the dataset that might have been co-opted for

Figure 7. Co-Expression of Genes during Early Flower Development

Log10-transformed signal intensities at the individual time points are shown for selected genes.
(A) Expression profiles for GA4 (At1g15550) and a gene (At1g78440) encoding a GA2-oxidase.
(B) Expression profiles for four genes, encoding members of the PINFORMED (PIN) family of putative auxin efflux carriers.
(C) Expression profiles for seven genes, encoding closely related class II TCP-family transcription factors.
DOI: 10.1371/journal.pgen.0020117.g007
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specific developmental processes during early flower develop-
ment. To this end, we analyzed the occurrence of closely
related sequences in the dataset (see Materials and Methods
for details). We focused initially on genes encoding tran-
scription factors and identified 37 groups that contained two
or more closely related sequences. Overall, these groups
comprised 91 of the 222 identified transcription factors
(Table S7), representing a significant enrichment compared
to the mean number of closely related sequences in (equally
sized) groups of transcription factors randomly selected from
the Arabidopsis transcriptome (54.1 6 8.5 s.d.). We next
determined whether the related genes we identified had
similar expression profiles. To this end, we determined pair-
wise correlation coefficients for the genes in each group and
found that almost half (40 of 87 possible comparisons) of the
gene pairs had highly correlated expression profiles (Figure
S5). Among these genes, a group of seven closely related
members of the plant-specific family of TCP transcription
factors stood out because all possible pair-wise comparisons
resulted in significant correlation values (Figure 7C). For two
of these factors, TCP2 and TCP3, similar expression patterns
in developing floral organs had been previously reported [49].
Notably, four of the seven co-expressed TCP transcription
factors are regulated by microRNAs (miRNAs) [50]. Over-
expression of a miRNA that targets these genes led to a strong
reduction of their mRNA levels resulting in a severe leaf
phenotype but not in a marked disruption of flower
development [50]. Our results suggest that this lack of a
floral phenotype might be caused by a high degree of
functional redundancy among the co-expressed TCP tran-
scription factors, several of which are not subjected to
miRNA-mediated regulation.

The family of TCP transcription factors is subdivided into
two classes. According to a recent model for TCP tran-
scription factor function, class I TCP factors promote cell
growth and division in young organ primordia while members
of class II negatively regulate cell proliferation at more
advanced developmental stages when organs primarily grow
through cell elongation [51]. In agreement with this model, we
found that all of the co-expressed TCP factors, whose
expression gradually increased during the course of the
experiment, belong to class II and thus might contribute to a
reduction of cell proliferation rates in maturing floral organs.

We next broadened the scope of our analysis of closely
related sequences in the groups of co-expressed genes, to
include not only transcription factor-coding genes but rather
all genes regardless of their functional classification. We
found an enrichment of closely related members of gene
families in all co-expression groups compared to random sets
of genes (Figure 8 and Table S8). In particular, the proportion
of sequence-related genes in three of these groups was
significantly (i.e. beyond three standard deviations) above the
already elevated background distribution of related sequen-
ces in the dataset (Figure 8). One of these groups comprised
genes that are strongly expressed in ap1 cal meristems and
whose expression is rapidly down-regulated upon AP1-GR
activation (cluster A in Figure 3C). The other two groups
contained genes that are strongly expressed at stages 4–7 and
5–7 (clusters D and E in Figure 3C), respectively, and are likely
predominantly expressed in the developing floral organs (see
above). In contrast, genes with high expression during the
earliest floral stages (clusters B and C in Figure 3C) showed no

significant enrichment of related sequences compared to
their background distribution in the dataset. Because
members of gene families in Arabidopsis frequently act in a
redundant manner [7], these stage-specific differences in the
occurrence of closely related sequences suggest varying
degrees of functional redundancy during early flower devel-
opment. A high degree of functional redundancy in shoot
meristems and developing floral organs might also, at least
partially, account for the limited number of mutants
identified to date that exhibit specific defects in the
development of these structures.
Functional redundancy is thought to serve as a genetic

buffering mechanism to increase the robustness of biological
systems [52]. Shoot apical meristems are prime examples of
robust systems because they maintain their function and size
throughout plant development [53]. A high degree of func-
tional redundancy in shoot apical meristems might therefore
be a mechanism that protects these essential structures, from
which all above ground organs of plants are derived, from
disruptive effects of mutations. The same idea might apply to
genes activated during floral organ development. Analysis of
genes with specific expression in the different types of floral
organs showed that the vast majority of these genes is
expressed in stamens and carpels, in agreement with the
highly complex architecture of these organs compared to that
of sepals and petals [16]. Because normal development of the
reproductive floral organs is essential for plant propagation,
genetic buffering by functional redundancy might be highly
beneficial, so that duplicated genes are retained by positive
selection [6].
Our analysis provides a detailed description of the gene

expression dynamics during early flower development and
complements other efforts to study gene expression during
Arabidopsis development on a genome-wide scale. This
information should allow a systematic reverse genetic

Figure 8. Occurrence of Related Sequences in Groups of Co-Expressed

Genes

The proportion of closely related sequences in each of the five clusters
shown in Figure 3C is indicated by black bars. White and gray bars
represent the proportion of closely related sequences in (equally sized)
sets of sequences randomly chosen from the list of 1,653 differentially
expressed genes and the Arabidopsis genome, respectively. Bars indicate
the standard deviation of the calculations (see Materials and Methods for
details). Note the strong enrichment of related sequences in clusters A,
D, and E.
DOI: 10.1371/journal.pgen.0020117.g008
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approach to identify novel regulators that control different
aspects of flower development. Because our results suggest
that functional redundancy among closely related genes plays
a major role in flower development, the simultaneous
inactivation of several related genes will likely be necessary
to uncover the function of many of the identified genes in
flower formation. The floral induction system we have
described should facilitate the dissection of the gene
regulatory network underlying flower development by allow-
ing the collection of sufficient plant material for approaches
such as the genome-wide localization of transcription factor
binding sites by chromatin immunoprecipitation.

Materials and Methods

Strains and plant growth. The 35S:AP1-GR ap1 cal line was
constructed by crossing a previously described 35S:AP1-GR transgene
[22] into the ap1–1 cal-1 double mutant background [19]. For in situ
hybridizations, wild-type plants of the accession Landsberg erecta were
used. Plants were grown on a soil:vermiculite:perlite mixture under
constant illumination at 20 8C.

Microarray setup. Microarrays were based on the Arabidopsis
Genome Oligo Set Version 1.0 and on the Arabidopsis Genome Oligo
Set Version 1.0 Upgrade (Operon, Alameda, California, United
States). These sets consist of a total of 30,194 oligonucleotides that
correspond to 26,753 annotated genes. Microarrays were manufac-
tured as previously described [16].

Tissue collection and microarray experiments. Immediately after
the onset of bolting, inflorescences of 35S:AP1-GR ap1 cal plants were
treated with a solution containing 1 lM dexamethasone (Sigma-
Aldrich, St. Louis, Missouri, United States), 0.01% (v/v) ethanol, and
0.015% (v/v) Silwet L-77. For each time point, tissue from ;25 plants
was collected using jewelers forceps. Tissue was removed as close to
the surface of the inflorescence as possible to ensure an enrichment
of meristematic cells.

The methods used for extracting total RNA from tissue samples,
for the amplification of mRNA, and for the labeling of RNA samples
with fluorescent dyes have been previously described [16]. Hybrid-
izations were done as follows: dye-labeled antisense RNA prepara-
tions were dried down and the resulting pellets were re-suspended in
5 ll 10 mM EDTA and 45 ll SlideHyb Buffer #1 (Ambion, Austin,
Texas, United States) and hybridized for 14 h to microarrays at 48 8C
using a MAUI hybridization system (BioMicro Systems, Salt Lake City,
Utah, United States) according to the manufacturer’s instructions.

Four independent sets of biological samples were used for the
experiments. The samples derived from consecutive time points were
co-hybridized, resulting in a total of five hybridizations per set. The
dyes used for labeling RNA from a given time point were switched in
the replicate experiments to reduce dye-related artifacts.

Data analysis. Microarrays were scanned with a GenePix 4200A
scanner (Axon Instruments, Foster City, California, United States) as
previously described [16] using the Gene Pix 5.0 analysis software
(Axon Instruments). Raw data were imported into the Resolver gene
expression data analysis system version 4.0 (Rosetta Biosoftware,
Seattle, Washington, United States) and processed as described [16].
Because the statistical model used by Resolver v4.0 does not account
for multihypothesis testing, we adjusted the p values calculated by this
software for each time point using the Holm procedure as
implemented in the Bioconductor multtest package (http://www.
bioconductor.org/packages/bioc/stable/src/contrib/html/multtest.
html). The Holm procedure allows a strong control over family-wise
type I errors (‘‘false positives’’). Genes for which the adjusted p value
was ,0.05 in at least one of the comparisons were considered
differentially expressed in the experiment. No fold-change cut-off
was applied. Intensity values were derived from the ratio data for
each of the hybridizations, using the Ratio-Split function of Resolver
v5.0. The intensity data of the replicate experiments were sub-
sequently combined, resulting in six datasets corresponding to the
individual time points of the experiment. All analyses in Resolver
were done at the so-called sequence level, i.e., data from reporters
(probes) representing the same gene were combined.

Microarray data from the experiments by Schmid et al. [17] were
obtained as .cel files and processed in Resolver v4.0. In order to
identify genes with significant expression changes, Analysis of
Variance (ANOVA) with error weighting (using estimated platform-
specific measurement errors) was performed for each of the experi-

ments. ANOVA p values were adjusted for multihypothesis testing as
outlined above. Genes for which the adjusted ANOVA p value was
,0.05 were considered as differentially expressed.

Pair-wise Pearson correlation coefficients (q) were calculated using
log2-transformed signal intensities. Correlation coefficients with an
absolute value of .0.811 were considered statistically significant
assuming an alpha level of 0.05 and four degrees of freedom.

Groups of co-expressed genes were identified using the k-means
algorithm implemented in Resolver with z-score normalized signal
intensities for the differentially expressed genes as input values.

The identification of closely related sequences in the dataset was
based on BLASTP [54]. In a first step, pairs of related sequences in an
analysis group were identified. To this end, each sequence was
compared to all available Arabidopsis protein sequences and the
resulting hits were searched for the occurrence of another member of
the analysis group using a rank cut-off of 5 (excluding the best hit,
which was identical to the input sequence) and an e-value cut-off of 1
3 10�20. Sequence pairs were further combined into clusters with
more than two (non-redundant) sequences if the sequences of that
cluster resulted in reciprocal hits. For the calculation of background
distributions of closely related sequences, 100 random sets of
sequences were generated containing the same number of sequences
as the corresponding analysis group. These sets were analyzed using
BLASTP as outlined above. The mean number of related sequences as
well as the standard deviation were calculated for each group using
the results from the individual BLASTP searches. Sequences used for
BLASTP were obtained from The Arabidopsis Information Resource
(TAIR) (http://www.arabidopsis.org).

Each probe represented on the microarrays used for our experi-
ments was designed to specifically detect the transcript of a single
gene. However, in some cases, when the sequence identity of genes is
very high, gene-specific probes cannot be designed and cross-
hybridization between related mRNA species might occur. To test
whether the identification of closely related sequences in groups of
co-expressed genes had been significantly affected by non-gene-
specific probes, we analyzed the potential for cross-hybridization for
those probes representing the genes described in Table S8. To this
end, we considered probes with 70% or more sequence identity to
genes other than their intend target as potentially non-specific [55].
We found only a small number of genes (five out of 196) whose
microarray results might have been affected by cross-hybridization
(unpublished data). Thus, we concluded that our analysis was not
significantly influenced by non-specific probes.

For the identification of functionally related genes and of genes
involved in the same biological process, we obtained GO predictions
from TAIR and then searched for statistically overrepresented GO
terms using the program GOToolBox [56] (http://crfb.univ-mrs.fr/
GOToolBox/index.php). We also used gene family information and
gene annotations from TAIR.

Promoter analysis. For the identification of CArG box sequences in
the promoters of the differential expressed genes, we used the
program Patmatch (http://www.arabidopsis.org/cgi-bin/patmatch/
nph-patmatch.pl). We searched the 500-bp and 1,000-bp regions
preceding the 59 end of a transcription unit (TAIR datasets ‘‘Loci
Upstream Sequences-500bp’’ and ‘‘Loci Upstream Sequences-
1000bp’’, respectively), as well as the 1000-bp region downstream of
a transcription unit (TAIR dataset ‘‘Loci Downstream Sequences-
1000bp’’) for the occurrence of the CArG box consensus (59-CC(A/
T)6GG-39). We also screened the 500-bp upstream regions for CArG
box-like sequences, allowing one nucleotide substitution compared to
the CArG box consensus.

In situ hybridization. Non-radioactive in situ hybridizations were
performed as previously described [57] (a detailed in situ protocol
can be found at http://www.its.caltech.edu/;plantlab/html/protocols.
html). Primers used for the amplification of cDNA fragments for the
genes tested are listed in Table S9. PCR products were ligated into
pGEM-T Easy (Promega, Madison, Wisconsin, United States) by TA
cloning, and the resulting vectors were sequenced to determine the
orientation of the inserts.

Scanning electron microscopy. Inflorescences from 35S:AP1-GR
ap1 cal plants were collected at different time points after
dexamethasone treatment. The samples were processed for scanning
electron microscopy as previously described [43].

Supporting Information

Figure S1. Activation of AP1-GR in Wild-Type Plants

Activation of AP1-GR in wild-type plants causes the transformation
of inflorescence (A) or vegetative shoot meristems (B) into floral
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meristems, leading to the formation of terminal flowers. (A)
Inflorescence was treated daily for 1 wk with a solution containing
10 lM dexamethasone. Image was taken 14 d after the first treatment.
(B) Plant was germinated on a plate with medium containing 50 nM
dexamethasone. Image was taken 21 d post germination.

Found at DOI: 10.1371/journal.pgen.0020117.sg001 (987 KB PDF).

Figure S2. Overlap between Genes Detected as Differentially Ex-
pressed upon AP1-GR Activation and upon Floral Induction

Genes detected as differentially expressed upon AP1-GR activation
were compared to genes identified by Schmid et al. [17] as
significantly changed in Arabidopsis shoot apices after floral induction.
Genes identified in the latter study belong to at least three classes:
genes expressed in leaf primordia; genes expressed in floral
primordia; and genes whose expression changes in shoot meristems
after floral induction. (A) A Venn diagram depicts the overlap
between the differentially expressed genes identified upon AP1-GR
activation (r1-r5) and the ‘Top 500 list’ described in Schmid et al. [17],
which represents the overlap between the 500 most significantly
changed genes in wild-type plants of the accessions Landsberg erecta
(L-er) and Columbia (Col), respectively. (B) Data by Schmid et al. [17]
were reanalyzed as outlined in Materials and Methods to allow a
detailed comparison of the experimental results. The overlap
between the different datasets is shown. Numbers in parenthesis
indicate the total number of genes in each dataset.

Found at DOI: 10.1371/journal.pgen.0020117.sg002 (54 KB PDF).

Figure S3. Overlap between Genes Detected as Differentially Ex-
pressed upon AP1-GR Activation and Genes Expressed in the
Different Types of Floral Organs

Genes detected as differentially expressed upon AP1-GR activation
(r1-r5) were compared to genes identified as being specifically or
predominantly expressed in sepals, petals, stamens, or carpels [16].
Numbers in parenthesis indicate the total number of genes in each
group.

Found at DOI: 10.1371/journal.pgen.0020117.sg003 (37 KB PDF).

Figure S4. Comparison of AP1-GR and AG-GR Datasets

Comparison between genes detected as differentially expressed upon
AP1-GR activation and genes identified by Gomez-Mena et al. [14] as
significantly changed in ap1 cal inflorescences upon activation of an
AG-GR fusion protein, which leads to the formation of stamens and
carpels. (A) A Venn diagram depicts the overlap between the
differentially expressed genes identified upon AP1-GR activation
(r1-r5) and the genes described by Gomez-Mena et al. (AG-GR).
Numbers in parenthesis indicate the total number of genes in each
dataset. (B) Temporal distribution of gene expression changes. Genes
that were identified in both studies were analyzed with respect to the
time point at which differential expression was first detected.

Found at DOI: 10.1371/journal.pgen.0020117.sg004 (59 KB PDF).

Figure S5. Examples for Closely Related Transcription Factors with
Similar Expression Profiles during Early Flower Development

(A) Co-expression of At2g18550 and At5g66700, encoding homeobox-
leucine zipper proteins. (B) Co-expression of FD (At4g35900),
encoding a basic leucine zipper containing factor, and its paralog
FDP (At2g17770). (C) Negative correlation of expression of two genes
(At1g55110 and At5g03150), encoding C2H2 zinc-finger domain
containing proteins. (D) Co-expression of ASYMMETRIC LEAVES2-
LIKE20/LOB DOMAIN PROTEIN18 (ASL20/LBD18; At2g45420) and
ASYMMETRIC LEAVES2-LIKE23/ LOB DOMAIN PROTEIN19 (ASL23/
LBD19; At2g45410). ASL20 and ASL23 are arranged in tandem. The
correlation coefficient q is indicated for each pairwise comparison.
Log10-transformed signal intensities at the individual time points of
the experiment are shown.

Found at DOI: 10.1371/journal.pgen.0020117.sg005 (171 KB PDF).

Table S1. Known Floral Regulatory Genes Identified as Differentially
Expressed in the Experiment

Gene identifiers and gene names are listed. Literature describing the
expression of the genes during early flower development is
referenced.

Found at DOI: 10.1371/journal.pgen.0020117.st001 (51 KB PDF).

Table S2. Differentially Expressed Genes Inferred from Ratios r1-r5
(see Figure 3A)

Gene identifiers and gene descriptions are shown. Gene descriptions

were derived from various sources, including information from TAIR.
The assignment of the individual genes to the clusters (A–E) of co-
expressed genes shown in Figure 3C is indicated in the column
‘‘Cluster’’. Fold change values and adjusted p values (‘‘Holm’’) for
ratios r1-r5, as well as normalized signal intensities for the different
time points (0–5 d) are shown.

Found at DOI: 10.1371/journal.pgen.0020117.st002 (848 KB XLS).

Table S3. Transcription Factors Identified in the Dataset

Gene identifiers, gene names, and gene descriptions are shown. Gene
family information is based on [35]. The assignment of the individual
genes to the clusters (A–E) of co-expressed genes shown in Figure 3C
is indicated in the column ‘‘Cluster’’.

Found at DOI: 10.1371/journal.pgen.0020117.st003 (63 KB XLS).

Table S4. Differentially Expressed Genes That Are Involved in the
Metabolism of, or in the Response to, the Plant Hormones
Gibberellin, and Auxin, Respectively

Gene identifiers and gene descriptions are listed.

Found at DOI: 10.1371/journal.pgen.0020117.st004 (20 KB XLS).

Table S5. Known or Presumed Target Genes of Floral Homeotic
Factors Detected as Differentially Expressed in the Experiment

Gene identifiers and gene names (or descriptions) are listed, and
relevant literature is referenced.

Found at DOI: 10.1371/journal.pgen.0020117.st005 (43 KB XLS).

Table S6. Distribution of CArG Box Sequences in the Promoters of
Genes Identified as Differentially Expressed during Early Flower
Development

Four different analyses were performed as outlined in Materials and
Methods. The spreadsheet ‘‘CArG’’ lists the number of sites found in
each of the analyzed promoter regions. Gene identifiers and gene
descriptions of the corresponding genes are shown. The assignment
of the individual genes to the clusters (A–E) of co-expressed genes
shown in Figure 3C is indicated in the column ‘‘Cluster’’.
The spreadsheet ‘‘Binding Sites’’ summarizes the results of the
analysis. On the left, the frequency of CArG boxes in the dataset is
compared to their genome-wide distribution. On the right, the
number of genes with CArG boxes in each of the groups of co-
expressed genes shown in Figure 3C is listed. Numbers in parenthesis
indicate the expected number of genes with CArG boxes based on
their genome-wide distribution.

Found at DOI: 10.1371/journal.pgen.0020117.st006 (462 KB XLS).

Table S7. Groups of Closely Related Transcription Factors in the
Dataset

Gene identifiers, gene names, and gene descriptions are shown. Gene
family information is based on [35].

Found at DOI: 10.1371/journal.pgen.0020117.st007 (34 KB XLS).

Table S8. Groups of Closely Related Members of Gene Families
Identified in the Clusters of Co-Expressed Genes Shown in Figure 3C

Gene identifiers and gene descriptions are listed.

Found at DOI: 10.1371/journal.pgen.0020117.st008 (64 KB XLS).

Table S9. Primers Used to Generate Probes for In Situ Hybridizations

Gene identifiers and corresponding primer sequences are shown.

Found at DOI: 10.1371/journal.pgen.0020117.st009 (33 KB XLS).

Table S10. Experimental Data for All Genes Represented on the
Microarrays Used in this Study

Gene identifiers and gene descriptions are shown. Gene descriptions
were derived from various sources, including information from TAIR.
Fold change values and adjusted p values (’Holm’) for ratios r1-r5 (see
Figure 3A), as well as normalized signal intensities for the different
time points (0–5 d) are shown.

Found at DOI: 10.1371/journal.pgen.0020117.st010 (12 MB XLS).

Table S11. Selected References for the Gene Interactions Summar-
ized in the Network Diagram Shown in Figure 1

The mode of an interaction (direct or indirect) is specified, if known.
Abbreviations: AG: AGAMOUS; AGL24: AGAMOUS-LIKE24; ANT:
AINTEGUMENTA; AP1: APETALA1; AP2: APETALA2; AP3: APETA-
LA3; ASK1: ARABIDOPSIS SKP-LIKE1; BLR: BELLRINGER; CAL:
CAULIFLOWER; CLF: CURLY LEAF; CLV3: CLAVATA3; CRC:
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CRABS CLAW; FT: FLOWERING LOCUS T; FUL: FRUITFULL; GA4:
GA REQUIRING 4; LEU: LEUNIG; LFY: LEAFY; miR172: micro-
RNA172; NAP: NAC-LIKE, ACTIVATED BY AP3/PI; NZZ/SPL:
NOZZLE/SPOROCYTELESS; PI: PISTILLATA; RBE: RABBIT EARS;
SAP: STERILE APETALA; SEP1–4: SEPALLATA1–4; SEU: SEUSS;
SHP2: SHATTERPROOF2; SUP:SUPERMAN; TFL1: TERMINAL
FLOWER 1; UFO: UNUSUAL FLORAL ORGANS; WUS: WUSCHEL.

Found at DOI: 10.1371/journal.pgen.0020117.st011 (41 KB PDF).

Accession Numbers

Microarray data have been deposited with the NCBI Gene Expression
Omnibus (http://www.ncbi.nlm.nih.gov/geo) under accession number
GSE4594. Ratio and intensity data for all genes represented on the
microarray used in this study are listed in Table S10.

The Arabidopsis Genome Initiative (http://www.arabidopsis.org)
identifiers for the genes and gene products discussed in this study are:
AG (At4g18960), AGL24 (At4g24540), AGL42 (At5g62165), ANT
(At4g37750), AP1 (At1g69120), AP2 (At4g36920), AP3 (At3g54340),
ASK1 (At1g10940), BLR (At5g02030), CAL (At1g26310), CLF
(At2g23380), CLV3 (At2g27250), CRC (At1g69180), FD (At4g35900),
FDP (At2g17770), FIL (At2g45190), FT (At1g65480), FUL (At5g60910),
GA2ox1 (At1g78440), GA4 (At1g15550), JAG (At1g68480), KNU
(At5g14010), LEU (At4g32550), LFY (At5g61850), NAP (At1g69490),
NUB (At1g13400), NZZ/SPL (At4g27330), PI (At5g20240), PIN2
(At5g57090), PIN3 (At1g70940), PIN4 (At2g01420), PIN6
(At1g77110), RBE (At5g06070), SAP (At5g35770), SEP1 (At5g15800),
SEP2 (At3g02310), SEP3 (At1g24260), SEP4 (At2g03710), SEU
(At1g43850), SHP1 (At3g58780), SHP2 (At2g42830), SOC1

(At2g45660), SUP (At3g23130), SVP (At2g22540), TCP2 (At4g18390),
TCP3 (At1g53230), TCP4 (At3g15030), TCP5 (At5g60970), TCP10
(At2g31070), TCP13 (At3g02150), TCP17 (At5g08070), TFL1
(At5g03840), UFO (At1g30950), WUS (At2g17950), and YAB3
(At4g00180).
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