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Abstract 

Effects of recent climate change have already been detected in many species, and, in particular, in 

insects. The present paper reviews the key impacts of global warming on insect development and 

dispersal. The effects of climate change appear to be much more complex than a simple linear 

response to an average increase in temperature. They can differ between seasons and bioclimatic 

regions. Earlier flight periods, enhanced winter survival and acceleration of development rates are 

the major insect responses. Differential response of insects and hosts to warming up might also lead 

to disruption of their phenological synchrony, but adaptive genetic processes are likely to quickly 

restore this synchrony. In a number of cases, warming results in removing or relocating the barriers 

that limit present species’ ranges. It is also likely to facilitate the establishment and spread of 

invasive alien species. Finally, knowledge gaps are identified and future research interests are 

suggested. 
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INTRODUCTION 

Climate change involves simultaneous and complex changes of many environmental variables, but 

primarily air temperature (Trenberth et al. 2007). Mean global temperature has increased by 

approximately 1 °C since the pre-industrial era in Europe, with an acceleration during the past 

decades where 8 out of the 10 years between 1996 and 2007 were among the warmest years since 

1850 (EEA 2008). Simultaneously, concentration of CO2 has increased by 30% from pre-industrial 

concentrations and is still rising. Based on various climate scenarios, the mean global temperature 

could increase by 1.8–4.0 °C for the period 2090 to 2099 relative to 1980 to 1999 (Meehl et al. 

2007). Simultaneous changes in rainfall regimes and in frequency of extreme climatic events are 

also predicted.  

 Climatic parameters are known to have a direct effect on insect population dynamics 

through the modulation of survival, development rates, fecundity and dispersal (Messenger 1959; 

Andrewartha & Birch 1984). Long-term data recorded in China over more than 1000 years was 

recently analyzed and it was revealed that locust outbreaks are closely associated with 

drought/flood frequencies and low temperature (Stige et al. 2007; Zhang et al. 2009). Indirect 

climatic effects via hosts, competitors and natural enemies have also been shown (Price et al. 1980; 

Herms & Mattson 1992). The ongoing climate change is thus likely to induce significant responses 

from insect species. Signs of such responses have already been detected in recent years (Ayres & 

Lombardero 2000; Hughes 2000; Harrington et al. 2001; Bale et al. 2002; Hill et al. 2002; Crozier 

2003; Parmesan & Yohe 2003; Battisti et al. 2005; Parmesan 2006; Menéndez 2007; Battisti 2008; 

Netherer & Schopf 2010). According to the Intergovernmental Panel on Climate Change (IPCC), if 

conditions change beyond the tolerances of species, they might respond by shifting the timing of 

life-cycle events, shifting range boundaries or the density of individuals, changing morphology, 

reproduction or genetics, or go extinct (Rosenzweig et al. 2007). Although quantitative changes in a 

number of factors such as humidity, intensity and periodicity of rainfall, solar radiation, elevated 

CO2, O3 and ultraviolet light levels could be involved (Hunter 2001; Newman 2005; Stireman et al. 
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2005; Asshoff & Hättenschwiler 2006), most of these published studies essentially document the 

effects of increasing temperatures. Insects are essentially ectothermic organisms with their 

physiological processes displaying a high degree of sensitivity to ambient temperatures (Beck 

1983). Therefore, they are likely to respond very quickly to an increase in temperature (Logan et al. 

2003). Temperature thresholds often delimit one or more boundaries of a species’ geographic range 

(Andrewartha & Birch 1984). For example, as climatic isotherms have moved northwards 120 km 

on the average during the past century, 63% of the non-migratory European butterflies have 

extended their distribution by 35–240 km northwards (Parmesan et al. 1999). The 4th IPCC report 

mentioned the advanced emergence of butterflies, the extinction of some species, the increase in 

egg-laying for other species, genetically-based changes in morphology and other life-history traits, 

the expansion of damaging forest insects such as bark beetles in the USA and pine processionary 

moths in Europe, but also changes in the range of vector-borne diseases (Rosenzweig et al. 2007). 

Climate warming appears to have an increasingly important role in triggering increases in 

population abundance of native species (DeLucia et al. 2008), but also in facilitating the 

establishment and further spread of introduced alien species (Walther et al. 2009). Such changes are 

particularly obvious at higher altitudes and latitudes, and might result in a larger impact of 

herbivores (Wolf et al. 2008). However, the data accumulated so far suggest that the effect of 

climate change is much more complex than a simple, linear response to an average increase in 

temperature, and it is likely to differ between regions (Walther et al. 2002; Hickling et al. 2006; 

Deutsch et al. 2008). Moreover, Musolin et al. (2010) point out that insect responses to global 

warming are likely species-specific (or even population-specific) in nature (e.g. changes in 

distribution, phenology, abundance, population structure and dynamics), magnitude (from 

organisms to local and global communities) and strength (from undetectable or no responses to 

dramatic) (Bale et al. 2002; Parmesan 2007). Even within the same species or population, responses 

can differ, and sometimes be opposite, for different life-history traits as well as between seasons 

and bioclimatic regions (Battisti et al. 2006; Musolin et al. 2010; Robinet et al. 2010). Thus, the 
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entire life cycle of species should generally be taken into account to determine the overall 

disturbance (Visser & Both 2005). Therefore, even if some preliminary generalizations have been 

attempted about insect responses to global warming (e.g. about range modifications or phenological 

adaptations; Walther et al. 2001; Hickling et al. 2006; Parmesan 2007; Lawler et al. 2009), the 

effects of a future increase in temperature on insect communities are not so easy to predict 

(Helmuth 2009). Moreover, global warming simultaneously affects all the associated organisms 

(host plants, competitors, natural enemies, mutualists and symbionts), resulting in complex 

cascading effects on insect populations (Ayres & Lombardero 2000; Walther et al. 2002; Rouault et 

al. 2006; Hance et al. 2007; Bidart-Bouzat & Imeh-Nathaniel 2008; Netherer & Schopf 2010).  

In this paper, we intend to present the major patterns of insect responses to the recent 

increase in temperatures, during the past few decades, considering the direct impacts of global 

warming on insect development and dispersal. We will finally suggest key knowledge gaps and 

future research interests. 

 

EARLIER FLIGHTS AND ACCELERATION OF DEVELOPMENT RATES 

In organisms for which population dynamics is mainly controlled by temperature, positive 

direct responses to an increase in temperature are expected as long as the stage-specific thresholds 

for development are not exceeded. Therefore, development rates are likely to be sped up. A first 

sign is an earlier occurrence of spring flights in insect species from temperate countries. For more 

than 70% of the butterfly species examined, the first flight has recently advanced in the UK (Roy & 

Sparks 2000), Spain (Stefanescu et al. 2003) and California (Forister & Shapiro 2003). In 

California, global warming (warmer and drier winters) explained 85% of variation in the first flight 

date. More generally, Harrington et al. (2007) predict that the first aphid occurrence in Europe will 

advance by 1 day, on the average, every 4 years under classical climate change scenarios for the 

future. Similarly, butterfly flight is predicted to occur 2–10 days earlier in the UK for every 1 °C 

increase (Roy & Sparks 2000). 
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 In north-western North America, warmer temperatures have halved the time required to 

reproduce for the spruce beetle, Dendroctonus rufipennis Kirby, and have contributed to 

unprecedented damage to spruce forests (Berg et al. 2006). Polyvoltine species might profit as a 

result of this acceleration in cycle completion to produce one or more additional generations per 

year (Virtanen & Neuvonen 1999; Ayres & Lombardero 2000; Kiritani 2006; Gomi et al. 2007; 

Jönsson et al. 2009). Such processes have been observed in a number of insect groups, such as 

butterflies, bees, dragonflies and damselflies, flies and beetles (Gordo & Sanz 2005). For example, 

the life cycle, life-history traits and, hence, the spread of the invasive fall webworm, Hyphantria 

cunea (Drury), have been affected by recent climate change in Japan. The moth recently expanded 

its range, mainly towards the north of the country. This spread coincided with a shift from a 

bivoltine to a trivoltine life-cycle in at least a part of the range, together with significant changes in 

the length of the critical photoperiod for diapause induction (Gomi et al. 2007). A damselfly 

Ischnura pumilio (Charpentier), which was trivoltine in the southern part of its range in Europe but 

univoltine or semivoltine in the northern part, also tends to become more and more bivoltine in the 

latter range (Ott 2008). Similarly, the European spruce bark beetle, Ips typographus (L.), is 

changing voltinism in European mountain forests as a consequence of the disproportionately large 

warming at high elevations, and it might, therefore, have unprecedented outbreaks (Lange et al. 

2006). For the future, models from Harrington et al. (2001) predict that an increase of winter and 

spring temperatures by 2 °C would allow some aphid species to produce 4–5 additional generations 

per year.  

 

NEGATIVE EFFECTS ON HOST–INSECT PHENOLOGICAL SYNCHRONY? 

Although an accelerated development potentially gives an important benefit for the insect 

species, this change in phenology might have some serious drawbacks. In insect herbivores, 

phenological synchrony between host plant development and insect life stages is often essential for 

developmental success (Van Asch & Visser 2007). It is especially true for host-specific insects 
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overwintering as eggs, such as a number of lepidopterans defoliating trees and shrubs, which need 

neonates hatching in spring to be precisely timed with plant budburst. Because the lower 

temperature thresholds for resuming development following winter might differ between the host 

plant and the associated insect, an increase in temperature is likely to affect their respective growth 

rates differently. Such a mismatch between vegetative budburst and hatching of larvae has already 

been observed over the past 2 decades for the system oak-winter moth, Opheroptera brumata (L.), 

where the egg hatch date has advanced more than the bud burst date of pedunculate oak (Visser & 

Both 2005). Similar observations have been made for sycamore and its associated aphid, 

Drepanosiphum platanoides Koch. (Dixon 2003). Winter and spring temperatures unusually warm 

for the period 1989–1991 might also have disrupted the strict synchrony previously existing 

between hatching of larch budmoth larvae, Zeiraphera diniana Guénée, and larch foliage 

availability (Esper et al. 2007). This could be a major reason of the unexpected collapse observed 

during the 1990s in the cycle of this insect, which was regularly outbreaking every 8–10 years in the 

Alps for hundreds of years (Battisti 2008). Further increase in temperature is predicted to induce 

long-term perturbations in the Zeiraphera larch system, with a possible induced shift of intense 

outbreak areas towards higher altitudes (Büntgen et al. 2009).  

 However, disrupted synchrony will lead to selection, and a response in phenology to this 

selection might lead to species genetically adapting to their changing environment. In the case of 

the winter moth cited above, Van Asch et al. (2007) show that egg-hatching reaction norms are 

heritable and that sufficient genetic variation exists to predict a rapid response to selection, leading 

to a restoration of synchrony of egg hatch with oak bud opening. 

 
 

 

 

POSITIVE EFFECTS ON WINTER SURVIVAL AND CONSEQUENCES ON THE 

POTENTIAL LIMITS OF SPECIES RANGE  
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Under temperate latitudes, low temperature is usually a key factor constraining the range 

expansion through minimal thresholds required for the insect survival and development at the 

different stages (egg, larva, pupa and adult). For instance, the lower lethal temperature for the 

southern pine beetle Dendroctonus frontalis Zimmermann has been estimated at –16 °C. Therefore, 

lower winter temperatures are limiting the beetle’s northern distribution (Ungerer et al. 1999). In 

the past, beetle presence in southern USA effectively matched the areas where the probability of 

reaching this lethal temperature was low. However, since 2000, outbreaks have been observed at 

northern latitudes, where their probability was highly unlikely, first in New Jersey and Ohio (2001), 

and then in Maryland (2005). Trần et al. (2007) show that these new outbreaks are directly related 

to a latitudinal shift in winter isotherms. Similarly, the unprecedented outbreak of mountain pine 

beetle Dendroctonus ponderosae Hopkins, currently affecting over 10.1 million hectares of 

lodgepole pine forests (Pinus contorta Dougl.) in British Columbia, Canada, partly relies on the 

occurrence of warmer winters. Warmer winters allow better beetle survival during overwintering 

(Kurz et al. 2008). A slight difference in cold tolerance could also explain the difference in the 

outbreak range expansion of 2 cyclic geometric moths, the winter moth, Operophtera brumata, and 

the autumnal moth, Epirrita autumnata (Borkhausen), in northern Scandinavia, the winter moth 

showing a larger decrease in egg mortality with increasing temperatures (Jepsen et al. 2008).  

 One of the best documented, most striking examples of the effect of climate warming on 

the release of thermal thresholds constraining species distribution is the pine processionary moth 

Thaumetopoea pityocampa (Den. & Schiff.). Originally Mediterranean, this insect is currently 

expanding its range distribution towards higher latitudes and altitudes (Battisti et al. 2005). This 

range expansion is clearly associated with better winter survival and enhanced feeding activity. 

Larval development occurs during winter and is limited by both a lethal temperature (–16 °C; 

Battisti et al. 2005) and temperature thresholds allowing the nocturnal feeding uptake; that is, a 

daytime temperature higher than 9 °C within the larval nest followed by a nighttime temperature 

higher than 0 °C in the air (Battisti et al. 2005). If 1 of the 2 latter temperature conditions is not 
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satisfied, larvae starve in the nest and their survival and performances are reduced (Buffo et al. 

2007). Climatic models based on these thresholds revealed the occurrence until the mid-1990s of a 

highly unfavorable area in the south of the Paris Basin (France), which constituted a barrier to 

latitudinal insect expansion. With the warming up observed in the area since 1996, the moth is no 

longer limited by unfavorable larval feeding conditions. It has succeeded in crossing this area and is 

expanding its range distribution northwards by 5.6 km per year (Robinet et al. 2007).  

 Thus, climate change might remove/relocate barriers that control spread and so allow for an 

expansion in areas where the species were previously kept in check by climatic factors (Walther et 

al. 2002; Battisti et al. 2005).  

 

NATURAL DISPERSAL AND ACTUAL RANGE MODIFICATIONS WITH GLOBAL 

WARMING 

 Although climate warming could allow a species to extend its range, it might not be able to 

shift with its climatic envelope because of limited dispersal capabilities (Thomas et al. 2004). 

Increased temperatures might extend the flying period of insects and thereby enable them to become 

dispersed over greater distances (Ott 2008). For instance, migration patterns of the silver Y moth 

Autographa gamma (L.) (Lepidoptera: Noctuidae) to Britain are largely influenced by the changes 

in temperatures and rainfall in its overwintering sites of North Africa (Chapman et al. 2008). 

Following the heat wave that occurred in Europe during the summer of 2003, the distribution of the 

pine processionary moth has considerably extended at higher elevations in the Italian Alps. Battisti 

et al. (2006) show that the nights above the threshold temperature for flight take-off (14 °C) were 

over 5 times more frequent, and considerably warmer, at the range limit in 2003 than in an average 

year. Therefore, a larger proportion of female moths was allowed to disperse over long distances.  

 Indeed, a number of species belonging to different groups such as beetles, butterflies, 

dragonflies and grasshoppers have moved northwards and to higher elevations during the past 30 

years (Hickling et al. 2006). Although most studies provide evidence of expansion, few species 
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have been reported to show no change in distribution or even a contraction of their southern range 

with global warming (see Menéndez 2007 for a review). Southerly distributed butterfly species in 

Britain tend to expand their range distribution northwards, whereas the most northerly distributed 

species have little opportunity to expand northward and most of them will probably decline (Hill et 

al. 2002). Even though a large variability is observed among species, Parmesan et al. (1999) show 

that the northern limit of European butterflies tends to shift northwards, whereas the southern limit 

remains stable in most cases. As an example for possible range contraction in the future, the nun 

moth Lymantria monacha (L.) is likely to suffer from too large an increase in temperatures because 

of negative effects on diapause termination (Vanhanen et al. 2007). 

 More generally, assuming that the growth period takes place during summer and the single 

diapause during winter, Bale et al. (2002) suggest that changes in the range distribution of the insect 

species could be roughly determined by a combination between the growth rate (slow or fast) and 

diapause requirement. They predict that: (i) fast growing, non-diapausing species are likely to be 

multivoltine and expand their ranges (e.g. anholocyclic aphids); (ii) fast growing species with a 

temperature-dependent diapause might contract their ranges (e.g. the lepidopterans Inachis io [L.], 

Aglais urticae [L.] and Saturnia pavonia [L.]); and (iii) slow-growing species with a temperature-

dependent diapause will not maintain their ranges and will probably decline (e.g. Lasiocampa 

quercus callunae Palmer). 

 Even when a species is actually able to expand its distribution, another factor might affect its 

establishment. Indeed, when some individuals disperse into new areas, they are generally at low 

densities. If the population falls below a minimum population density, called the Allee threshold, it 

will likely go extinct naturally (Lande 1993; Liebhold & Tobin 2008). Many factors may generate 

Allee effects, such as a decrease in cooperation to find resources and avoid natural enemies, an 

increase of inbreeding and an increase of reproduction difficulties at low population density. In this 

regard, climatic factors might play an important role if they can increase the per capita reproductive 

output for any given population density. Invasive species with high mobility could more easily 
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follow the shift of the climate envelope and have the greatest potential for rapid expansion. 

However, in the case of Allee effects, they might fail to expand when they move to a large 

favorable area because of the dissemination of the population in space, and the decrease in the 

population density (Roques et al. 2008). The population growth rate could increase with climate 

change; so, Allee effects would not occur anymore and species with high dispersal capabilities 

could successfully invade new territories.  

   

GLOBAL WARMING AND HUMAN-ASSISTED DISPERSAL, A NEW POSSIBILITY 

FOR SUCCESSFUL LONG-DISTANCE JUMPS AND INVASIONS 

Long-distance jumps far beyond the natural range of an insect might not permit an 

establishment in most species because of the high probability of encountering unfavorable climatic 

conditions in the new area. However, climate warming has undeniably contributed to increase the 

probability of establishment of these long-distance dispersers beyond their natural distribution. An 

isolated but large colony of the pine processionary moth has recently been recorded in north-eastern 

France (Alsace), approximately 190 km from the current northern limits of the range (French Forest 

Health Department, pers. comm.). With respect to the colony size, it is likely that the colony 

funders had been introduced by the early 2000s, probably as moth pupae carried with the soil 

accompanying large pine trees translocated from southern areas as ornamentals. A retrospective 

analysis of the climatic conditions having occurred in the area showed that moth larvae had quite a 

null probability of surviving if introduced during the 1990s because of winter temperatures 

frequently under the lethal threshold. The warming up of the area since 2000 largely modified these 

conditions, resulting in a high probability of establishment of self-sustaining moth populations once 

accidentally introduced by humans (Robinet et al. 2010). Other Mediterranean insects, such as the 

praying mantis Mantis religiosa (L.) and the bush cricket Meconema meridionale A. Costa, are 

expanding their native range in southern Germany, but they are also found further north, far away 
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from their natural range, and these populations are also considered to be the result of accidental 

transport by humans (Ott 2008).  

 More generally, these observations apply to exotic alien species originating from regions 

warmer than the invaded one. Until recently, species introduced from warmer regions to temperate 

areas have been constrained by growing seasons that are too short, which has prevented several 

species from becoming naturalized. This is changing. Global warming is likely to provide new 

opportunities for introductions to areas where introduced species were not able to survive 

previously (Walther et al. 2009; Roques 2010). For instance, more than 400 out of the 1315 non-

native insect species already established in Europe originated from areas with subtropical and/or 

tropical climates and appeared thus capable of surviving under European winter conditions, at least 

locally (e.g. along the Mediterranean coast, Roques et al. 2009). The recent arrival and 

establishment of several tropical species associated with palms is illustrative of this process. Since 

1993, 31 palm pests have been recorded, among them a Castniidae moth from South America, 

Paysandisia archon (Burmeister), and the red palm weevil, Rhynchophorus ferrugineus (Olivier), 

from Melanesia. These 2 species stayed for some time in the western part of the Mediterranean 

basin but largely expanded from 2004 to 2007 to colonize the whole Mediterranean region (Roques 

2010). More generally, the colonization of palms, eucalyptus and tropical legume trees planted in 

Europe significantly increased during the period 2000–2007 through the establishment of host-

specific exotic insects, whereas that of broad-leaved trees remained stable and that of conifers 

decreased (Roques 2010). Former greenhouse inhabitants, such as 3 exotic scale species, 

Diaspidiotus distinctus (Leonardi), Coccus hesperidum L. and Icerya purchasi (Maskell), have also 

recently been found outdoors in Switzerland (Kenis 2006). Similarly, non-native biological control 

agents of greenhouse pests have started to establish outside the greenhouse environment, such as the 

predatory bug Macrolophus caliginosus Wagner (Hart et al. 2002) and the predatory mite 

Neoseiulus californicus McGregor (Hatherly et al. 2005) in the UK. There is also evidence of a 
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strong association between patterns of the emergence of invasive gypsy moth Lymantria dispar L. 

and annual climatic suitability in Ontario (Canada) (Régnière et al. 2009).  

 Expansion of native species or spread of alien insects into new areas with global warming is 

likely to cause serious economic or ecological hazards, affecting species inhabiting invaded areas. 

For example, 3 springtail species accidentally introduced into the Marion island perform better than 

indigenous springtails in the warmer and dryer climate that this sub-Antarctic island is presently 

facing (Chown et al. 2007; Slabber et al. 2007). The carabid beetle Oopterus soledadinus (Guérin) 

was accidentally introduced into the Kerguelen Islands (sub-Antarctic) from the Falklands at the 

beginning of the 20th century. However, it was not before the second half of the century that it 

started to spread, possibly due to increased temperature and lower precipitation (Chevrier et al. 

1997). It has now invaded most regions and has become so abundant that it is threatening the native 

fauna. The southern green stink bug Nezara viridula (L.), formerly a sub-tropical species, has been 

expanding its range northward in temperate regions of Japan and Europe since the 1960s (Musolin 

2007), probably because of reduced winter mortality resulting from milder winters. In the newly-

invaded regions in Japan, N. viridula has become a major pest, outcompeting the indigenous N. 

antennata Scott (Tougou et al. 2009).  

 

SUGGESTIONS FOR FUTURE RESEARCH  

In most cases, the effects of climate change have been considered with regard to an 

increasing temperature mean. However, even if such a variable can be more easily manipulated for 

comparisons, its single use is likely to result in a number of biases. First, as previously mentioned, 

other important factors should be considered, including solar radiation, humidity, rainfall and levels 

of greenhouse gazes. For instance, the establishment of the invasive Asian mosquito Aedes 

albopictus (Skuse) depends on temperature but also on photoperiod, humidity and rainfall (Eritja et 

al. 2005). Even though testing the effect of one factor in laboratory conditions is relatively easy, 

testing the effects of numerous factor combinations in the field is extremely complex, and 
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contradictory results are likely to appear (see Newman 2005 for the effects of an increase in CO2 

level). Investigating the possible synergistic effects between temperature and other potential driving 

factors is a real challenge for the future, especially through the development of large- scale field 

experiments.  

 Second, changes in temperature means do not completely reflect the changes in maximums 

and minimums that actually affect survival and development (e.g. considering higher and lower 

lethal temperatures for a given development stage). The temperature mean variability could have 

important effects in itself (Easterling et al. 2000; Walther et al. 2002). Insect populations are not 

facing a mean annual temperature but a year-to-year and day-to-day fluctuation of the weather 

conditions. From this point of view, an increase in temperature will not have the same significance 

when occurring in winter, spring or summer, and could even result in contradictory effects on insect 

populations. Moreover, the role of stochastic climatic anomalies is thus underestimated. Some 

species have an inherent ability to respond positively and permanently to rapid changes or 

fluctuations in climate. The pine processionary moth again provides a striking example for both 

these questions. Whereas the warm winters during 2000–2003 triggered larvae survival in the 

newly-colonized areas of the Paris Basin, the heat wave of summer 2003 killed a large part of the 

population in the same area (Robinet et al. 2010). Contradictorily, the high temperatures observed 

in the same summer 2003 positively resulted in a significant altitudinal shift of the moth in the 

Italian Alps (Battisti et al. 2006). Indeed, the moths were not at the same development stages in the 

2 sites when the heat wave occurred. Adults are emerging earlier in the Paris Basin, and, therefore, 

extremely high, lethal temperatures affected egg-masses and first-instar larvae while these warm 

temperatures stimulated adult flight in the Alps. Similar adverse effects of warming according to 

season have been observed in the southern green stink bug, Nezara viridula. Although warming is 

strongly enhancing survival of adults in winter and accelerating development in autumn, it is 

negatively affecting nymphal development during summer (Musolin et al. 2010). This complexity 

has to be taken into account while attempting to predict the potential effects of global warming. As 
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Battisti et al. (2006) point out, an emphasis on long-term slow change in climatic variables might be 

insufficient in predicting species’ responses to climate change, especially in light of the forecast rise 

in stochasticity of global climate dynamics.  

 Third, climate change affects the entire ecosystem, including host plants, competitors and 

natural enemies, but the responses probably differ among species and guilds, altering their 

interactions and the composition of the ecosystem (Petchey et al. 1999; Stenseth et al. 2002; 

Walther et al. 2002; Visser & Both 2005). As argued by Harrington et al. (2001), the concentration 

of studies on species obviously profiting from climate change might easily lead to the wrong 

conclusion that all insect pests will gain in importance. Altered environmental conditions will 

certainly bring about ambiguous consequences, involving positive, indifferent as well as negative 

responses of species. The disturbance of coevolved relationships might, for instance, be beneficial 

for the affected host plant, the herbivore species or neither of them. Some theoretical models have 

already been proposed to predict the changes in ecosystems (Berggren et al. 2009). It seems that the 

sensitivity to temperature could possibly increase with trophic level, but further investigation is 

needed to understand more deeply these changes in the field. For instance, no general pattern has 

emerged from the limited number of studies regarding the response of natural enemies to global 

warming. According to Roy et al. (2004), parasitoids and predators might simply respond to the 

population sizes and preferences of their hosts. However, some other case studies tend to show 

differential responses between natural enemies and insect hosts. The effectiveness of certain 

predators, such as ladybeetles, would increase in a warmer environment (Cannon 1998), and 

synchrony between parasitoids and host insects might be favored (Parmesan 2006). In contrast, 

climate warming would allow the host to better escape from natural enemies in the spruce budmoth, 

Choristoneura fumiferana (Clemens) (Fleming & Candau 1998), and from egg parasitoids in the 

expansion area of the pine processionary moth (Roques et al. 2005). Moreover, the interactions of 

these 2 trophic levels with the host plant have to be considered in order to obtain a correct picture. 

For example, Rouault et al. (2006) predict that reduced palatability of host tissue following drought 
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might lead to decreased development rates in defoliators and, subsequently, increase the duration of 

exposure to parasitoids. The development of more studies at the whole community level, that 

consider more than a single species, is of outstanding importance for a better understanding of the 

interactions between the different factors related to climate change.  

 Fourth, understanding the adaptive processes and the underlying genetic changes is essential 

for predicting long-term insect responses to climate change (Menéndez 2007). Sampling for genetic 

analysis should also be included in the collection scheme to investigate possible evolutionary 

changes. Bale et al. (2002) hypothesize that insect species can potentially respond to climate change 

through phenotypic flexibility or rapid evolutionary (genetic) responses to strong selection. For 

instance, the winter moth cited above was assumed to rapidly restore the disrupted synchrony with 

host plant development. More generally, when a species moves polewards as a consequence of 

climate warming, the day length becomes notably shorter. The northern populations of the pitcher 

plant mosquito, Wyeomyia smithii (Coq.), increased the length of its growing season and postponed 

the timing of its hibernation to counterbalance the shorter photoperiod (Bradshaw & Holzapfel 

2008). Its critical photoperiod varies along the climatic gradient in North America, and this 

adaptation is actually driven by genetic features (Mathias et al. 2006).  

 Finally, in order to understand the mechanisms governing the response to climate change, it 

seems important to consider only a few relevant case studies among the numerous species that can 

be studied. For this purpose, it is important to keep on collecting data on the long term and update 

the distribution of the study species. Unfortunately, there is still little information on the precise 

distribution of most species in the world, and for the most well-known species, historical 

distribution maps are not always suitable or reliable for such studies. Therefore, we should improve 

technical methods to collect such data and obtain a good database to serve as a baseline for future 

studies.  
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