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Abstract

Background: Holistic profiling and systems biology studies of nutrient availability are providing more and more insight
into the mechanisms by which gene expression responds to diverse nutrients and metabolites. Less is known about
the mechanisms by which gene expression is affected by endogenous metabolites, which can change dramatically
during development. Multivariate statistics and correlation network analysis approaches were applied to non-targeted
profiling data to investigate transcriptional and metabolic states and to identify metabolites potentially influencing
gene expression during the heterotrophic to autotrophic transition of seedling establishment.

Results: Microarray-based transcript profiles were obtained from extracts of Arabidopsis seeds or seedlings harvested
from imbibition to eight days-old. TH-NMR metabolite profiles were obtained for corresponding samples. Analysis of
transcript data revealed high differential gene expression through seedling emergence followed by a period of less
change. Differential gene expression increased gradually to day 8, and showed two days, 5 and 7, with a very high
proportion of up-regulated genes, including transcription factor/signaling genes. Network cartography using spring
embedding revealed two primary clusters of highly correlated metabolites, which appear to reflect temporally distinct
metabolic states. Principle Component Analyses of both sets of profiling data produced a chronological spread of time
points, which would be expected of a developmental series. The network cartography of the transcript data produced
two distinct clusters comprising days 0 to 2 and days 3 to 8, whereas the corresponding analysis of metabolite data
revealed a shift of day 2 into the day 3 to 8 group. A metabolite and transcript pair-wise correlation analysis
encompassing all time points gave a set of 237 highly significant correlations. Of 129 genes correlated to sucrose, 44 of
them were known to be sucrose responsive including a number of transcription factors.

Conclusions: Microarray analysis during germination and establishment revealed major transitions in transcriptional
activity at time points potentially associated with developmental transitions. Network cartography using spring-
embedding indicate that a shift in the state of nutritionally important metabolites precedes a major shift in the
transcriptional state going from germination to seedling emergence. Pair-wise linear correlations of transcript and
metabolite levels identified many genes known to be influenced by metabolites, and provided other targets to
investigate metabolite regulation of gene expression during seedling establishment.

Background
* Correspondence: m.a.hooks@bangorac.uk Germination is a phenomenon with complex regulation
1 School of Biological Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, that is a balance between the release of dormancy and the
UK promotion of germination. This reflects the relationship
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between the hormones gibberellic acid (GA) and abscisic
acid (ABA), environmental cues [1,2], and the spatial dis-
tribution of hormone action and gene expression [3-5].
Considerable effort has been put into elucidating the
molecular mechanisms controlling seed germination
with greater application of gene expression profiling.
These studies have highlighted the roles of gene expres-
sion changes in mediating GA and ABA interactions in
the control of dormancy and germination [6-10]. To com-
plement the growing number of gene expression studies,
Fait et al. [11] conducted an integrated metabolomic and
gene expression study of various seed developmental
stages from maturation through germination. They iden-
tified distinct metabolite profiles associated with the vari-
ous developmental stages and suggested that seeds are
metabolically primed for germination during desiccation
and subsequent metabolic programming during imbibi-
tion and germination is essential for seedling establish-
ment. An integrated metabolomic and transcriptomic
study of photomorphogenesis in red light and far-red
light treated seedlings showed that even though tran-
script profiles were relatively similar, phenotypic differ-
ences could be explained by significant differences at the
level of the metabolome [12].

Prior to seed germination, the mobilization of stored
triacylglycerol (TAG) begins in earnest in order to feed
the developing seedling. The processes by which germi-
nation and lipid mobilization are regulated have been
found to be distinct [13], and it is likely that reserve mobi-
lization is governed by abscisic acid-related processes
within the embryo [4]. In Arabidopsis, stored sugars are
consumed by the time the radicle has emerged, and
within 48 h after germination lipid and protein stores
have been consumed [14]. At this point, the seedling
must become photosynthetically competent. It has been
suggested that metabolic signals may regulate the transi-
tion from heterotrophy to autotrophy in seedlings in
order to maximize the use of storage compounds [15].
Exploiting the altered behavior of seed germination and
of seedling vigor for forward genetic screens of Arabidop-
sis mutants has been instrumental in revealing the poten-
tial signaling properties of metabolites, primarily sugars
[16], and nutrients [17]. Mutant studies have revealed the
interaction of sugars and hormones [18,19] and the con-
cept of a carbon:nitrogen 'matrix effect' in metabolic reg-
ulation [20]. Through a forward genetic screen using the
toxic analogue monofluoroacetic acid, we identified
mutants disrupted in their ability to metabolize exoge-
nously supplied acetate through the glyoxylate cycle
[21,22]. A physiological analysis of the mutants provided
evidence that carbohydrate responses of seedlings may be
impaired within the mutants. This suggests a cross-talk
between organic acid and carbohydrate signaling in
developing seedlings [22] with the possibility of either
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acetate or down-stream metabolites influencing gene
expression in developing seedlings.

Many forward genetic screens have relied on observing
differential sensitivity of mutants to added compounds.
This approach does not work for many metabolites, since
artificially high concentrations must be used and unde-
sired traits are selected. For example, organic acids pose
this problem because they are weak acids, and mutant
selection for specific responses may be confounded by
responses to altered intracellular pH. Integrated analysis
of metabolite and transcript data offers a way to identify
co-regulatory networks of metabolites and genes [23,24].
This has been applied successfully to identify potential
genetic regulation of metabolite levels concerning sulfur
stress [25-29], glucosinolate metabolism [30], and nitro-
gen responses [31,32] in Arabidopsis and fruit develop-
ment in tomato [28,33-35]. The suggestion that strong
correlations between metabolites and transcripts may
reflect metabolite effects on gene expression [27,28,36],
therefore, enables integrated analysis to be used to iden-
tify potential signaling metabolites for subsequent
detailed studies. We obtained metabolite and transcript
profiling data from a series of samples spanning germina-
tion and establishment, and analyzed the data to identify
pair-wise combinations of genes and metabolites strongly
correlated over this developmental transition. We discuss
how analysis of metabolite-gene correlations provided
evidence for differential regulation of a common ontolog-
ical class of genes. Furthermore, the network correlation
analysis approach can provide supplemental information
on the progression of metabolic and transcriptional states
during developmental transitions [27,28]. Both types of
profiling data were mined for interesting gene expression
and metabolite patterns and relationships. Principle
Component Analysis (PCA) and network correlation
analysis based on spring-embedding [37] were used to
integrate and visualize the data to obtain information
about the metabolic and transitional states present dur-
ing germination and seedling development.

Results

Gene expression during seedling development

The combined use of a threshold cut-off value of 1.5-fold
and 99% confidence limits for statistical significance pro-
duced 10,605 differentially-expressed (DE) genes in total,
both up-(UR) and down-regulated (DR) over the eight
pairwise comparisons (Fig. 1A). This total number of DE
events is similar to those reported in analogous studies.
For example, over 10 stages of development of tomato
exposed to ethylene, Alba et al. [38] estimated that almost
3,500 DE events would have occurred. They concluded
that this was a large underestimate for the fruit as a
whole, since only the pericarp was analyzed. Between
days 0 and 1 and days 1 and 2 there appear to be an equiv-
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Figure 1 Trends in differential gene expression. DE genes were de-
termined between each successive day at a threshold cut-off level of
1.5-fold. Each comparative stage, i.e. day, was measured in triplicate
and the mean of the hybridization intensities calculated prior to DE
analysis. (A) Total number of DE genes and the split between UR and
DR genes. (B) The proportion given as percentages of total DE genes
comprised by either chloroplast/plastid protein or TF/signaling protein
encoding genes as given in the TAIR gene ontology database. Open
and closed bars represent UR and DR genes, respectively.

alent total number of DE genes divided equally between
those UR and DR. Between days 2 and 3, there is an
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increase in DE genes of about 25%. Notably, DR genes
comprised more than 80% of the DE genes between these
days. There was a 2-fold decrease in total DE genes
between days 3 and 4, which was a majority of DR genes.
The number of DE genes begins to increase in later days,
but with UR becoming more predominant at alternate
stages. This was most apparent comparing days 4 and 5
and days 6 and 7. Using the ontological assignments avail-
able at TAIR, we looked more closely at two different
classes of genes, nuclear genes encoding chloroplast and
plastid proteins and those encoding transcription factors
(TF) and signaling genes (Fig. 1B). The former would
indicate changes to the autotrophic state, whereas the lat-
ter would reflect overall regulatory activity. In general,
the expression profiles of these classes of genes were sim-
ilar, which is not unexpected with the requirement for
transcriptional control of photosynthetic development.
The differences in the number of DE genes observed
between the two classes preceded emergence, which
occurred from day 2 to day 3. From day 2 to day 3 other
ontological classes associated with regulatory processes,
such as nucleic acid binding or kinase activity were pro-
portionately higher among DR genes compared to UR
genes (data not shown). There was substantial UR of both
TF/signaling and chloroplast/plastid gene expression at
days 5 and 7 when compared with the previous day. The
proportions of each ontological class among both UR and
DR genes were similar at day 5 compared with day 4, with
only cell wall-classified genes showing a relative higher
proportion the UR category (3% UR versus 0.8% DR, data
not shown). This was also the case for day 7 compared
with day 6 with only the receptor binding class appearing
substantially DR (0.8% versus 0.1%). These are processes
that are occurring primarily in cotyledons and the hypo-
cotyl leading to leaf growth, since true leaves do not make
up a substantial proportion of seedling mass until about
day 8 [39].

Behavior of metabolites during development

A total of 27 metabolites corresponding to a variety of
known and unknown metabolites including four soluble
carbohydrates, nine amino acids and five organic acids
were quantified from the TH-NMR spectra of seedling
extracts. Although these metabolites comprise a small
proportion of the total metabolic complement of a cell,
these metabolites are the most abundant ones. They
reflect the nutritional state of the tissue as an immediate
source of carbon and/or nitrogen and serve as respiratory
substrates for energy production. A direct comparison of
data from our NMR profiling platform with GC-MS
acquired data demonstrated a similar capacity to distin-
guish metabolic states [40]. Additionally, a number of the
metabolites are well known effectors of gene expression
and some, such as sucrose, isoleucine and glutamine,
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have high regulatory potential as determined by correla-
tion analysis [28]. The values obtained for each metabo-
lite are given in Additional File 1.

In order to understand better the general trends in
metabolite behavior over the developmental series we
produced two-dimensional self organising maps (2D-
SOMs) that grouped like-varying metabolites (Fig. 2A). A
number of metabolites decreased throughout the devel-
opmental period shown in Cluster 1. As expected, this
cluster included sucrose [13,41], which is known to
decrease upon the initiation of germination. Clusters 2
and 3 contain metabolites that fluctuate with no particu-
lar trend or increase slightly during development. Clus-
ters 4-6 contain 9 metabolites that show a biphasic profile
of increasing then decreasing levels. Malate (cluster 4)
shows a relatively sharp increase and decrease compared
to valine, leucine and isoleucine (cluster 5) although each
attains a maximum level on the same day. Cluster 6 shows
3 metabolites, glutamine, fructose and an unknown com-
pound that attain maximum levels about a day later. We
are particularly interested in metabolites that changed
over the course of development (or part of it), since they
would be candidates for metabolic control factors.

The relationships between individual metabolites are
clearer when correlations are included in the visualiza-
tion as shown in the spring embedding plots (Fig. 2B-C).
Our threshold p-value produced a correlation coefficient
cut-off value of 0.68. We observed significant correlations
between 19 metabolites that appear to be separated into
three clusters. The cluster containing glutamine, fructose,
fumarate and unkD8.0 are linked to the lactate cluster
(Fig. 2B) via sucrose. The lactate cluster contains those
metabolites that are decreasing over time, such as trigo-
nelline, threonine, citrate, and alanine (Fig. 2C). Malate
has also been included within this cluster and has a rela-
tively high correlation to alanine. This could reflect a par-
titioning of malate into alanine either via oxaloacetate or
pyruvate. The third cluster (Fig. 2D) consists of the ali-
phatic amino acids and the compounds choline, and for-
mate. It was expected that the three amino acids leucine,
isoleucine and valine would be highly correlated as they
share common synthetic and catabolic pathways.

Transcriptional states of developing seedlings

In order for us to compare transcriptional states among
days, only genes that were expressed at each of the 9 sam-
pling points were included. However, in order to maxi-
mize the number of genes in the analysis only one
expression value per time point was required. This filter-
ing process resulted in a final set of 10,235 genes (Addi-
tional File 2). Initially, a principal component analysis
(PCA) scores plot was produced in order to investigate
the relationships among days according to gene expres-
sion profiles (Fig. 3A). This revealed a general progres-
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sion of time points across PC1 with the transition from
day 2 to 3 and from day 4 to 5 contributing mostly to PC2.
Days 5 to 8 appear to form a loose cluster, which would be
expected if the expression of photosynthetic genes has
begun in earnest by day 5, which agrees with the gene
expression profiling data (Fig. 1). The PCA scores plot for
individual sample is given in Additional File 1. The load-
ings analysis indicated that the most variant genes were
chlorophyll a/b binding proteins and small subunits of
ribulose bisphosphate carboxylase (data not shown). It is
also evident that PC2 comprises some technical variation
due to differences in slide hybridization since the appar-
ent outliers do not correspond to any one particular sam-
pling set. Spring embedding was used to investigate
further the relationships between time points in the data-
set of transcript profiles [37]. The spring embedding
algorithm is non-linear, and so is able to amplify any clus-
tering in the data to make it more visually clear compared
to standard PCA analysis. Due to the size of the data set
and the possible number of correlations that can be
obtained, the cut-off threshold was set to 0.7. The spring
embedding was clearer in showing the division of tissue
samples into two clusters comprising days 0-2 and days 3-
8 (Fig. 3B). When the threshold was dropped to 0.6 the
connections between day 2 and the later days became
more apparent and the spring embedding plot began to
mimic the PCA plot with day 2 moving from day 1 and
lying more closely to days 6 to 8 than to day 3.

Metabolic states of developing seedlings

A PCA scores plot of time points based on metabolite
profiles revealed a curvature in the points (Fig. 4A). Vari-
ation among days 0 and 2 was shown almost exclusively
in PC2 and subsequent differences to day 8 were shown
in gradual shifts in both PC1 and PC2. The PCA scores
plot for individual samples is given in Additional File 1.
The loading plots confirmed our conclusions from the
visual inspection of the data in that the major differences
between days 0 and 1 were the levels of metabolites that
decreased substantially, such as sucrose, glucose and
unkM5.18 (Additional File 1). The clustering in the PCA
loadings plot mirrored that of the spring embedding plot
for the metabolites alone (Fig. 2) and suggested a steady
transition in states from day 1 to later days. Spring
embedding was used to clarify the relationships among
the days, based on the metabolite data (Fig. 4B). At a
threshold correlation value of 0.6 two clusters became
apparent. There was a relatively high correlation between
day 0 and day 1 and among days 2-8, with a lower correla-
tion between day 1 and day 2. As the threshold correla-
tion is decreased the groups move closer together, but the
clustering was not lost until a correlation cut-off below
0.5 was used. If the threshold cut-off is increased to 0.7,
then the link between day 1 and day 2 is severed. The
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Figure 3 Day-by-transcript relationships. (A) PCA scores plot of the
time points sampled during germination and seedling establishment
based on the average transcript levels. Each number 0 to 8 represents
one day (24 h) from imbibed seeds (0) to 8 days (8) of age, respectively.
(B) Higher order relationships among days based on mean values of

transcript levels from the 3 replicates visualized by spring embedding.
The plot shows day 0 (d0) to day 8 (d8) as nodes and the relative de-

gree of transcript correlation as edges. Clustering was based on Pear-
son correlation coefficients at a threshold cut-off of 0.7. The color bar
on the right of the figure provides the relative degree of correlation.

apparent separation of day 0 from day 1 is due mainly to
the second replicate sample of day 1 (Additional File 1).
The other two day 1 samples clustered very closely to the
three day 0 samples and all the samples from day 2 to day
8 showed a strong correlation. In order to identify the
metabolites with a significant difference in measured lev-
els between days 1 and 2, which are the developmental
stages that mark the division of the two clusters, we
applied a Student s t-test to the data (FDR < 0.1). A signif-
icant difference was observed for the levels of several
metabolites (Additional File 1). We can only speculate
that relatively high sucrose, rhamnose, lactate, citrate,
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Figure 4 Day-by-metabolite relationships. (A) PCA scores plot
where each number represents one day (24 h) from imbibed seeds (0)
to 8 days of age (8). (B) Spring embedding plot where the symbols dO
to d8 correspond to the samples in A. Each point is a node represent-
ing the mean value and each line gives the relative degree of correla-
tion. The threshold Pearson correlation coefficient for the spring
embedding was 0.7. The color bar on the right of each figure provides
the relative degree of coloration. Both types of analysis were based on
the mean values (n = 3) of 3 replicates (2 replicates for day 3).

alanine, trigonelline and unkM1.85, and relatively low
fructose, glutamine and unkD8.0 comprise part a meta-
bolic state that is conducive for germination, and that
change in these metabolites promotes emergence and
establishment. Less abundant metabolites that were not
quantifiable by NMR also will be very important in defin-
ing metabolic states.

Metabolite and transcript co-analysis

The majority of the metabolites measured demonstrated
altered levels throughout the time course allowing corre-
lations to be identified with gene transcript levels. Spring
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embedding was used to visualize relationships between
genes and metabolites based on significant correlations
over all the sampling points (Fig. 5). Using a false discov-
ery rate (FDR) [42] of 10% to generate the threshold P-
value (see legend), a total of 237 pair-wise correlations
were identified among 20 metabolites and 210 genes
(Additional File 3). We emphasize that the Bonferroni
and Benjamini and Hochberg FDR adjustments that were
used to establish thresholds of significance are very strin-
gent. Nevertheless, in order to check our use of a FDR
threshold, the time point labels of the gene and metabo-
lite data were randomly permuted 1000 times and each
time the cross-correlations were calculated using the
same threshold level of significance Across the 1000 per-
mutations, the median number of significant correlations
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was 28. This corresponds to 11% of the 237 seen in the
non-permuted data and is close to the desired FDR of
10%.

The metabolites are presented as nodes to which the
correlated genes radiate outwards. As expected, both
positive and negative correlations were identified. Table 1
lists the metabolites identified as showing a correlation
with one or more genes along with the nature of the cor-
relation(s). The metabolite profile is described as increas-
ing, decreasing, or as biphasic throughout the
developmental series. The gene ontology from the TAIR
database was used to identify the function for each gene
listed. Of the 237 correlated genes, 19% were identified in
the TAIR database as encoding an "expressed" or a "hypo-
thetical” protein. Of the remaining 196 correlations, 25%
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Figure 5 A spring embedding model revealing relationships between metabolites and genes from days 0 to 8. Pearson correlation coeffi-
cients were determined between every metabolite and gene over the 9 time points. Metabolites are central nodes from which connected genes ra-
diate outwards. The coloured lines represent edges describing the nature of the correlation; a dark red line represents a strong positive correlation
whereas a dark blue line represents a strong negative correlation. A total of 237 correlations were identified between 20 metabolites and 209 genes

at the threshold cut-off of (p < 0.0001, r > |0.95]). The plots inset show the profiles of the average expression values for the transcription factors IAA 14,
ARF10and ABI3 used to calculate correlation coefficients.
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Table 1: Correlations between metabolites and transcript
levels in developing seedlings.

Metabolite Number of Direction of
Relationships* Correlationst

Glucose 1 N
Sucrose 129 P
Fructose 1 P
Rhamnose 1 N
Malate 3 N(1),P(2)
Citrate 7 N (6),P (1)
Fumarate 3 N(2),P(1)
Formate 1 N
Lactate 21 N
Glutamine 7 N
Alanine 4 N(1),P(3)
Valine 3 N
Threonine 5 N
Trigonelline 16 N (15), P (1)
Choline 1 N
unkD8.0 6 N (2),P(4)
unkM7.9 4

unkS7.36 3 N
unkM5.18 2 N (1), P (1)
unkM1.85 19 N (18), P (1)

*Number of significant Pearson correlations between the metabolite
and genes above p = 9.8 x 105 (FDR = 5%) determined over the 9
sampling periods, day 0 to day 8. tThe direction of the linear
regression, either positive (P) or negative (N) and the number in each
direction in parentheses.

of the genes were associated with a known regulatory
aspect of plant development, for example, phytohormone
or light response, or had previously been identified as
demonstrating seed-specific expression. A further 12% of
the genes with an assigned identity in the TAIR database
were involved with signal transduction. Sixty-one percent
of the genes (129 out of 210) showed significant correla-
tion with sucrose. All sucrose-gene correlations were
positive, since the FDR only gave the most significant cor-
relations, which were independent of sign. Most of the
regulatory/signal transduction genes correlated with
sucrose indicating that they decrease rapidly upon trans-
fer of seeds to germination conditions. These included
the transcription factors PHYTOCHROME INTERACT-
ING FACTOR 1 (PIFI1), ABSCISIC ACID INSENSITIVE 3
(ABI3), and ATMYB56 (AT5G17800), and the light-
receptor/kinase genes PHYA and PHYD (Table 2). Corre-
lations with other metabolites revealed progressive
changes in the transcript level of other transcription fac-
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tors that might interact, such as Auxin Response Factor 10
(ARF10) and ABI3 [43] and the Aux/IAA protein family
TF SOLITARY-ROOT (SLR)/IAA14. As ABI3 drops
immediately following transfer to growth conditions,
ARFI0 remains constant and does not drop until after
germination, and [AA14 is present in imbibed seeds and
then increases prior to germination (Fig. 5, inset).

An example of the relationships between a metabolite
and a connected gene is given for lactate (Additional File
1). Lactate was negatively correlated with 21 genes, five of
which had no assigned identity in the TAIR database. Of
the 17 genes with an assigned identity, seven showed an
involvement in photosynthetic-related functions. Eight of
the genes within the group are also affected by abiotic or
biotic stress. These include 1-aminocyclopropane-1-car-
boxylate oxidate (ACO4, At1g05010), calmodulin-like 9
(At3g51920) and the PIP2A aquaporin (At3g53420),
which is induced during dehydration stress. Due to our
stringent statistical cut-off, none of the 21 genes of the
lactate cluster include any of the 19 hypoxia inducible
genes reported by Loreti [44]. However, the genes encod-
ing alanine aminotransferase (At1g17290), alcohol dehy-
drogenase  (Atlg77120), Class I non-symbiotic
hemoglobin (At2g16060), and pyruvate decarboxylase 1
(At4g33070) reported as anoxia inducible by Sachs et al.
[45] - and which are included in the set of 19 inducible
genes - were positively correlated with lactate at a p-value
less than 0.03 (r > 0.72). Although a number of gene
expression profiles were correlated with more than one
metabolite concentration, it was observed that of the
seven photosynthetic genes correlated to lactate, only
three showed correlations with other metabolites.
Besides the two TFs shown in Table 2, the unknown
metabolite unkM1.85 was negatively correlated with 17
other genes, seven of which were assigned photosynthetic
functions.

Discussion

More and more, integrative approaches are being
employed to describe the function of molecular systems
in development (for reviews see [24,46-49]. Whereas
most metabolite-gene interaction studies have been from
the point of view of understanding the genetic bases for
changes in metabolism, such studies can be integral to
understanding the control of gene expression by meta-
bolic factors [28,49]. In fact, strong correlations between
metabolite and transcript levels more likely reflect
metabolite regulation of transcription than vice versa
[36]. A recent study reported that a series of distinct met-
abolic switches were characteristic of the transition from
dormant, dry seed to germinating embryo [11]. The
results presented in this work extend the analysis to pro-
vide an overview of metabolite and transcriptome pro-
files from imbibed, non-dormant seeds through to
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Table 2: Identified regulatory genes correlated with metabolites.
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Locus Metabolite r=%1 Gene Symbol Gene Descriptiont

Transcription factors

AT1G30970 Sucrose 0.9672 SUF4 Suppressor of Frigida 4

AT2G20180 Sucrose 0.9493 PIF1 Myc-related bHLH transcription factor

AT2G24500 Sucrose 0.9628 FZF C2H2 zinc finger protein FZF

AT2G25930 unkM7.9 -0.9752 ELF3 Early Flowering 3

AT2G28350 unkM7.9 -0.9667 ARF10 Auxin Response Factor 10

AT2G31370 fumarate - 0.9495 POSF21 bZIP transcription factor POSF21

AT2G43010 unkM1.85 -0.9529 PIF4 Nuclear localized bHLH protein that interacts with active
PhyB

AT3G15030 unkS7.37 -0.9586 TCP4 Arabidopsis thaliana TCP
Family transcription factor

AT3G24650 Sucrose 0.9721 ABI3 Homologous to the maize transcription factor Viviparous-1.

AT4G14550 unkM1.85 -0.9588 SLR/IAA14 IAA14 is a member of the Aux/IAA protein family. Solitary
Root locus.

AT4G35570 Sucrose 0.9803 HMGB5 High Mobility Group B 5

AT5G17800 Sucrose 0.977 ATMYB56 Member of the R2R3 factor gene family

Kinases &Receptors

AT1G09570 Sucrose 0.9777 PHYA Phytochrome A

AT4G16250 Sucrose 0.9581 PHYD Phytochrome D

AT3G16030 alanine 0.9519 CES101 Callus Expression of RBCS

DNA/RNA binding

AT1G61040 Sucrose 0.9495 VIP5 Vernalization Independence 5 putative heterogeneous
nuclear ribonucleoprotein

AT2G33410 Sucrose 0.9771

AT2G37020 Sucrose 0.9522 DNA binding, Chloroplast

AT3G16810 Sucrose 0.9735 APUM24 Arabidopsis Pumilio 24

AT4G14520 Sucrose 0.9625 Homologous to the DNA-directed RNA polymerase ||
subunit (At59g59180)

AT4G25500 Sucrose 0.9721 ATRSP35 arginine/serine-rich splicing factor

AT4G36020 Sucrose 0.9577 CSDP1 Cold shock domain protein

AT5G07290 Sucrose 0.9538 AML4 ARABIDOPSIS MEI2-LIKE 4

AT5G14270 glutamine -0.9566 ATBET9 Arabidopsis thaliana Bromodomain and Extra terminal
Domain protein 9

AT5G38890 Sucrose 0.9898 Exoribonuclease-related

AT5G53180 fumarate - 0.9593 ATPTB2 Polypyrimidine tract-binding (PTB) Protein

1 Pearson correlation coefficients based on a false discovery rate at a significance threshold < 0.05. The sign gives the direction of correlation.
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established seedlings with the aim of identifying potential
targets of metabolic control during seedling development
covering the heterotrophic to autotrophic transition.

Differential gene expression activity coincides with
developmental stage

In the present work, we observed a relatively high level of
transcriptional change occurring over the first three days
of seedling development, which encompasses germina-
tion and emergence. Fifty percent of all DE events
occurred during the first three days. Of these, more than
7% were genes categorized as either TF or signaling
genes. This implies large changes in transcriptional activ-
ity during emergence. Alba et al. [38] made a similar con-
clusion from their analysis of gene expression in
developing pericarp of ethylene treated tomatoes. Of 628
known DE genes during the 10 developmental stages they
analyzed, 11% were either TF or signaling genes. We
observed a substantial increase in DE at day 3 compared
to day 2, with most genes comprising both chloroplast/
plastid and TF/signaling genes. A high degree of tran-
scriptional alteration may not be required for seedling
development (i.e. cell division or differentiation) at this
time, since they are geared for a constant rate of lipid deg-
radation [50,51], and cell expansion is the principal
means of seedling growth [14]. Subsequently, relative
gene UR and DR appears to follow a cyclic pattern during
the subsequent days, and it is interesting that this corre-
sponds to likely transitional stages of development. Tran-
scriptional transition is lowest between days 2 and day 4,
since TF gene expression is DR. By day 4, all lipid reserves
have been depleted and so by day 5 any potential catabo-
lite repression would be eliminated to permit full devel-
opment of autotrophy, which would be revealed by a
relative increase in UR genes, such as those encoding
chloroplast/photosynthetic proteins. Between days 6 and
7 rapid leaf growth begins [39] and a corresponding UR
of gene expression may ensue. Accordingly, spikes of
chloroplast/plastid and TF/signaling UR take place at
days 5 and 7.

Metabolic state establishes prior to germination and the
switch in transcriptional programming

The changes to levels of various metabolites going from
imbibition to early germination follow similar patterns as
reported previously [11,13]. Fait et al. [11] observed a
change of metabolic activity during post-imbibition ger-
mination 24 h after transfer of seedlings from cold to a
germination inductive temperature. The grouping of the
metabolite profiles produced during this experiment sup-
ports these findings, demonstrating that in the cold, a rel-
atively stable metabolic state for the major metabolites is
present and then changes relatively little for 24 h. A larger
metabolic switch occurs from day 1 to day 2 but the met-
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abolic state stabilizes during seedling establishment even
though a number of metabolites show transient increases
(Fig. 4).

Although gene expression profiles are changing from
day O to day 2, there is a more dramatic change from day 2
to day 3 (Fig. 3). By this point, the seedling has emerged,
but attainment of full photosynthetic competence does
not appear to happen quickly. From the large DR of
expression from day 3 to day 4, it is interesting to specu-
late that prior to the emergence of the radicle, i.e. by day
2, the embryo has attained a metabolic state that primes
the seedling to reduce aspects of gene expression in pref-
erence for emergence and reserve mobilization.

Revealing potential metabolic signals by correlation
analysis

Deciphering metabolic contributions to switches in tran-
scriptional states, such as observed during seedling devel-
opment, will entail identifying individual signaling
metabolites, the genes they affect and the concerted
degree of affect [52]. Although any metabolic regulation
during the heterotrophic to autotrophic transition would
be complex, it should be possible to identify metabolites
involved in signaling gene expression events by examin-
ing their behavior in relation to the expression of specific
genes [36]. We determined linear correlations between
each metabolite-gene pair with the assumption that the
strength of correlation would indicate the potential for a
regulatory relationship to exist (Fig. 5). Sucrose levels
showed positive correlations with 129 gene transcripts.
Comparison of the gene transcripts correlated with
sucrose levels with previous microarray experiments and
online databases showed that 44 of the 129 genes had pre-
viously been identified as sucrose-responsive [36,53-56].
The correlation of sucrose levels with a large proportion
of previously identified sucrose-responsive gene tran-
scripts reinforces the validity of the use of correlation
coefficients to identify interesting relationships. Two
well-studied TFs that were highly correlated with sucrose
were PIF] and ABI3. PIF1 has been identified as a nega-
tive regulator of photomorphogenesis in seedlings [57,58]
and ABI3 may play a role in sugar-induced seedling
developmental arrest [59]. The TF genes IAAI14 and
ARFI10 showed high negative correlation with the
unknown metabolites unkM1.85 and unkM?7.9, respec-
tively. In order for correlations to be identified a gene had
to be expressed at each time point. Therefore, it may act
in some capacity outside the developmental stage in
which it is commonly associated. For example, Penfield et
al. [60] concluded that factors controlling cotyledon
expansion in imbibed seeds -- a gibberellin mediated pro-
cesses -- continue well into seedling establishment. The
CHO1 AP2 domain TF that functions in the glucose sig-
naling pathway downstream of ABI4 also appears to func-
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tion well into seedling establishment [61]. In support of
these views, it is interesting that we observe expression of
genes known to be involved in the imposition of dor-
mancy well into seedling establishment.

ABI3 expression decreases within two days of imbibi-
tion to remove dormancy and permit seed germination.
ARF10 is believed to increase seed sensitivity to ABA [62]
and its delayed suppression would likely contribute to a
graded control of ABA responses while ABI3 transcript
levels decline. In contrast, the levels of SLR/IAA14 tran-
scripts are increasing until day 4-5. SLR/IAA14 is known
to repress ARF7 and ARFI9 during initiation of lateral
roots [63] and it is interesting to speculate that it may
play an additional role to restrict the expression of ARFI10
to vascular tissue in cotyledons and roots in older seed-
lings [43]. Even if metabolic regulation of highly corre-
lated genes is shown not to occur or is minimal,
observing the behavior of expression within a broader
physiological and biochemical context through a network
correlation analysis may reveal as of yet unknown inter-
actions.

Identifying mechanisms of metabolic regulation

Imbibition results in seeds undergoing a period of anoxia
during which lactate production occurs [1,41]. In ani-
mals, elevated lactate has been shown to alter gene
expression in certain tumor types [64-66] and may
involve carbohydrate response-like elements [67]. We
looked for elements within the promoters of photosyn-
thetic genes correlated to lactate and unkM1.85 as a start
toward identifying regulatory mechanisms (Supplemen-
tal Table 2) in a manner analogous to co-regulated genes
identified by microarray analysis [68]. Genes correlated
with lactate contained Ocs-like elements responsive to
oxidative stress, auxin and salicylic acid [69,70] and
motifs showing similarity to those involved in light-
responses. Since it is difficult to distinguish between the
effects of light and metabolic stimulus [71,72], it is possi-
ble that elements identified as light responsive might be
metabolite responsive instead. Interestingly, the potential
promoter motifs identified in the photosynthetic genes
correlated with metabolite unkM1.85 predominantly
included elements associated with response to various
stresses and did not contain any light-responsive ele-
ments. The differences between the potential promoter
motifs identified in the two sets of photosynthetic genes
indicate that distinct regulatory mechanisms may be
operate in groups of genes that may be considered ini-
tially as functionally similar through ontological classifi-
cation. Identification of the TFs that bind to these motifs,
and the characterization of identified, but unknown pro-
moter elements will help elucidate the signaling pathways
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involved in the expression of these genes and potential
involvement of metabolic regulation.

The pair-wise analysis of metabolite and transcript lev-
els appears to be a useful investigatory tool to identify
potential links between genes and metabolites, thereby
providing a number of targets for further examination.
However, the identification of a correlated gene and
metabolite does not provide information relating to the
causality within the relationship, i.e. metabolite affecting
gene expression or vice versa. It is also difficult to deter-
mine whether the observed relationship results from a
direct interaction between a gene and a metabolite, or
whether a downstream signaling event is involved. Such
questions can be addressed, in part, by repeating the
metabolite measurements in the appropriate mutant and/
or by direct measurement of transcript levels in rigor-
ously controlled metabolite feeding experiments.

Conclusions

A systems biology approach was adopted to investigate
the interactions of metabolites and gene expression dur-
ing seedling development. Both transcript and metabolite
data were analysed at various levels and the results visual-
ized using PCA and correlation-based network cartogra-
phy. The analysis of transcript data alone showed that
germination and seedling development is marked by
stages of differing gene expression activity. These stages
fall at important developmental points, such as at the
beginning of seedling emergence, the end of reserve
mobilization and the onset of leaf formation. Metabolite
levels were revealed to fall into two clusters that reflect
the pattern and timing of change, principally those that
decrease post-imbibition and those that show a transient
increase after seedling emergence. Network cartography,
whereby the degree of correlation between variables was
used as the basis of sample comparison, provided a
clearer picture of the relationship among samples than
PCA. This network analysis indicates a shift in the state
of nutritionally important metabolites precedes the major
shift in transcriptional state going from germination to
seedling emergence. Therefore, a suitable metabolic state
achieved prior to germination may be necessary for the
initiation of gene expression programs for efficient seed-
ling development. Some aspects of gene expression may
be regulated by specific metabolites. The key is to identify
signaling metabolites and the genes they affect, which
may be accomplished by holistic profiling and correlation
analysis. In addition, network correlation analysis may
reveal component interactions when visualised within the
context of a dependent or regulatory process, such as we
noted with potential TF relationships uncovered by
metabolite correlations.
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Methods

Plant material and growth conditions

All Arabidopsis thaliana L. (ecotype Col-0) seeds were
surface sterilized and sown onto 0.8% agar media plates
containing 1/2-strength MS salts, pH 5.7 [73]. The sow-
ing density was approximately 500 seeds evenly spread on
a9 cm Petri dish. Agar and MS salts were purchased from
Fisher Scientific and Sigma, respectively. The edges of
each plate were wrapped in 3 MM surgical tape and the
plates were incubated in the dark at 4°C for 4 days before
transferring to the growth room. Transfer of plates
occurred at 09:00 h. Seeds were germinated at 20°C at 70
pumol of photons m2 s-! constant illumination using stan-
dard white fluorescent bulbs (General Electric). A drop of
less 2 pmol of photons m-2s-1 was observed going from
the centre to the edges of the shelf. We used seeds from
completely brown siliques that had been after-ripened for
at least 3-weeks after harvesting. The seeds were imbibed
for 4 days prior to transfer to the growth room with dor-
mancy being maintained by incubation at low tempera-
ture. Images of the stages at which we selected seedlings
for analysis is given in Rylott et al. [39].

Design of tissue sampling

Sample harvesting and preparation was conducted in
three sets of nine samples with each set encompassing the
time points Day 0 to Day 8 after transfer to the growth
room [39]. We alternated tissue harvesting regimes to
obtain sets of tissue for total RNA and metabolite extrac-
tion, thus corresponding tissue samples were used to
compare metabolite and transcript profiles. A shelf in the
growth room was divided into three sections and plates
for each set were arranged horizontally around the shelf,
such that each section contained an equal number of
plates. Tissue was harvested each day at 09:00 h and only
one sample per day was harvested resulting in three bio-
logical replicates for each time point. Each tissue sample
consisted of pooled seedlings from an equal number of
plates from each section. The total number of plates
selected for each sample varied depending on the devel-
opmental stage. Each plate was examined under a micro-
scope to ensure that seedlings were harvested at the
required stage of development. Only those plates with
greater than 95% of seedlings at the appropriate develop-
mental stage were used. For sample days 0-4, approxi-
mately 0.4 g of seeds or seedlings was washed from the
surface of the agar petri dishes with distilled sterile water
into a filtration unit. Once the water had passed through,
the seedlings were washed in 10 ml more water, weighed
and immediately frozen in liquid nitrogen. For sample
days 5-8, approximately 0.4 to 0.5 g of seedlings were
removed from plates by forceps, rinsed briefly, and
immediately frozen in liquid nitrogen. The time from
opening the petri dish to freezing the sample was at most
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3 min with rinsing times for all samples being within one
and a half to two minutes.

Transcript profiling and DE Analysis

Total RNA was isolated using a borate-based extraction
protocol [4]. Production of labelled cDNA, quality check-
ing, and slide hybridization were conducted as described
in by Armengaud et al. [74]. For each labelling reaction 1
pg of Oligo dT,, primer was added to 100 pg of total RNA
in a total reaction volume of 20.5 pl. Printed 70-mer oli-
gonucleotide microarrays were obtained from the labora-
tory of Prof. David Galbraith at the University of Arizona.
Versions 1 and 3 arrays containing 29 K elements were
used in these experiments. The identity of each spot in
the meta-grid was obtained from the Galbraith labora-
tory http://www.ag.arizona.edu/microarray/. Only one
c¢DNA sample was hybridized per slide. Since transcrip-
tome profiles were produced from more than one
microarray print version, only those genes common to all
microarrays were used in this analysis.

Hybridized slides were scanned using an Affymetrix
428 scanner set on a gain setting to yield no more than 10
saturated spots per slide and gain settings were varied to
account for the quality of the hybridization. Spot check-
ing and intensity determination were done using
ImaGene™ (BioDiscovery Inc., CA, USA). The quantified
gene expression data produced by ImaGene was normal-
ized using GeneSight™ version 4.1 (BioDiscovery Ltd.).
Background signals were subtracted and spots designated
as poor hybridization events were discounted from future
analysis. In order to address the problem of negative
spots, signal intensities below a set value of 20 were
raised to that value. The raw expression data after spot
removal has been deposited into the ArrayExpress data-
base under the accession number M-MEXP-2493 http://
www.ebi.ac.uk/microarray-as/ae/. A standard normaliza-
tion procedure was applied to the quantified gene expres-
sion values obtained for each printed microarray to
facilitate comparisons among individual microarrays
(Affymetrix GeneChip Expression Analysis technical
Manual, 2004). In brief, the top and bottom 2% of the sig-
nal values were removed and the mean calculated for the
96% of the values remaining. A value, the scaling factor,
was calculated to adjust the mean of the remaining values
to 100. Each of the signal intensities on the array was then
multiplied by the appropriate scaling factor to normalize
signal intensities on an array-by-array basis. A file of
combined normalized data is also available from
ArrayExpress under the accession number E-MEXP-
2493. A group of differentially up-regulated and down-
regulated genes was identified between each day at a con-
fidence interval of 99% based on the bootstrapping proce-
dure reported by Kerr & Churchill [75], which is resident
within Genesight™. The groups of differentially expressed
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genes were filtered further with a threshold cut-off value
of 1.5-fold. Functional analysis by ontology was done
using the information obtained from the TAIR database

http://www.arabidopsis.org.

Quantitative RT-PCR

In order to verify the robustness of our hybridizations
and data normalization, we compared the relative expres-
sion levels of the genes encoding ACT2 (ACT2,
At3g18780) and ribosomal protein genes S9 (At1g74970)
and L32 (At5g46430) from the arrays to expression values
obtained by qRT-PCR. The array and RT-PCR values
were normalized by the expression levels of ubiquitin 10
(At4g05320) to allow direct comparison of data from the
two different quantitative techniques. The levels of tran-
scripts in each extract were determined by real-time RT-
PCR according to Love et al. [76]. Transcript values for
each reference gene were obtained using a standard curve
produced from purified plasmid DNA containing the
appropriate cDNA. All genes (except UBQ10) were cho-
sen, because each was spotted between 13 and 27 times
throughout the microarray depending on the version
used, and thus the average intensity would provide a gen-
eral indication of the quality of the hybridization. These
genes were selected for qRT-PCR analysis prior to
hybridization and processing of the arrays, therefore they
represent an unbiased indication of the quality of the
array hybridization. A plot of array versus qRT-PCR val-
ues produced lines with high correlation (near unity for
ACT2 and RPS9) demonstrating data of suitable quality
for subsequent statistical analysis (Additional File 1).

Metabolite extraction and quantification

Metabolites were extracted according to Weckwerth et al.
[77] and quantified by 1H-NMR as described in Moing et
al. [78]. Briefly, the dried extracts were resuspended in
400 mM phosphate buffer pH 6.0 in D,O and analyzed at
500.162 MHz on a Bruker spectrometer (Bruker Biospin
Avance). Special care was taken to allow absolute quanti-
fication of the individual metabolites through addition of
ethylene diamine tetraacetic acid sodium salt solution (5
mM final concentration in the NMR tube) to improve the
resolution and quantification of organic acids such as
malate and citrate, adequate choice of the NMR acquisi-
tion parameters (pulse angle 90°, relaxation delay 10 s)
and use of an electronic reference (ERETIC mode [79])
calibrated with glucose, fructose, glutamine and glutamic
acid sodium salt solutions as described previously [78].
Individual metabolites were identified using published
data [78,80,81], acquisition of NMR spectra of reference
compounds under exact solvent conditions, and spiking
extracts with reference compounds. They were quantified
using the metabolite mode of AMIX software (Bruker
Biospin v. 3.5.6) based on the number of protons com-
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prising the corresponding resonance. Concentrations in
the NMR tube were converted to amounts per g fresh
weight using the mass of sample extracted. Citrate, for-
mate, fumarate, glutamate, lactate and malate are
expressed as pg of the acid form. The concentration of
NMR unknown compounds (named according to the
form of the resonance, S for singlet, D for doublet, M for
multiplet, and its frequency in ppm) was calculated on
the assumption that the measured resonance corre-
sponded to one proton and using an arbitrary molecular
weight of 100 Da. We verified the robustness of the quan-
tification procedure by observing a near 1 to 1 relation-
ship between levels of metabolites when we compared
those measured in a mixture of samples, one from each
day, with the corresponding calculated theoretical mix
(Additional File 1).

Data analysis for network cartography

For the network cartography and correlation analysis,
only those genes which had at least one expression value
for each of the sample days were included in the analysis.
This pre-processing step produced a set of 10,005 genes.
Similar data pre-processing was not required for metabo-
lite levels as they had been quantified absolutely for each
extract. Since material for both the transcript and metab-
olite profiling was collected in three independent groups,
the values were averaged for each day. Hierarchical, K-
means and 2D-SOM clustering were done using the
metabolite data imported into Genesight ™. PCA was per-
formed using MATLAB™ release 2007b ((The Math-
Works, Natick, MA). Visualization of significant
correlations, i.e. network cartography, was conducted
using springScape [37]. Pearson correlation coefficients
(signed r value) were used to generate the similarity
matrices for the spring embedding of metabolite, tran-
script and combined data. MATLAB™ release 2007a was
the mathematics platform for the spring embedding and
metabolite-gene correlation analysis. Depending on the
data set being analysed, the initial similarity matrix was
cut at a threshold value to facilitate the spring embedding
and to enhance the significance of the output correla-
tions. For the similarity matrix of correlations between
the 27 individual metabolites, a Bonferroni adjustment
was applied based on a significance value of 0.1 and 351
tests. The day-by-metabolite and the day-by-gene simi-
larity matrices were adjusted strictly by correlation coeffi-
cient in order to compare directly clustering between the
two data sets. A FDR [42] was used to threshold the level
of significance for the metabolite by gene correlations
based on a significance value of 0.1 and 276,345 (27 x
10,235) tests. Determination of metabolites differentially
expressed between the two groups of days was conducted
by Student's t-tests also using a FDR of 0.1 (6 x 20 tests)
to determine significance.
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Additional material

Additional file 1 Supplementary Data. Supplemental Figure 1. Levels of
metabolites over the developmental series; Supplemental Figure 2: PCA of
variation among days based on transcript levels. Supplemental Figure 3:
PCA of variation among days based on metabolite levels; Supplemental
Figure 4: Scatter plots showing individual correlations between lactate and
transcripts. Supplemental Figure 5: Comparison of microarray and gRT-PCR
expression data; Supplemental Figure 6: Comparison of calculated and
measured metabolite levels in mixtures of tissue extracts. Supplemental
Table 1: Significant metabolite changes between groups of days. Supple-
mental Table 2: Motifs found in promoter sequences of photosynthetic
genes correlated with lactate.

Additional file 2 Filtered Gene List.

Additional file 3 List of genes correlated with metabolites.
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