

CO2 and inorganic N supply modify competition for N between co-occurring grass plants, tree seedlings and soil microorganisms

Juliette Bloor, Audrey Niboyet, Paul W. Leadley, Laure Barthes

► To cite this version:

Juliette Bloor, Audrey Niboyet, Paul W. Leadley, Laure Barthes. CO2 and inorganic N supply modify competition for N between co-occurring grass plants, tree seedlings and soil microorganisms. Soil Biology and Biochemistry, 2009, 41 (3), pp.544-552. 10.1016/j.soilbio.2008.12.013 . hal-02667786

HAL Id: hal-02667786 https://hal.inrae.fr/hal-02667786v1

Submitted on 29 Apr 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

1	Type of Contribution: Regular Paper
2	Date of Preparation: 10/09/2008 (revised 1/12/2008)
3	Number of Text pages: 19
4	Number of Tables: 3
5	Number of Figures: 3
6	
7	CO2 and inorganic N supply modify competition for N between co-occurring grass
8	plants, tree seedlings and soil microorganisms
9	
10	Juliette M. G. Bloor*, Audrey Niboyet, Paul W. Leadley and Laure Barthes
11	
12	Université Paris-Sud, Laboratoire d'Ecologie, Systématique et Evolution, UMR CNRS 8079,
13	F-91405 Orsay Cedex, France
14	
15	
16	* Corresponding author. Tel.: +33 4 73 62 44 25; fax: +33 4 73 62 44 57.
17	E-mail address: juliette.bloor@clermont.inra.fr
18	Present address: INRA, UR874-Grassland Ecosystem Research Unit, 234 Avenue du Brézet,

19 F-63100 Clermont Ferrand, France

20 ABSTRACT

22 Plant-plant and plant-soil interactions play a key role in determining plant community 23 structure and ecosystem function. However, the effects of global change on the interplay 24 between co-occurring plants and soil microbes in successional communities are poorly 25 understood. In this study, we investigated competition for nitrogen (N) between soil 26 microorganisms, grass plants and establishing tree seedlings under factorial carbon dioxide 27 (CO₂) and N treatments. Fraxinus excelsior seedlings were germinated in the presence or absence of grass competition (*Dactylis glomerata*) at low (380 µmol mol⁻¹) or high (645 µmol 28 mol⁻¹) CO₂ and at two levels of N nutrition in a mesocosm experiment. Pulse ¹⁵N labelling 29 30 was used to examine N partitioning among plant and soil compartments. Dactylis exerted a strong negative effect on Fraxinus biomass, N capture and ¹⁵N recovery irrespective of N and 31 32 CO₂ treatment. In contrast, the presence of *Dactylis* had a positive effect on the microbial N pool. Plant and soil responses to N treatment were of a greater magnitude compared with 33 34 responses to elevated CO₂, but the pattern of *Fraxinus*- and microbial-N pool response to N 35 and CO₂ varied depending on grass competition treatment. Within the Dactylis competition 36 treatment, decreases in Fraxinus biomass in response to N were not mirrored by decreases in 37 tree seedling N content, suggesting a shift from below- to above-ground competition. In the *Dactylis*-sown pots, ¹⁵N recovery could be ranked *Dactylis* > microbial pool > *Fraxinus* in all 38 39 N and CO₂ treatment combinations. Inequalities between Fraxinus and soil microorganisms in terms of ¹⁵N recovery were exacerbated by N addition. Contrary to expectations, elevated CO₂ 40 did not increase plant-microbe competition. Nevertheless, microbial ¹⁵N recovery showed a 41 42 small positive increase in the high CO₂ treatment. Overall, elevated CO₂ and N supply did not 43 interact on plant/soil N partitioning. Our data suggest that the competitive balance between

- 44 establishing tree seedlings and grass plants in an undisturbed sward is relatively insensitive to
- 45 CO₂ or N-induced modifications in N competition between plant and soil compartments.
- 46
- 47 Keywords: Global change; Dactylis glomerata, Elevated CO₂; Fraxinus excelsior; Nitrogen
- 48 addition; Nitrogen uptake; Plant-microbial competition; ¹⁵N stable isotopes; Tree-grass
- 49 interactions.

50 **1. Introduction**

51

52	Substantial evidence suggests that global climate change and increasing levels of
53	atmospheric carbon dioxide (CO ₂) may lead to significant changes in biodiversity and plant
54	species distributions, with cascading effects on ecosystem function and carbon sequestration
55	(Sala et al., 2000; Schroter et al., 2005; Potvin et al., 2007). Consequently, accurate
56	projections of species' responses to future environmental change are crucial for the
57	assessment of global change-related risks to ecosystem services. However, despite the wealth
58	of literature on plant responses to CO ₂ enrichment (see reviews by Ceulemans and Mousseau,
59	1994; Poorter and Perez-Soba, 2001; Korner, 2003; Ainsworth and Long, 2005), predicting
60	the effects of future CO ₂ levels on plant community structure and biodiversity dynamics
61	remains a major challenge for ecologists (Poorter and Navas 2003; Bradley and Pregitzer
62	2007).
(\mathbf{a})	

63 Previous work has shown that the net effect of CO₂ enrichment on plant community 64 structure may depend on complex interactions between atmospheric changes and climate 65 (Niklaus and Korner, 2004), soil nutrient availability (Maestre et al., 2005) or management 66 (Harmens et al., 2004). There is growing recognition that plant-plant interactions also play a key role in mediating the effects of environmental change on plant community structure; 67 68 given that elevated CO₂ can have a direct effect on plant physiology and growth, intra- and 69 interspecific variation in plant responses to CO₂ may modify the outcome of plant interactions 70 (Brooker, 2006; Bradley and Pregitzer, 2007). In contrast, few studies have explored the 71 influence of soil micro-organisms on plant-plant interactions and species assemblages in a 72 changing CO₂ environment. Plant and microbial communities are clearly interdependent; 73 plant production is often limited by quantities of nitrogen (N) made available during the decomposition of fresh litter and organic matter in soil. At the same time, the growth and 74

maintenance of soil micro-organisms is controlled by the quality and quantity of organic
compounds entering the soil via root exudation and above/belowground litter production
(Schmidt et al., 1997; Zak et al., 2000). Microbe-driven resource partitioning and soil
community feedback could have important implications for plant species diversity at the local
scale (Reynolds et al., 2003).

80 The intensity of plant-microbial competition for N is known to vary depending on 81 microbial activity, resource availability or ecosystem productivity (Kaye and Hart 1997; 82 Hodge et al., 2000; Dunn et al., 2006). In theory, high levels of CO₂ may increase root 83 exudation and pools of available C, leading to increased microbial demand for N and 84 modified competition for nutrients between plants and microorganisms (Diaz et al., 1993). 85 Plant-microbe competition may further be amplified by enhanced plant growth, and thus N 86 demand, under elevated CO₂ (Williams et al., 2001). In practice, however, findings from experimental systems are inconsistent. For example, results from ¹⁵N pulse-labelling studies 87 88 carried out in multispecies grassland systems under elevated CO₂ show no clear pattern in the 89 relative N recovery between plants and soil microbes (reviewed by Barnard et al., 2006). One 90 of the complications in determining CO₂ effects on plant-soil interactions is that CO₂-induced 91 changes in plant physiology and growth can modify water and nutrient availability as well as 92 C supply, resulting in multiple effects that both enhance and suppress microbial processes 93 (Hungate, 1999; Hu et al., 1999; Barnard et al., 2005). In addition, overall patterns of plant-94 soil partitioning may be confounded by different levels of competition for N exerted by soil 95 microbes on individual plant species within a mixed species community (Harrison et al., 96 2008).

Here we use a model tree-grass system (the early successional tree, *Fraxinus excelsior*and the grass, *Dactylis glomerata*) to investigate the interactive effects of CO₂ and N supply
on competition for nitrogen between soil microorganisms and co-occurring plants. Tree-grass

100 interactions are of particular interest because i) there is a global trend towards increased 101 woody plant encroachment into grasslands, causing well-documented changes in nutrient 102 cycling and ecosystem productivity (Dickie et al., 2007; Knapp et al., 2008), ii) the role of 103 plant-soil interactions in successful woody plant establishment in grassland communities is 104 unclear (Cheng and Bledsoe, 2004) and, iii) it has been suggested that grassland invasion by 105 woody species may accelerate under elevated CO₂ (Bond et al., 2003; Zavaleta, 2006). In a 106 previous paper we showed that increasing N inputs tend to reinforce the competitive 107 inequality between Fraxinus excelsior seedlings growing with Dactylis glomerata, whereas 108 elevated CO₂ may have indirect benefits for *Fraxinus* seedling establishment in experimental 109 grass mesocosms (Bloor et al., 2008a). In the present study we measure total N pools and use a ¹⁵N pulse-labelling approach to determine how CO₂ and N supply affect N partitioning 110 among different plant and soil compartments. Use of ¹⁵N tracer techniques can greatly 111 112 increase the ability to detect small CO₂-enhancements in plant and soil N retention against a 113 background of large N stocks in soil organic matter and vegetation (Hu et al., 2006). We test 114 the hypothesis that plant-microbe competition for N increases under elevated CO₂. We also 115 predict that newly-germinated Fraxinus seedlings with small biomass will be less able to 116 compete for soil N with soil microorganisms than established Dactylis plants.

117

118 **2. Materials and methods**

119

120 2.1. Study species

121 The tree *Fraxinus excelsior* L. (common ash) is an important pioneer species which 122 occurs widely across Europe; expansion of *F. excelsior* populations has been greatly favoured 123 by agricultural abandonment in recent times (Kerr and Cahalan 2004). *Dactylis glomerata* L. 124 (cocksfoot) is a vigorously growing, strongly-competitive perennial grass common to a wide

125	variety of habitats worldwide. Stratified tree seeds for this experiment were obtained from
126	Forestart Ltd. (Hadnall, UK) and grass seed was obtained from Arbiotech (St Gilles, France).
127	

128 2.2. Experimental design

129

130Two plant competition treatments (*Fraxinus* seedlings alone, *Fraxinus* seedlings131grown with *Dactylis*) were established in either ambient or elevated atmospheric CO_2 132treatments under glasshouse conditions. In order to investigate the interactive effects of CO_2 133and N supply on plant and microbial competition for nutrients, two N treatments (low/high)134were crossed with each CO_2 and competition treatment (two competition treatments x two135 CO_2 treatments x two N treatments x 6 replicates = 48 pots).

136

137 2.3. Soil, plant material and growing conditions

138

139 Loamy topsoil was collected on the grounds of the University of Paris XI (Orsay, 140 France) at the start of February 2006. The soil was sieved (1 cm), diluted with locally-141 obtained river sand in a 50:50 mix, and packed in deep PVC pots (20 x 15 x 40 cm) as described in Bloor et al. (2008a). The soil/ sand mix contained 0.23 g N kg⁻¹ soil, 2.46 g C 142 kg⁻¹ soil and had a pH of 8.5. Experimental pots were assigned to one of twelve naturally-lit 143 144 growth chambers (wooden frame and clear plastic walls, 65 x 65 x 100 cm high) set up inside 145 a large glasshouse at the University of Paris XI and ventilated with air taken from outside the 146 glasshouse. Six chambers were ventilated with ambient atmospheric CO₂ concentrations and 147 the remaining six chambers were ventilated with elevated CO₂; elevated atmospheric CO₂ concentrations were adjusted to a differential of 265 μ mol mol⁻¹ ± 2% compared with ambient 148 chambers by injection of pure CO₂ in each enriched chamber (see Bloor et al., 2008a for full 149

details). CO₂ concentrations were monitored throughout the experiment using a portable carbon dioxide analyser (Carbocap GM 70, Vaisala, Helsinki, Finland), indicating an average CO₂ concentration of 380 μ mol mol⁻¹ (standard error = 6 μ mol mol⁻¹) and 645 μ mol mol⁻¹ (standard error = 9 μ mol mol⁻¹) in the ambient and elevated CO₂ chambers respectively. Over the course of the experimental period, no temperature difference was observed between the ambient and elevated CO₂ chambers (mean daily temperatures based on hourly measurements ranged between 11.7°C and 23.1°C).

157 On 23^{rd} February 2006, seeds of *Dactylis glomerata* were sown into half of the pots at 158 a density of 2000 seeds m⁻², leaving clear a central 5 x 5 cm zone per pot. One month later 159 when the *Dactylis* seedlings had fully emerged, a high-nutrient treatment was established by 160 supplementing half the pots with 200 ml of 7.9 mM NH₄NO₃ solution at two-week intervals. 161 Pots in the low-nutrient treatment received the equivalent amount of distilled water alone. The 162 high nutrient treatment was intended to ensure that soil N was non-limiting; over the course of 163 the experiment, high-nutrient pots received the equivalent of 100 kg N ha⁻¹.

164 On 11 April 2006, evenly-sized germinating *Fraxinus excelsior* seeds were planted in 165 the centre of all pots (radicle < 0.5 cm long, one seed per pot). At the time of *Fraxinus* 166 planting, each grass-sown pot had 30-35 grass plants and average grass height ranged from 167 18-25 cm in the different N/CO₂ treatments. *Fraxinus* seedlings and *Dactylis* plants were left 168 to grow in the experimental treatments for ten weeks prior to ¹⁵N labelling, and all pots were 169 watered regularly.

170

171 2.4. ¹⁵N plant labelling

172

In June 2006, 5mg ¹⁵N was injected per experimental pot in the form of ammonium
solution (¹⁵NH₄Cl at 99% ¹⁵N, 0.01 M). A ¹⁵NH₄⁺ marker was chosen because ammonium is

175 first inorganic N form made available to plants and previous studies have shown that soil 176 microbes compete effectively with plants for this resource (Hodge et al., 2000). In order to 177 minimise the time between first and last pot injection and to ensure that all pots were exposed to the same ¹⁵N labelling period, labelling was carried out in two stages; half of the pots in 178 each experimental treatment were injected on 12th June (harvested 13th June) whereas the 179 remainder were injected on 13th June (harvested 14th June). One ml of solution was slowly 180 181 injected (needle length 9 cm, diameter 0.9 mm) at 36 injection locations in the 0-10 cm soil 182 layer of each pot following Barnard et al. (2006). Injection locations were arranged in a three dimensional grid with three injection depths (1.5, 5 and 7.5 cm) to maximise ¹⁵N mixing with 183 the native NH_4^+ pool. Pots were not watered after injection to minimize leaching loss. 184

185

186 2.5. Harvest and analyses

187

Plants and soil were harvested 24 h after ¹⁵N injection as preliminary work on 188 *Fraxinus* seedlings and *Dactylis* indicated rapid plant uptake of ¹⁵NH₄⁺. Pots were harvested 189 190 in the order in which they were injected. At harvest, aboveground plant material was clipped 191 at the soil surface and separated into Dactylis leaves, Fraxinus leaves+cotyledons and 192 Fraxinus stems. Roots were separated from the soil manually and washed; Fraxinus roots 193 could be clearly distinguished from grass roots and were carefully disentangled from the 194 Dactylis belowground material. All plant material was oven-dried (60°C for at least 72 h), weighed, ground and analysed for total N and atom%¹⁵N (mass spectrometers, CNRS, 195 196 Service central d'Analyse, Solaize, France). 197 Soil in the 0-10 cm layer of each pot was separated from the deeper soil layers, well-

198 mixed and sieved (2 mm). Soil and microbial properties in the top 10 cm of grass-sown pots

199 have been shown to respond more strongly to experimental treatments than those of deeper

200	soil layers over short-term studies (Barnard et al., 2004). Analysis of the 0-10 cm soil layer
201	rather than mixed soil from the entire profile also ensured an undiluted, more detectable
202	microbial ¹⁵ N signal. Microbial biomass N, ¹⁵ N and C were measured on 5 g subsamples of
203	the sieved 0-10 cm soil layer using the chloroform fumigation-incubation method (Brookes et
204	al., 1985). Soil samples were extracted with 20 mL of 30 mM K ₂ SO ₄ solution following
205	Fontaine et al. (2004). Microbial C (C_{mic}) was calculated as the difference in total C extracted
206	in fumigated and unfumigated soils, with $k_c = 0.45$ as the adjustment factor (Wu et al., 1990).
207	Microbial N (N_{mic}) was calculated as the difference in total N extracted in fumigated and
208	unfumigated soils, with $k_N = 0.54$ as the adjustment factor (Brookes et al., 1985). Soil
209	extractable N and ¹⁵ N were measured in the unfumigated soil extracts following Barnard et al.
210	(2006). Correction for the natural abundance of ¹⁵ N was based on the atomic ratio of
211	atmospheric N. Additional soil sub-samples were oven-dried (105°C, 24 h) to determine soil
212	water content per pot.
213	All soil and microbial extracts were analysed using continuous-flow gas isotope-ratio
214	mass spectrometry (BIOMCO, INRA-INAPG, Thiverval Grignon, France). Values for δ^{15} N in
215	microbial extracts in the pots with Fraxinus alone were extremely heterogeneous and could
216	not be used for calculations of ¹⁵ N uptake by the microbial biomass for this treatment.
217	Consequently, microbial ¹⁵ N uptake data is only reported for the Dactylis-Fraxinus
218	competition treatment.
219	
220	2.6. Statistical analysis
221	
222	The experiment was analysed as a split-plot design following Zar (1999), with CO ₂

The experiment was analysed as a split-plot design following Zar (1999), with CO₂ treatment as the whole-plot factor, fixed and among growth chambers, and both N and competition treatments as fixed sub-plot factors within growth chambers. All statistical

- analysis was carried out using the PROC MIXED procedure in SAS 9.1. (SAS Institute Inc.,
- 226 Cary, NC, USA). Where necessary, data were log transformed prior to analysis to conform
- 227 with assumptions of normality and homogeneity of variances.
- 228
- 229 **3. Results**
- 230
- 231 3.1. Effects of competition, N and CO₂ on plant and microbial N pools
- 232

233 Shoot and root biomass of Dactylis plants showed a significant increase in response to 234 N addition (Table 1). The biomass response to increased N supply of aboveground organs was 235 stronger than that of roots, particularly under ambient CO₂ (Table 1). Under high N supply, 236 Dactylis root and shoot biomass showed a positive response to elevated CO₂; the magnitude 237 of dry mass increase to CO₂ under high N was greater in roots than in shoots (+47% and +20% respectively). However, elevated CO₂ had little effect on either root or shoot biomass 238 239 under low N conditions (significant N x CO₂ interaction in both cases). Overall, increasing N 240 supply was associated with a significant increase in Dactylis above- and belowground N 241 content (Table 1). In contrast, Dactylis root N concentration had a significant negative 242 response to increasing N. Moreover, Dactylis shoot N concentration showed no significant 243 response to N supply (Table 1). Elevated CO₂ was associated with a decrease in both shoot N 244 content and concentration but had no significant effect on root nutritional status (Table 1). 245 Fraxinus seedlings were generally more sensitive to plant competition treatment than 246 to N supply or CO₂ level (Table 2). Presence of *Dactylis* had a strong negative effect on 247 Fraxinus seedling biomass and N content, irrespective of N supply and CO₂ treatment (Fig. 248 1). Furthermore, grass competition modified *Fraxinus* responses to N and CO₂ (significant 249 competition x N and competition x CO₂ interactions, Table 2). In the absence of grass

250 competition, increasing N supply was associated with a significant increase in Fraxinus 251 seedling shoot mass, N content and shoot N concentration (Fig. 1, Table 2). Increasing N 252 supply had no significant effect on Fraxinus root biomass or N content, but there was a 253 tendency towards greater root mass in the high N treatments and an increase in root N content 254 under high N, high CO₂ conditions for seedlings grown alone (Fig. 1, Table 2). In the 255 presence of grass competition, both Fraxinus shoot and root mass showed a significant 256 decrease in response to increasing N (Fig. 1, Table 2). Neither above- nor belowground N 257 content showed any significant response to N supply for *Fraxinus* seedlings grown with grass, 258 but tissue N concentrations were significantly greater in the high N treatment (Fig. 1). On 259 average, the shoot N concentration of Fraxinus seedlings grown with Dactylis under high N conditions was similar to that of Fraxinus seedlings grown alone. Patterns of variation in 260 261 Fraxinus root and shoot N concentrations were further modified by CO₂ treatment since tissue 262 N concentration showed a significant decrease in high N, high CO₂ conditions for seedlings 263 grown with grass (Fig. 1).

264 The presence of *Dactylis* had contrasting effects on soil microbes and the soil 265 extractable N pool (Fig. 2). Overall, grass competition treatment had a positive effect on C_{mic} and N_{mic} (F_{1,24} = 22.35 and 17.73 respectively, P < 0.001). Furthermore, both C_{mic} and N_{mic} 266 267 showed a significant positive correlation with Dactylis dry mass (all N and CO₂ treatments 268 combined, Pearson's R = 0.70, P < 0.001 and 0.48, P < 0.05 respectively). At the same time, 269 presence of *Dactylis* was associated with a significant decrease in soil extractable N (Fig. 2, $F_{1,24} = 62.35$, P < 0.001). As with *Fraxinus* seedling traits, microbial and soil N responses to 270 271 N and CO₂ treatment varied depending on plant competition treatment (Fig. 2). In the absence 272 of Dactylis, neither N supply nor CO₂ had any significant effect on C_{mic}, N_{mic} or the soil 273 extractable N pool (P >0.1 in all cases). However, in pots with Fraxinus and Dactylis grown 274 together, C_{mic} showed a significant increase in response to increasing N and CO₂ (Fig 2., $F_{1,9}$ =

10.98 and $F_{1,10} = 6.68$ respectively, P < 0.05 in both cases). This pattern was mirrored by N_{mic} 275 responses to increasing N supply and elevated CO₂ (Fig 2., $F_{1,9}$ = 15.19, P < 0.01 and $F_{1,10}$ 276 =10.25, P < 0.01 respectively). In contrast, soil extractable N showed a marginally significant 277 278 decrease in response to elevated CO₂ (Fig 2., $F_{1,10}$ = 3.67, *P* <0.09). Microbial C:N ratios were 279 not affected by N or CO₂ in any plant treatments (data not shown). Moreover, C_{mic} and N_{mic} 280 showed no correlation with *Fraxinus* dry mass across N and CO₂ treatments. 281 3.2. Effects of competition, N and CO_2 on ¹⁵N uptake by plants 282 283 Dactylis showed extremely rapid uptake of ¹⁵N; after only 24 h, recovery of ¹⁵N in 284 Dactylis tissue averaged 84% of the total amount of ¹⁵N added across all N and CO₂ 285 treatments (Table 3). Recovery of ¹⁵N in *Fraxinus* seedlings was considerably more limited; 286 in the absence of grass competition, *Fraxinus*¹⁵N uptake represented 15-20% of the total 287 amount of ¹⁵N recovered (Table 3). Species differences in ¹⁵N uptake reflected differences in 288 biomass rather than uptake efficiency since *Dactylis* exhibited significantly lower ¹⁵N uptake 289 290 on a root mass basis compared to Fraxinus seedlings grown alone (Table 3). Presence of *Dactylis* had a significant negative effect on total *Fraxinus*¹⁵N uptake and 291 *Fraxinus* ¹⁵N uptake on a root dry mass basis ($F_{1,25} = 126.65$ and 110.78 respectively, *P* 292 <0.001, Table 3). The magnitude of the grass-induced reduction in total *Fraxinus*¹⁵N uptake 293

varied from 91-98% across N and CO₂ treatment combinations, and was significantly greater under high N conditions ($F_{1,9} = 10.53$, *P* < 0.001).

Plant ¹⁵N uptake showed significant responses to N for both *Dactylis* and *Fraxinus*,
but the effects of N treatment varied depending on the species considered (Table 3).
Increasing N supply was associated with an increase in total *Dactylis* ¹⁵N uptake although *Dactylis* ¹⁵N uptake expressed on a root dry mass basis showed a significant decrease with N

addition (Table 3). In contrast, total *Fraxinus* ¹⁵N uptake showed a negative response to N
addition, irrespective of the level of competiton experienced by *Fraxinus* seedlings. Patterns
of total ¹⁵N uptake were mirrored by ¹⁵N uptake on a root dry mass basis for *Fraxinus*seedlings grown alone. However, *Fraxinus* seedlings showed no significant response to N
supply in terms of ¹⁵N uptake on a root mass basis in the presence of grass competition.
Elevated CO₂ had no effect on ¹⁵N uptake for either *Dactylis* or *Fraxinus* in any N or
competition treatment (Table 3).

307 In general, *Dactylis* allocated more ¹⁵N to shoots rather than roots compared to 308 *Fraxinus* seedlings across treatments (Table 3). Neither N supply nor CO₂ had a significant 309 effect on the ¹⁵N distribution pattern (roots versus shoots) of *Dactylis* plants or *Fraxinus* 310 seedlings grown alone (Table 3). Patterns of ¹⁵N distribution in *Fraxinus* seedlings grown 311 with grass varied depending on N and CO₂ treatment; less ¹⁵N accumulated in roots in 312 response to an increase in N supply while more ¹⁵N accumulated in roots under elevated CO₂ 313 (Table 3).

314

315 3.3. ¹⁵N distribution among plant and soil pools in the Dactylis-Fraxinus competition
316 treatment

317

Total recovery of ¹⁵N in plant and soil pools averaged 87% across treatments and showed a significant increase in response to N supply ($F_{1,9} = 15.41$, *P* <0.01). This increase in ¹⁵N recovery was due to an increase in *Dactylis* ¹⁵N uptake (previously described); N treatment had no significant effect on microbial ¹⁵N uptake and was associated with a decrease in ¹⁵N recovery by both *Fraxinus* seedlings and the soil extractable N pool (Fig. 3). Elevated CO₂ did not significantly affect total ¹⁵N uptake ($F_{1,10} = 4.84$, *P* = 0.054, Fig. 3).

325	Overall, ¹⁵ N uptake could be ranked <i>Dactylis</i> > microbial biomass > <i>Fraxinus</i> seedlings (Fig.
326	3). Recovery of 15 N by the microbial pool was fivefold that of <i>Fraxinus</i> under low N
327	conditions and roughly 15 times greater under high N conditions. Relative differences in 15 N
328	uptake between <i>Fraxinus</i> seedlings and the microbial pool were unaffected by elevated CO ₂ .
329	
330	4. Discussion
331	
332	4.1. Effects of N and CO_2 on tree-grass competition for N
333	
334	Seedling establishment is the major bottleneck for plant regeneration and successful
335	tree recruitment in grasslands (Van Auken and Bush, 1997; Wilson, 1998). Nevertheless, little
336	information is available on the growth responses of newly-germinated temperate tree
337	seedlings to interactive biotic and abiotic factors. Competition for N is of particular interest
338	since it is the nutrient most commonly limiting to plant growth in temperate ecosystems
339	(Vitousek and Howarth, 1991). In the present study, Dactylis dominated Fraxinus in terms of
340	biomass, N capture and ¹⁵ N recovery in all treatment combinations. Furthermore, <i>Dactylis</i>
341	was associated with a significant reduction in Fraxinus N content and ¹⁵ N uptake, in
342	agreement with previous studies on tree-grass interactions (Coll et al., 2004; Cheng and
343	Bledsoe, 2004).
344	Several lines of evidence lead us to believe that our results indicate competition for
345	soil N between <i>Dactylis</i> and <i>Fraxinus</i> . Firstly, ¹⁵ N labelling demonstrates mutual N resource
346	use between the two plant species. Secondly, Fraxinus shows N limitation (sensu Kaye and
347	Hart, 1997) in low N conditions; we found increased N absorption and growth in Fraxinus
348	seedlings subjected to N addition in the absence of Dactylis. Finally, field and greenhouse
349	studies suggest that competition between woody seedlings and herbaceous plants is generally

350 driven by belowground, rather than aboveground interactions (Aerts et al., 1991; Van Auken 351 and Bush, 1997; Bloor et al., 2008b). In this study, belowground interactions were governed 352 by competition for soil nutrients since regular watering ensured that plants were not water-353 limited. However, we do not rule out the possibility that competition for light contributed to 354 the biomass reductions observed in *Fraxinus* seedlings growing with *Dactylis*, particularly 355 under high N conditions. Morphological responses reported for *Dactvlis* and *Fraxinus* in a 356 companion paper (Bloor et al., 2008a) suggest that a shift from root to shoot competition may 357 exacerbate the competitive intensity experienced by young tree seedlings growing with grass 358 under high N conditions.

359 Different plant species are known to differ in their ability to use both inorganic and organic forms of N (Weigelt et al., 2005; Dunn et al., 2006), and shifts in short-term resource 360 361 use have been demonstrated in response to competition from neighbouring plants (Miller et 362 al., 2007). In view of the strong negative effects imposed by Dactylis on Fraxinus seedlings, 363 it seems unlikely that flexibility in *Fraxinus* N use plays a significant role in buffering the 364 effects of grass neighbours. The strong competitive effects of Dactylis must in part reflect the 365 fast growth rates and high biomass of this species compared to the young *Fraxinus* seedlings; 366 it has long been suggested that rapidly growing species have a greater capacity to acquire 367 nutrients compared with slower-growing species in a given habitat (Grime, 1979). Of course, 368 plant nutrient uptake may be driven by root morphology, physiology and/or root turnover as 369 well as root mass (Bassirirad et al., 2001; Raynaud and Leadley, 2005). Whilst we did not 370 measure Dactylis root morphology in this study, the high root density and finely-branched 371 root architecture reported elsewhere for *D.glomerata* plants (Ryser and Lambers, 1995) 372 undoubtedly added to the competitive dominance of Dactylis over Fraxinus. 373 Overall, we found that the Dactylis N pool was significantly more responsive to N

addition compared with the Fraxinus N pool. These data corroborate previous work which

375 indicates that increasing N supply amplifies the competitive dominance of Dactylis in tree-376 grass mixtures (Bloor et al., 2008a). However, our results also indicate that competition-377 induced decreases in Fraxinus biomass under high N conditions are not mirrored by decreases 378 in seedling N content or tissue concentration. The uncoupling of Fraxinus biomass responses 379 and N content suggests that competition for soil N is less limiting to growth under high N 380 conditions, and is consistent with the idea of a shift from root to shoot competition along 381 nutrient gradients (Tilman, 1990; Cahill, 1999). This agrees with the increased biomass 382 investment in leaves and higher specific leaf area observed in response to N addition for 383 Fraxinus seedlings growing with Dactylis (Bloor et al., 2008a). The ability of Fraxinus to 384 maintain a constant seedling N content in the face of increased shoot competition (and 385 inhibited seedling growth) may also indicate interactions between *Dactylis* root and shoot 386 competitive effects under high N conditions (Cahill, 1999); N uptake capacity and seedling N 387 content are expected to be proportional to Fraxinus seedling size if Dactylis root and shoot 388 competition are independent.

389 In the present study, elevated CO₂ had a significant negative effect on shoot N 390 concentrations, irrespective of plant species and competition treatment, but we found no effect of CO₂ enrichment on total plant N content or ¹⁵N uptake for either *Dactylis* or *Fraxinus*. 391 392 Decreases in plant nutrient concentration in response to short-term CO₂ enrichment are well 393 documented (Ceulemans and Mousseau, 1994; Korner, 2003; Reich et al., 2006), and may be 394 partially offset by concomittant increases in N use efficiency. In contrast, patterns of N uptake 395 under elevated CO₂ are less predictable and may vary depending on nutrient form, plant 396 species and growing conditions (Luo et al., 1999). Despite similar responses to CO₂ treatment 397 in terms of N uptake and plant nutrient status, Fraxinus and Dactylis displayed clear 398 differences in biomass response to elevated CO₂; unlike Fraxinus, Dactylis biomass showed 399 significant CO₂ x N interactions and a positive biomass response to CO₂ enrichment in the

high N treatment alone, suggesting N limitation effects under low N conditions. Positive
responses of biomass to elevated CO₂ are expected to become progressively weaker in low N
conditions, particularly for fast-growing species with high N demand (Arp et al., 1998; Lee et
al., 2001; Hu et al., 2006). Given the importance of plant size for resource acquisition and
competitive ability (Weiner, 1990), CO₂ enrichment may therefore reduce competitive
differences between woody seedlings and herbaceous species in the longer-term.

- 406
- 407 4.2. Plant-microbial N partitioning
- 408

409 Soil microorganisms are generally thought to be strong short-term competitors for soil 410 N due to their high surface area to volume ratio, wide-spread spatial distribution in the soil 411 and rapid growth rates compared with plant roots (Kaye and Hart, 1997; Hodge et al., 2000). However, previous studies which have used ¹⁵N labelling techniques to examine short-term 412 413 inorganic N partitioning between plants and microbes have generated conflicting results 414 (Hungate et al., 1996; Burger and Jackson, 2004; Cheng and Bledsoe, 2004; Barnard et al., 415 2006; Harrison et al., 2008). We found that the outcome of plant-soil competition for ¹⁵N- NH_4^+ was plant species-dependent; *Dactylis* had a consistently greater capacity for ¹⁵N uptake 416 compared with the soil microbial pool, but microorganisms were more efficient in ¹⁵N capture 417 418 than *Fraxinus* seedlings. These results support the hypothesis that small, germinating 419 Fraxinus seedlings are less able to compete with soil microorganisms for N compared to 420 large, established Dactylis plants. Competitive inequalities between microorganisms and 421 plants may become less pronounced over longer time periods as a result of rapid microbial 422 turnover which releases N to the soil, combined with the capacity of plants to sequester N for 423 longer (Hodge et al., 2000; Barnard et al., 2006). The balance of plant-microbe N competition 424 may also change due to temporal asynchrony in plant and microbial N-limitation (Hodge et

al., 2000; Augustine and McNaughton, 2004). Nonetheless, we found that patterns in ¹⁵N
uptake in the different plant and microbial compartments were broadly similar to
measurements of total N content after ten weeks growth. This confirms that short-term
competitive interactions may have longer-lasting effects on plant/ microbial resource
acquisition (Miller et al., 2007).

Dactylis ¹⁵N recovery measured in this study was high compared to values reported for 430 431 grass species elsewhere (Hungate et al., 1996; Hu et al., 2001; Weigelt et al., 2005; Barnard et al., 2006), whereas microbial uptake was somewhat lower than expected. High Dactvlis ¹⁵N 432 433 uptake must reflect the large root biomass and rapid plant growth under favorable growing 434 conditions at the time of labelling; plant N uptake is driven by demand which fluctuates over 435 the course of the growing season depending on ontogenetic or phenological state (Bassirirad et al., 2001). *Dactylis* growth and ¹⁵N uptake capacity may also have been favoured by the 436 437 improved drainage and aeration associated with a soil/sand mix rather than in situ grassland 438 soils. In contrast, the high sand content (and low microbial C) in our growing medium might partly explain the low microbial ¹⁵N uptake observed here compared with true grassland soils 439 (Hungate et al., 1996; Hodge et al., 2000). Despite the high ¹⁵N recovery in *Dactylis*, we 440 441 found no evidence for a trade-off in N acquisition between Dactylis and soil microorganisms 442 i.e. N uptake in Dactylis occurring at the expense of microbial N acquisition. Such a lack of 443 trade-off between ¹⁵N uptake in plants and microorganisms corroborates the results of other 444 studies on grass species (Hungate et al., 1996; Barnard et al., 2006). Furthermore, the 445 microbial carbon (C) pool showed a significant positive relationship with *Dactylis* biomass 446 across treatments in the present study. These results are consistent with the idea that microbial 447 activity is C limited and benefits from greater root C inputs to the soil at high plant biomass 448 (Williams et al., 2001). Reduced microbial N uptake as a result of C limitation may have

contributed to the inequality in ¹⁵N acquisition observed here between *Dactylis* and soil
microorganisms.

451 In line with Diaz et al. (1993), we predicted that elevated CO₂ would lead to increased 452 microbial demand for N and constraints on plant N acquisition. Increases in microbial N and ¹⁵N uptake in response to CO_2 in the presence of *Dactylis* provide support for the idea of 453 454 increased microbial N demand under CO2 enrichment. However, changes in microbial N acquisition under elevated CO₂ were unrelated to plant N or ¹⁵N uptake, irrespective of plant 455 456 species. This is perhaps unsurprising given the discrepancy between *Dactylis* and microbial N 457 uptake in the present study; microbial N acquisition was simply too small to drive plant N 458 uptake. The discrepancy between plant and microbial responses could also reflect CO₂-459 induced changes in the balance between N immobilisation and N mineralisation (Hungate, 460 1999). Although it is clear from the literature that elevated CO₂ increases C substrate 461 availability and microbial metabolism, the effect of such increases in substrate availability on 462 the rate at which N becomes available to plants remains poorly understood (Zak et al., 2000). 463

464 **5. Conclusion**

465 Our results show that grass-induced competition for N has a strong negative influence 466 on the early tree seedling establishment phase, particularly under low N conditions. In 467 contrast, plant-soil competition for N appears to have limited effects on early tree seedling 468 growth and nutritional status in habitats dominated by actively growing, aggressive grass 469 plants. Under high N conditions, decreases in tree-grass competition for N do not translate 470 into increased tree seedling biomass, suggesting a switch from below- to above-ground plant 471 competition. Furthermore, CO₂ enrichment appears to have little effect on the interplay 472 between microorganisms, tree seedlings and highly-competitive grass plants. Taken together, 473 our data suggest that the competitive balance between establishing tree seedlings and grass

474	plants in an undisturbed sward is relatively insensitive to CO ₂ or N-induced modifications in
475	N competition between plant and soil compartments. Additional experiments are required to
476	determine under which sward conditions (height, density, gap size) young tree seedlings may
477	benefit from the effects of global change on plant-soil interactions. Future research should
478	also address how responses of germinating seedlings translate into longer term seedling
479	growth and survival under elevated atmospheric CO ₂ .
480	
481	Acknowledgements
482	
483	We thank Annick Ambroise, Aurore Boussier, Sandrine Fontaine, Jean-Christophe
484	Lata, Lise Lebailleux, Jean-Louis Mabout and Lionel Saunois for technical assistance or help

with plant harvesting. Thanks also to Gerard Bardoux for the microbial ¹⁵N measurements. 485

486 This research was supported by a CNRS postdoctoral fellowship to J.M.G. Bloor and an IFB-

487 GICC project grant.

488

490

502

489 References

- 491 Aerts, R., Boot, R.G.A., van der Aart, P.J.M., 1991. The relation between above- and belowground biomass allocation patterns and competitive ability. Oecologia 87, 551-492 493 559. 494
- 495 Ainsworth, E.A., Long, S.P., 2005. What have we learned from 15 years of free-air CO₂ 496 enrichment (FACE)? A meta-analytic review of the responses photosynthesis, canopy 497 properties and plant production to rising CO₂. New Phytologist 165, 351-371. 498
- 499 Arp, W.J., Van Miierlo, J.E.M., Berendse, F., Snijders, W., 1998. Interactions between 500 elevated CO₂ concentration, nitrogen and water: effects on growth and water use of six perennial plant species. Plant, Cell and Environment 21, 1-11. 501
- 503 Augustine, D.J., McNaughton, S.J., 2004. Temporal asynchrony in soil nutrient dynamics and 504 plant production in a semiarid ecosystem. Ecosystems 7, 829-840.
- 505 506 Barnard, R., Barthes, L., Le Roux, X., Leadley, P.W., 2004. Dynamics of nitrifying activities, 507 denitrifying activities and nitrogen in grassland mesocosms as altered by elevated CO₂. 508 New Phytologist 162, 365-376.

509 510 511	Barnard, R., Leadley, P.W., Lensi, R., Barthes, L., 2005. Plant, soil microbial and soil inorganic nitrogen responses to elevated CO ₂ : a study in microcosms of <i>Holcus lanatus</i> . Acta Oecologia 27, 171-178.
512 513 514	Barnard, R., Barthes, L., Leadley, P.W., 2006. Short-term uptake of ¹⁵ N by a grass and soil micro-organisms after long-term exposure to elevated CO ₂ . Plant and Soil 280, 91-99.
515	mero-organisms area long-term exposure to elevated CO ₂ . I fait and Son 280, 91-99.
516 517 518	Bassirirad, H., Gutschick, V.P., Lussenhop, J., 2001. Root system adjustments: regulation of plant nutrient uptake and growth responses to elevated CO ₂ . Oecologia 126, 305-320.
519 520 521 522	Bloor, J.M.G., Barthes, L., Leadley, P.W., 2008a. Effects of elevated CO ₂ and N on tree-grass interactions: an experimental test using <i>Fraxinus excelsior</i> and <i>Dactylis glomerata</i> . Functional Ecology 22, 537-546.
523 524 525	Bloor, J.M.G., Leadley, P.W., Barthes, L., 2008b. Responses of <i>Fraxinus excelsior</i> seedlings to grass-induced above- and below-ground competition. Plant Ecology 194, 293-304.
526 527 528	Bond, W.J., Midgley, G.F., Woodward, F.I., 2003. The importance of low atmospheric CO ₂ and fire in promoting the spread of grasslands and savannas. Global Change Biology 9, 973-982.
529 530 531 532	Bradley, K.L., Pregitzer, K.S., 2007. Ecosystem assembly and terrestrial carbon balance under elevated CO ₂ . Trends in Ecology and Evolution 22, 538-547.
533 534 535	Brooker, R.W., 2006. Plant-plant interactions and environmental change. New Phytologist 171, 271-284.
536 537 538 539	Brookes, P.C., Landman, A., Pruden, G., Jenkinson, D.S., 1985. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biology & Biochemistry 17, 837-842.
540 541 542	Burger, M., Jackson, L.E., 2004. Plant and microbial nitrogen use and turnover, rapid conversion of nitrate to ammonium in soil with plant roots. Plant and Soil 266, 289-301.
543 544 545	Cahill, J.F., 1999. Fertilization effects on interactions between above- and belowground competition in an old field. Ecology 80,466-480.
546 547 548	Ceulemans, R., Mousseau, M., 1994. Effects of elevated atmospheric CO ₂ on woody plants. New Phytologist 127, 425-446.
549 550 551 552	Cheng, X., Bledsoe, C.S., 2004. Competition for inorganic and organic N by blue oak (<i>Quercus douglasii</i>) seedlings, an annual grass and soil microorganisms in a pot study. Soil Biology & Biochemistry 36, 135-144.
553 554 555 556	Coll, L., Balandier, P., Picon-Cochard, C., 2004. Morphological and physiological responses of beech (<i>Fagus sylvatica</i>) seedlings to grass-induced belowground competition. Tree Physiology 24, 45-54.
550 557 558	Diaz, S., Grime, J.P., Harris, J., McPherson, E., 1993. Evidence of a feedback mechanism limiting plant response to elevated carbon dioxide. Nature 364, 616-617.

559 560	Dickie, I.A., Schnitzer, S.A., Reich, P.B., Hobbie, S.E., 2007. Is oak establishment in old- fields and savanna openings context dependent? Journal of Ecology 95, 309-320.
561	
562	Dunn, R.M., Mikola, J., Bol, R., Bardgett, R.D., 2006.Influence of microbial activity on plant-
563	microbial competition for organic and inorganic nitrogen. Plant and Soil 289, 321-334.
564	
565	Fontaine, S., Bardoux, G., Benest, D., Verdier, B., Mariotti, A., Abbadie, L., 2004.
566	Mechanisms of the priming effect in a savannah soil amended with cellulose. Soil
567	Science Society of America Journal 68, 125-131.
568	
569	Grime, J.P., 1979. Plant Strategies and Vegetation Processes. Wiley, Chichester, UK, 222 pp.
570	
571	Harmens, H., Williams, P.D., Peters, S.L., Bambrick, M.T., Hopkins, A., Ashenden, T.W.,
572	2004. Impacts of elevated atmospheric CO_2 and temperature on plant community
573	structure of a temperate grassland are modulated by cutting frequency. Grass and Forage
574	Science 59, 144-156.
575	
576	Harrison, K.A., Bol, R., Bardgett, R.D., 2008. Do plant species with different growth
577	strategies vary in their ability to compete with soil microbes for chemical forms of
578	nitrogen? Soil Biology & Biochemistry 40, 228-237.
579	matogen: Son Brotogy & Brothemsky 10, 220 257.
580	Hodge, A., Robinson, D., Fitter, A.H., 2000. Are microorganisms more effective than plants
581	at competing for nitrogen? Trends in Plant Science 5, 304-308.
582	
583	Hu, S., Firestone, M.K., Chapin, F.S., 1999. Soil microbial feedbacks to atmospheric CO ₂
584	enrichment. Trends in Ecology and Evolution 14, 433-437.
585	
586	Hu, S., Chapin, F.S., Firestone, M.K., Field, C.B., Chiariello, N.R., 2001. Nitrogen limitation
587	of microbial decomposition in a grassland under elevated CO ₂ . Nature 409, 188-191.
588	
589	Hu, S., Tu, C., Chen, X., Gruver, J.B., 2006. Progressive N limitation of plant response to
590	elevated CO ₂ : a microbiological perspective. Plant and Soil 289, 47–58.
591	
592	Hungate, B.A., 1999. Ecosystem responses to rising atmospheric CO ₂ : feedbacks through the
593	nitrogen cycle. In: Luo, Y., Mooney, H.A. (Eds.), Carbon Dioxide and Environmental
594	Stress. Academic Press, San Diego, USA, pp. 265-285.
595	Suess. Heudeline Hess, Sun Diege, CSH, pp. 200 200.
596	Hungate, B.A., Canadell, J., Chapin, F.S. 1996. Plant species mediate changes in soil
597	microbial N in response to elevated CO ₂ . Ecology 77, 2505-2515.
598	
599	Kaye, J.P., Hart, S.C., 1997. Competition for nitrogen between plants and soil
600	microorganisms. Trends in Ecology and Evolution 12, 139-143.
601	meroorganishis. Trends in Leology and Evolution 12, 157 145.
602	Kerr, G., Cahalan, C., 2004. A review of the site factors affecting the early growth of ash
603	(<i>Fraxinus excelsior</i> L.). Forest Ecology and Management 188, 225-234.
604	(1 runnus excessor E.j. 1 orest Deorogy and Management 100, 225 257.
605	Knapp, A.K., Briggs, J.M., Collins, S.L., Archer, S.R., Bret-Harte, M.S., Ewers, B.E., Peters,
606	D.P., Young, D.R., Shaver, G.R., Pendall, E., Cleary, M.B., 2008. Shrub encroachment
607	in North American grasslands: shifts in growth form dominance rapidly alters control of
608	ecosystem carbon inputs. Global Change Biology 14, 615-623.

609	Korner, C., 2003. Ecological impacts of atmospheric CO ₂ enrichment on terrestrial
610	ecosystems. Philosophical Transactions of the Royal Society London, Series A 361,
611	2023-2041.
612	
613	Lee, T.D., Tjoelker, M.G., Ellsworth, D.S., Reich, P.B., 2001. Leaf gas exchange responses of
614	13 prairie grassland species to elevated CO_2 and increased nitrogen supply. New
615	Phytologist 150, 405-418.
616	
617	Luo, Y., Reynolds, J., Wang, Y., Wolfe D., 1999. A search for predictive understanding of
618	plant responses to elevated CO ₂ . Global Change Biology 5, 143-156.
619	r ·····r······························
620	Maestre, F.T., Bradford, M.A., Reynolds, J.F., 2005. Soil nutrient heterogeneity interacts with
621	elevated CO_2 and nutrient availability to determine species and assemblage responses in
622	a model grassland community. New Phytologist 168, 637-649.
623	
624	Miller, A.E., Bowman, W.D., Suding, K.N., 2007. Plant uptake of inorganic and organic
625	nitrogen: neighbour identity matters. Ecology 88, 1832-1840.
626	muogen. neighbour identity matters. Leology 66, 1652-1646.
620 627	Niklaus, P.A., Korner C., 2004. Synthesis of a six-year study of calcareous grassland
628	responses to in situ CO ₂ enrichment. Ecological Monographs 74, 491-511.
628 629	responses to in situ CO ₂ enfrenment. Ecological Monographs 74, 491-511.
630	Poorter, H., Perez-Soba, M., 2001. The growth response of plants to elevated CO ₂ under non-
631	optimal environmental conditions. Oecologia 129, 1-20.
632	opumai environmental conditions. Occologia 129, 1-20.
633	Dearter II Nevre MI 2002 Plant growth and competition at elevated CO : on winners
634	Poorter, H., Navas, M.L., 2003. Plant growth and competition at elevated CO ₂ : on winners,
635	losers and functional groups. New Phytologist 157, 175–198.
636	Potvin, C., Chapin, F.S., Gonzalez, A., Leadley, P.W., Reich, P., Roy, J., 2007. Plant
637	
	biodiversity and responses to elevated carbon dioxide. In: Canadell, J., Pataki, D., Ditalka, L. (Edg.), Tarrastrial Ecosystems in a Changing World, Springer Verlag, Parlin
638	Pitelka, L. (Eds), Terrestrial Ecosystems in a Changing World. Springer Verlag, Berlin-
639	Heidelberg, Germany, pp. 103-112.
640	
641	Raynaud, X., Leadley, P.W., 2005. Symmetry of belowground competition in a spatially
642	explicit model of nutrient competition. Ecological Modelling 189, 447-453.
643	
644	Reich, P.B., Hobbie, S.E., Lee, T., Ellsworth, D.S., West, J.B., Tilman, D., Knops, J.M.H.,
645	Naeem, S., Trost, J., 2006. Nitrogen limitation constrains sustainability of ecosystem
646	response to CO_2 . Nature 440, 922-924.
647	
648	Reynolds, H.L., Packer, A., Bever, J.D., Clay, K., 2003. Grassroots ecology: plant-microbe-
649	soil interactions as drivers of plant community structure and dynamics. Ecology 84,
650	2281-2291.
651	
652	Ryser, P., Lambers, H., 1995. Root and leaf attributes accounting for the performance of fast-
653	and slow-growing grasses at different nutrient supply. Plant and Soil 170, 251-265.
654	
655	Sala, O.E., Chapin, F.S., Armesto, J.J., Berlow, E., BloomFeld, J., Dirzo, R., Huber-Sanwald,
656	E., Huenneke, L.F., Jackson, R.B., Kinzig, A., Leemans, R., Lodge, D.M., Mooney,
657	H.A., Oesterheld, M., Poff, N.L., Sykes M.T., Walker, B.H., Walker, M., Wall, D.H.,
658	2000. Global biodiversity scenarios for the year 2100. Science 287, 1770-1774.

659 660 661	Schmidt, I.K., Michelsen, A., Jonasson, S., 1997. Effects of labile soil carbon on nutrient partitioning between an arctic graminoid and microbes. Oecologia 112, 557-565.
662 663 664 665 666 667 668 669	 Schroter, D., Cramer , W., Leemans, R., Prentice, I.C., Araujo, M.B., Arnell, N.W., Bondeau, A., Bugmann, H., Carter, T.R., Gracia, C.A., C. de la Vega-Leinert, A., Erhard, M., Ewert, F., Glendining, M., House, J.I., Kankaanpaa, S., Klein, R.J.T., Lavorel, S., Lindner, M., Metzger, M.J., Meyer, J., Mitchell, T.D., Reginster, I., Rounsevell, M., Sabaté, S., Sitch, S., Smith, B., Smith, J., Smith, P., Sykes, M.T., Thonicke, K., Thuiller, W., Tuck, G., Zaehle, S., Zierl, B., 2005. Ecosystem service supply and vulnerability to global change in Europe. Science 310, 1333-1337.
670 671 672	Tilman, D., 1990. Constraints and tradeoffs: towards a predictive theory of competition and succession. Oikos 58, 3-15.
673 674 675	Van Auken, O.W., Bush, J.K., 1997. Shrub invasions of North American semiarid grasslands. Annual Review of Ecology and Systematics 31, 197-215.
676 677 678	Vitousek, P.M., Howarth, R.W., 1991. Nitrogen limitation on land and in the sea, how can it occur? Biogeochemistry 13, 87-115.
679 680 681	Weigelt, A., Bol, R., Bardgett, R.D., 2005. Preferential uptake of soil nitrogen forms by grassland plant species. Oecologia 142, 627-635.
682 683 684	Weiner, J., 1990. Asymmetric competition in plant populations. Trends in Ecology and Evolution 5, 360-364.
685 686 687 688	Williams, M.A., Rice, C.W., Owensby, C.E., 2001. Nitrogen competition in a tallgrass prairie ecosystem exposed to elevated carbon dioxide. Soil Science Society of America Journal 65, 340-346.
689 690 691 692	Wilson, S.D., 1998. Competition between grasses and woody plants. In: Cheplick, G.P. (Ed.), Population Biology of Grasses. Cambridge University Press, Cambridge, UK, pp. 231- 254.
693 694 695 696	Wu, J., Joergensen, R.G., Pommerening, B., Chaussod, R., Brookes, P.C., 1990. Measurement of soil microbial biomass C by fumigation-extraction – an automated procedure. Soil Biology & Biochemistry 22, 1167-1169.
697 698 699 700	Zak, D.R., Pregitzer, K.S., King, J.S., Holmes, W.E., 2000. Elevated atmospheric CO ₂ , fine roots and the response of soil microorganisms: a review and hypothesis. New Phytologist 147, 201-222.
700 701 702	Zar, J.H., 1999. Biostatistical Analysis. Prentice-Hall International, London, UK, 929 pp.
703 704	Zavaleta, E.S., 2006. Shrub establishment under experimental global changes in a California grassland. Plant Ecology 184, 53-63.

Table 1

706	Plant dry mass and N nutritional	l status of <i>Dactylis</i> grown	under interactive N and CO ₂ treatments

	Treatments			ANOVA results (P values)			
	cn	cN	Cn	CN	N	CO ₂	N x CO ₂
Root mass (g)	6.60 ± 0.73	16.17 ± 1.42	6.90 ± 0.60	23.78 ± 2.39	<0.001	0.017	0.026
Shoot mass (g)	6.00 ± 0.46	21.56 ± 0.82	6.37 ± 0.43	25.85 ± 0.58	<0.001	0.018	0.046
Root N content (mg)	48.8 ± 3.72	112.8 ± 12.4	51.3 ± 4.12	138.6 ± 14.5	<0.001	0.147	0.248
Shoot N content (mg)	50.2 ± 2.27	183.8 ± 3.68	45.0 ± 2.27	166.4 ± 5.01	<0.001	0.010	0.091
Root [N] (mg g ⁻¹ dry mass)	7.52 ± 0.27	6.95 ± 0.29	7.52 ± 0.23	5.84 ± 0.24	0.004	0.061	0.073
Shoot [N] (mg g ⁻¹ dry mass)	8.47 ± 0.35	8.58 ± 0.35	7.15 ± 0.30	6.44 ± 0.21	0.406	<0.001	0.268

Treatment codes are given by: $c = ambient CO_2$, 380 μ mol mol⁻¹; $C = elevated CO_2$, 645 μ mol mol⁻¹; n = low nitrogen; N = high nitrogen

treatment. Values are means ± standard errors (n = 6). Significance of F values is shown: significant effects (P < 0.05) are shown in bold type.</p>
Additional biomass data are available in Bloor et al. (2008a).

716 Table 2

717 Results of ANOVA showing effects of plant competition, N supply, CO₂ and all interactions on *Fraxinus* seedling biomass and plant nutritional

	Variables										
Effect	Shoot dry mass	Root dry mass	Shoot N content	Root N content	Shoot [N]	Root [N]					
	(g)	(g)	(mg)	(mg)	(mg g ⁻¹ shoot dry mass)	(mg g ⁻¹ root dry mass)					
Competition (Comp)	<0.001	<0.001	<0.001	<0.001	0.033	0.061					
N supply (N)	0.877	0.558	0.014	0.191	<0.001	<0.001					
CO ₂	0.281	0.350	0.859	0.303	0.025	0.229					
Comp x N	0.005	0.014	0.029	0.076	<0.001	0.016					
Comp x CO ₂	0.851	0.844	0.935	0.415	0.021	0.024					
N x CO ₂	0.554	0.512	0.283	0.300	0.095	0.093					
Comp x N x CO ₂	0.605	0.999	0.368	0.179	0.003	0.002					

718 status (N content, N concentration)

719

720 Values shown are probabilities associated with the F ratio; significant effects (P < 0.05) are shown in bold type

721

722

723

725 Table 3.

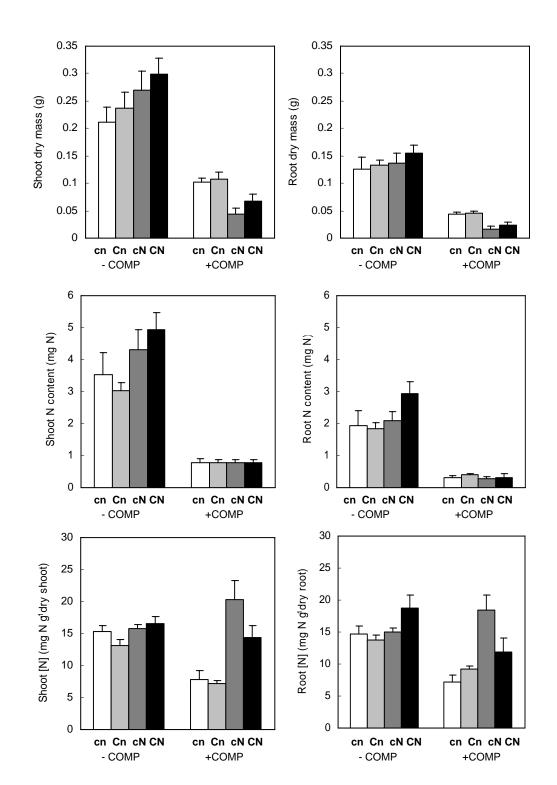
Total ¹⁵N recovery (expressed as absolute values and on a root dry mass basis) and distribution of added ¹⁵N in root versus shoot fractions for

727 Dactylis and Fraxinus seedlings grown under interactive N and CO₂ treatments, either alone or in competition with each other

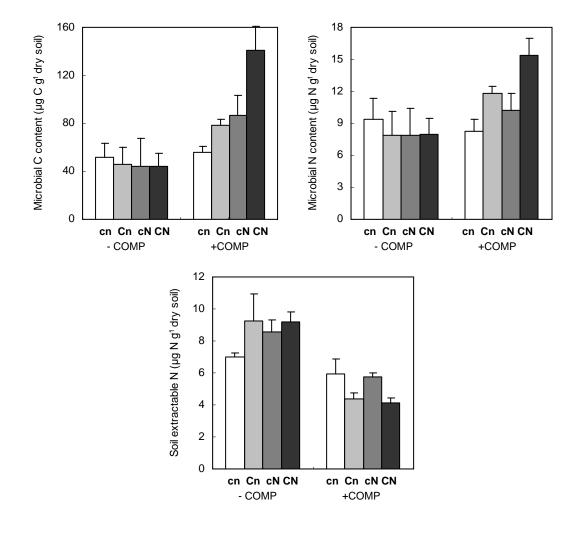
	Treatments				ANOVA results (P values)		
	cn	cN	Cn	CN	N	CO ₂	N x CO ₂
a) Fraxinus grown alone							
Total ¹⁵ N (mg)	0.29 ± 0.06	0.17 ± 0.03	0.31 ± 0.05	0.22 ± 0.02	0.023	0.469	0.699
Total ^{15}N (mg g ⁻¹ root dry mass)	2.09 ± 0.02	1.35 ± 0.26	2.23 ± 0.43	1.33 ± 0.11	0.007	0.537	0.705
¹⁵ N in roots (%)	53.3 ± 9.2	51.2 ± 3.1	45.3 ± 2.0	47.8 ± 4.1	0.822	0.752	0.246
b) Fraxinus grown in competit	ion treatment						
Total ¹⁵ N (mg)	0.014 ± 0.002	0.005 ± 0.001	0.017 ± 0.004	0.006 ± 0.002	0.004	0.446	0.936
Total ^{15}N (mg g ⁻¹ root dry mass)	0.35 ± 0.06	0.45 ± 0.14	0.36 ± 0.06	0.32 ± 0.10	0.762	0.420	0.334
¹⁵ N in roots (%)	52.0 ± 3.8	29.5 ± 5.2	71.6 ± 3.4	34.4 ± 9.0	<0.001	0.021	0.353
c) Dactylis grown in competiti	on treatment						
Total ¹⁵ N (mg)	3.8 ± 0.16	4.6 ± 0.23	4.0 ± 0.23	4.7 ± 0.22	0.004	0.830	0.517
Total ¹⁵ N (mg g ⁻¹ root dry mass)	0.60 ± 0.05	0.31 ± 0.03	0.60 ± 0.05	0.20 ± 0.01	<0.001	0.262	0.322
¹⁵ N in roots (%)	38.4 ± 0.9	42.0 ± 4.8	40.3 ± 1.6	47.1 ± 4.4	0.123	0.262	0.602

728

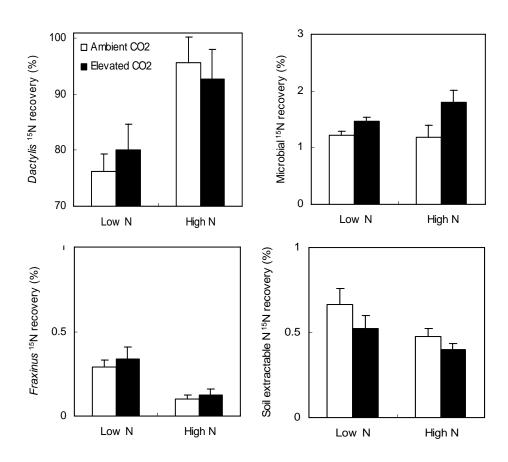
729 Treatment codes are given by: $c = ambient CO_2$, 380 μ mol mol⁻¹; $C = elevated CO_2$, 645 μ mol mol⁻¹; n = low nitrogen; N = high nitrogen


730 treatment. Values are means \pm standard errors (n = 6). Significance of F values is shown: significant effects (P < 0.05) are shown in bold type.

731 Figure captions


732

733 Fig. 1. Fraxinus biomass and N nutritional status for seedlings grown in treatment 734 combinations of CO₂ and N in the presence (+comp) and absence (-comp) of grass competition. Treatment codes are given by: $c = ambient CO_2$, 380 µmol mol⁻¹; C = elevated735 CO_2 , 645 µmol mol⁻¹; n = low nitrogen; N = high nitrogen treatment. Means and standard 736 737 errors are presented (n = 6). 738 739 Fig. 2. Microbial biomass C, microbial biomass N and soil extractable N in the 0-10 cm soil 740 layer of soils under interactive CO₂, N and grass competition treatments. Treatment codes are 741 given by: -comp = absence of grass competition; +comp = presence of grass competition; c = ambient CO₂, 380 μ mol mol⁻¹; C = elevated CO₂, 645 μ mol mol⁻¹; n = low nitrogen; N = high 742 743 nitrogen treatment. Means and standard errors are presented (n = 6). 744 Fig. 3. ¹⁵N recovery in *Dactylis* biomass, microbial biomass, *Fraxinus* biomass and the soil 745 746 extractable N pool under interactive CO₂ and N treatments. Means and standard errors are 747 presented (n = 6).


749 Fig. 1.

752 Fig. 2.

755 Fig. 3.

