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Mapping main, epistatic and sex-specific QTL for
body composition in a chicken population
divergently selected for low or high growth rate
Georgina A Ankra-Badu1,8, Daniel Shriner2, Elisabeth Le Bihan-Duval3, Sandrine Mignon-Grasteau3, Frédérique Pitel4

, Catherine Beaumont3, Michel J Duclos3, Jean Simon3, Tom E Porter5, Alain Vignal4, Larry A Cogburn6,
David B Allison1,7, Nengjun Yi1,7, Samuel E Aggrey8*

Abstract

Background: Delineating the genetic basis of body composition is important to agriculture and medicine. In
addition, the incorporation of gene-gene interactions in the statistical model provides further insight into the
genetic factors that underlie body composition traits. We used Bayesian model selection to comprehensively map
main, epistatic and sex-specific QTL in an F2 reciprocal intercross between two chicken lines divergently selected
for high or low growth rate.

Results: We identified 17 QTL with main effects across 13 chromosomes and several sex-specific and sex-
antagonistic QTL for breast meat yield, thigh + drumstick yield and abdominal fatness. Different sets of QTL were
found for both breast muscles [Pectoralis (P) major and P. minor], which suggests that they could be controlled by
different regulatory mechanisms. Significant interactions of QTL by sex allowed detection of sex-specific and sex-
antagonistic QTL for body composition and abdominal fat. We found several female-specific P. major QTL and sex-
antagonistic P. minor and abdominal fatness QTL. Also, several QTL on different chromosomes interact with each
other to affect body composition and abdominal fatness.

Conclusions: The detection of main effects, epistasis and sex-dimorphic QTL suggest complex genetic regulation
of somatic growth. An understanding of such regulatory mechanisms is key to mapping specific genes that
underlie QTL controlling somatic growth in an avian model.

Background
A clear understanding of the genetic architecture of
body composition is important in chicken breeding.
Genetic selection over the past 50 years has produced
commercial meat-type (broiler) chickens with a higher
yield of breast meat, which is also accompanied by
increased body fatness [1]. Breast muscle yield is the
most important carcass component in meat-type chick-
ens because of the high premium paid by consumers.
However, excess accumulation of body fat is undesirable
because it reduces the efficiency of feed utilization and
it adds the additional expense of trimming unwanted fat
during processing [2]. Higher consumption of excess

dietary saturated fat contributes to artherosclerosis in
humans. Therefore delineating major genes that underlie
carcass traits has important implications for both agri-
culture and human health.
Crosses from extreme strains and/or breeds of chick-

ens have been used to map quantitative trait loci (QTL)
for body composition traits including fatness [3-9].
Despite the importance of dissecting the genetic basis of
body composition in the chicken, body composition
QTL mapping studies to date have been restricted to
delineating the main (additive and dominance) genetic
effects. Incorporation of epistasis and sex-dimorphism
into QTL analyses has the potential to identify novel
epistasis QTL, and sex-specific and sex-antagonistic
QTL [10,11]. Physiological differences between sexes
can influence gene expression [12]. Therefore, sex-speci-
fic QTL are to be expected for carcass traits, especially
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abdominal fatness. Abasht et al. [7] have mapped an
abdominal fatness QTL on chicken chromosome 5
(GGA5) that exhibits sexual dimorphism. Furthermore,
several sex-specific QTL for body composition have
been reported in humans and in rodent models [13,14].
Empirical evidence suggests that fat and body compo-

sition traits are influenced by epistasis [11,15]. Earlier
studies by Carlborg et al. [16] and Yi et al. [11,17,18]
have demonstrated that joint assessment of regions on
the genome, on either the same chromosome or differ-
ent chromosomes have significant effects on traits.
Therefore, inclusion of gene-gene interactions in the sta-
tistical model is essential in providing comprehensive
mapping of the genetic factors that underlie body com-
position traits. Modeling of these gene interactions has
been challenging because of the large number of vari-
ables [19] and the decreased power of the statistical ana-
lysis [20]. These drawbacks can be ameliorated by
utilizing a Bayesian model selection method which mod-
els main, epistatic and gene-environmental effects simul-
taneously [19]. The Bayesian approach has been used
successfully to identify several epistatic QTL associated
with growth and body composition in mice [11,18].
Herein, we used Yi et al.’s [21] Bayesian model selec-

tion method to comprehensively investigate main, sex-
specific and gene-gene interaction effects of body com-
position traits in a chicken population divergently
selected for high or low growth rate.

Results
Main effect QTL
The trait means and standard deviations for the F2
resource population are presented in Table 1. The
main-effect QTL affecting carcass traits are summarized
in Table 2. Seventeen QTL with significant linkages
were observed on 13 chromosomes (Figure 1). A QTL
for the Pectoralis (P) major weight was found on GGA7
at 87 cM and for Pectoralis minor weight on GGA3, 4
and 17. Nevertheless, adjusting P. minor for BW at 9 wk
only confirmed the QTL on GGA4 and 17. A thigh +
drumstick QTL was located on GGA27 at 0 cM. Seven
QTL for ABFW were identified on GGA1, 2, 5, 7, 14, 15
and 18. Adjusting ABFW with BW at 9 wk revealed
additional QTL for ABFY on GGA1, 3, 5, 9, 12, and 27.
The TDW and TDY QTL co-localized with an ABFY
QTL on GGA27. The QTL effect in terms of genotypic
mean placements and the proportion of the phenotypic
variance explained are also shown in Table 2. The main
effect QTL explained from 1 to 14% of the phenotypic
variance. The P. major and P. minor yields QTL on
GGA7 and GGA17, each explained about 6% of the phe-
notypic variance. The ABFW QTL on GGA5 and GGA7
contributes ~27% of the phenotypic variance.

QTL × Sex interactions
The presence of significant QTL by sex interactions in
the model for all parameters presently considered sug-
gested either sex specificity or sex-influenced QTL. We
identified several sex-specific and sex-antagonistic QTL
which are listed in Supplementary 1. Sexual dimorphism
was observed for both P. major and P. minor yield on
GGA2 and 5. Whereas, all QTL detected for P. major
were female-specific, both male-and female-specific
QTL were identified for P. minor QTL. Multiple QTL
were detected on the same chromosome in some cases,
but for different sexes. For example, a male-specific P.
minor yield QTL was detected on GGA5 at 0 cM,
whereas, the female- specific QTL was detected at 12
cM. The phenotypic variances explained by these sex-
specific QTL ranged from 1 to 27%.

Epistatic effects
Significant QTL by QTL interactions were found for
both muscle yield and abdominal fatness traits. Each
epistatic QTL explained ~3 to 25% (Table 3) of the phe-
notypic variance. A highly significant epistatic QTL
(2logBF ~17.49; GGA2/6) for ABFY explained approxi-
mately 25% of the phenotypic variance. A region on
GGA2 (284-293 cM) interacts with GGA1, 6 and 27 and
explains a large (~12 to 25%) proportion of the phenoty-
pic variance for ABFY. The same position on GGA2
interacts with other regions of the genome to influence
P. major weight and yield. In addition to inter-chromo-
somal interactions, an intra-chromosomal interaction
affecting P. major yield was found between positions
33.4 and 83.0 cM on GGA7. Significant interactions
were found between QTL for ABFY on GGA1 and 2
(Figure 2A). Fat weight on the other hand was strongly
influenced by interactions between GGA1 and 1, GGA1
and18, GGA1 and 15, GGA1 and 18, and GGA2 and 18
(Figure 2B).

Table 1 Body composition traits of F2 individuals from F1
crosses of divergent chicken lines selected for high or
low growth (mean ± standard deviation)

Trait Male
(N = 371)

Female
(N = 324)

Breast meat weight, g 69.22 ± 9.54 58.16 ± 8.96

Breast meat yield, % 5.57 ± 0.41 5.82 ± 0.48

Abdominal fat weight, g 18.86 ± 11.29 18.52 ± 11.24

Abdominal fat yield, % 1.48 ± 0.80 1.80 ± 0.98

Pectoralis major weight, g 51.24 ± 7.16 42.86 ± 6.77

Pectoralis major yield, % 4.12 ± 0.32 4.29 ± 0.37

Pectoralis minor weight, g 17.94 ± 2.73 15.30 ± 2.45

Pectoralis minor yield, % 1.44 ± 0.14 1.53 ± 0.15

Thigh + drumstick weight, g 142.16 ± 18.10 109.48 ± 16.05

Thigh + drumstick yield, % 11.43 ± 0.39 10.97 ± 0.46
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Discussion
Most traits of economic and biomedical importance are
influenced by multiple genetic and environmental factors.
Using techniques that allow for inclusion of epistasis and
sex-specificity in a QTL model enables a better under-
standing of the genetic regulatory mechanisms that under-
lie body composition. Chicken breast muscle is comprised
of two distinct muscle groups: the P. major and the P.
minor. A significant main- effect QTL for BMY was
detected on GGA7; yet analysis of each breast muscle indi-
cates that P. major was the only trait contributing to BMY
on GGA7. The location of the P. major QTL is similar to
that reported for BMY [9,22]. The QTL region for P.
major yield contains several genes [the interferon induced
with helicase C domain 1 (IFIH1), glucagon (GCG), ring
finger protein 25 (RNF25) and BAX inhibitor motif

containing 1 (TMBIM1)]. We identified three novel QTL
for P. minor weight on GGA3, 4 and 17; however after
adjustment with BW at 9 wk, the QTL on GGA4 and 17
met the level of significance. The P. minor yield QTL on
GGA17 explained approximately 6% of the phenotypic
variation. The pre-B-cell leukemia transcription factor 3
(PBX3), a homeobox gene is located within this QTL
region. Most studies evaluate breast meat as a single trait
[8,23,24]. The current study suggests that these traits
should be treated independently since they are influenced
by different QTL. We also identified a QTL for TDW and
TDY at the same location (0 cM) on GGA27. The 0 cM
region of GGA27 harbors the mitogenic activated protein
kinase kinase 14 (MAP3K14), defender against cell death 1
(DAD1) and MYST histone acetyltransferase 2 (MYST2)
genes.

Table 2 Main QTL effects, location and phenotypic variance explained by body composition traits in chicken lines
divergently selected for low or high growth for combined sex.

Chromosome QTL Position (cM) 2Log BF1 Effect2 Variance explained by QTL effect

Breast meat yield

7 87.0 6.77 49.17 3.01

Pectoralis major weight

7 87.0 6.48 46.34 3.02

Pectoralis major yield

7 83.0 8.07 80.13 7.00

Pectoralis minor weight

3 78.7 2.21 -23.55 1.09

4 14.0 4.02 28.66 1.08

17 21.0 11.08 39.59 6.63

Pectoralis minor yield

4 12.0 4.69 30.62 1.64

17 21.0 11.30 38.11 6.17

Thigh + drumstick weight

27 0.0 10.17 32.19 1.16

Thigh + drumstick yield

27 0.0 10.73 24.55 1.34

Abdominal fat weight

1 202.0 7.25 154.38 6.62

2 276.0 6.66 -217.64 4.03

5 101.4 8.63 -28.23 13.26

7 2.1 11.13 128.13 13.74

14 16.4 6.10 69.83 7.08

15 30.8 5.39 -29.93 5.09

18 14.9 9.34 -42.46 3.80

Abdominal fat yield

1 424.5 4.04 47.29 2.26

3 76.6 4.56 -21.28 1.10

5 10.0 6.69 0.66 4.28

9 12.0 3.95 27.06 1.71

12 18.7 3.45 4.33 1.05

27 0.0 8.26 14.04 1.97
1 Twice the log of the Bayes Factor 2Main effect of the QTL
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Intensive genetic selection of meat-type chicken dur-
ing the the last 50 years has led to rapid somatic (mus-
cle) growth and a concomitant increase in ABFY [25].
Abdominal fatness is a complex trait affected both by
genes, environmental factors (nutrition, appetite, beha-
vior, etc), and their interactions. In the present study,
we found QTL for ABFW on GGA1, 2, 5, 7, 14, 15 and
18. The QTL for ABFW on GGA1, 5, 15 and 18 were
similar to the location reported for these traits in other

chicken populations [4,6,22]. When ABFW was cor-
rected for BW at 9 wk, ABFY QTL were confirmed on
GGA1 and GGA5, and novel ones were identified on
GGA3, 9, 12 and 27. The ABFY QTL on GGA27 co-
localized with the TDY QTL, while the position of the
ABFY QTL on GGA3 is similar to a suggested fatness
QTL (10% chromosome-wide significance) by Lagarrigue
et al. [18]. The ABFY QTL on GGA1 harbors thyroid
hormone responsive protein (THRSP) which is a nuclear

Figure 1 One-dimensional profiles of Bayes factors rescaled as 2loge BF for main (solid lines), epistatic effects (dotted lines) and sex-
specific effects (dashed lines). A: Breast meat yield B: Pectoralis (P) major C. P. minor yield. The horizontal lines represent the significance
threshold of 2logeBF = 2.1.
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Table 3 Epistatic QTL effects, locations and phenotypic variance explained for body composition traits in a chicken
line divergently selected for low or high growth

Chromosome Interacting QTL positions 2LogBF Epistatic Effect Variance explained by Epistatic QTL

Breast meat yield

2/5 331.6/86.8 9.49 165.00 3.92

2/7 256.0/101.0 10.54 251.00 3.34

5/7 132.5/89.0 13.36 148.00 5.57

7/7 62.3/91.0 14.12 113.10 10.01

11/11 6.2/16.5 9.31 129.50 4.54

Pectoralis major weight

2/3 315.0/70.4 8.34 209.70 3.39

2/5 329.0/82.6 9.30 157.20 4.70

2/7 307.0/133.0 9.95 276.20 3.98

5/7 107.7/72.9 12.78 157.00 6.58

7/7 39.6/77.0 13.95 100.30 7.28

Pectoralis major yield

2/2 284.0/313.0 6.80 205.00 3.17

2/5 292.4/63.6 8.63 143.00 3.32

5/7 20.1/68.6 13.92 81.00 8.29

5/9 30.4/40.1 12.25 36.00 2.81

7/7 39.6/68.6 12.93 103.00 8.16

Pectoralis minor weight

2/5 290.3/14.0 20.16 109.20 7.63

2/11 290.3/41.0 16.88 60.26 8.52

5/11 69.9/14.4 17.49 35.80 4.09

10/17 42.0/6.3 15.84 28.40 3.20

11/17 26.8/21.0 17.75 21.05 4.98

Pectoralis minor yield

2/4 294.5/14.0 15.47 119.59 7.60

2/5 288.2/2.0 20.32 94.30 7.70

2/17 294.5/21.0 19.82 123.23 6.69

5/11 10.0/18.5 17.88 26.77 2.85

11/17 22.6/21.0 18.06 16.96 5.69

Thigh + drumstick weight

1/1 40.9/436.7 13.12 264.50 6.80

1/5 42.9/65.7 12.70 135.00 6.69

1/27 106.0/0.0 17.10 161.60 8.11

3/5 266.7/48.9 12.89 144.10 3.55

7/27 151.0/0.0 19.98 68.10 3.94

Thigh + drumstick yield

1/1 47.0/416.4 13.57 264.21 6.73

1/7 128.0/6.4 15.67 127.74 5.64

1/27 104.0/0.0 17.52 101.12 8.09

2/7 91.0/6.4 10.33 127.74 4.68

10/27 53.0/0.0 16.74 9.52 4.23

Fat weight

1/1 196.0/529.2 14.16 522.00 10.62

1/11 210.2/39.0 9.48 469.00 7.80

1/15 206.0/20.5 14.1 561.50 12.26

1/18 194.0/10.6 6.18 511.40 16.60

2/18 286.1/14.9 6.84 492.30 10.81

Fat yield

1/2 229.0/284.0 16.37 98.97 17.11
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protein expressed in lipogenic tissues (liver, fat and lac-
tating mammary glands), and is involved in the trans-
duction of hormonal and dietary signals for increased
lipid metabolism [26]. The THRSP gene is differentially
expressed in the high and low lines; and mutants of
THRSPa are associated with ABF in chickens [27]. The
THRSP gene also modulates tumorigenesis in human
breast cancer [28]. Positional candidate genes that
underlie the GGA3 ABFY QTL include inhibitor of
growth, family member 1 (ING1), Rho guanine nucleo-
tide exchange factor 7 (ARHGEF7) and ankyrin repeat
domain 10 (ANKRD10). The ABFY QTL on GGA5 har-
bors the insulin gene and insulin-like growth factor 2
(IGF2) gene. A biallelic marker in the chicken IGF2
gene appears to be associated with growth and carcass
traits [29].

Sex-specific QTL
Several studies in other species point to sex-bias, sex
specificity or sex antagonism in QTL analysis [30-32].
The approach allows us to test for interactions between
QTL and sex. A QTL by sex interaction with a Bayes
Factor (2LogBF) ≥ 2.1 was considered as sex specific
(QTL influencing a trait in only one sex) or sex antago-
nistic (QTL with allelic effects going in opposite direc-
tions between the sexes). A sex antagonistic fatness
QTL has been reported in chickens divergently selected
for abdominal fatness [7]. Sex-antagonistic QTL for
ABFY were found on GGA2, 4, 6, 12, 14 and 19. Male-
specific QTL for ABFY on GGA2 and GGA4 were simi-
lar to those reported by Jennen et al. [4] and McElroy et
al. [6], respectively. However, the ABFY QTL on GGA6,
12, 14 and 19 (Additional file 1) are unique to the HG ×
LG cross. There were several female-specific QTL
affecting P. major yield, and contrarily several sex-antag-
onistic QTL affecting P. minor yield. Some fatness QTL
were also found to be sex-antagonistic in the current
study. The male-specific QTL for ABFW was within the
confidence interval of the sex-antagonistic QTL for
abdominal fatness reported by Abasht et al. [7]. Sex-spe-
cific QTL and their genetic inter-relationships have
been reported for human obesity and lipid levels [14].
The mechanisms underlying sex-specific, sex influenced
or sex-antagonistic effects are unknown although the
influence of sex hormones on the regulation of the

genes that underlie these QTL is the first evident
hypothesis. Other parameters showing sex-dimorphism
(such as food intake, plasma nutrient levels etc.) may
exert further additional controls on their own. The fine
mapping strategies utilized to identify major genes that
underlie QTL would depend on whether QTL effect is
additive, epistatic, sex-specific or sex-antagonistic.

Epistatic QTL effects
By definition, a complex trait is affected by many genes,
each with a small effect, the environment and gene by
environment interactions. However, in most instances
the summation of the additive effects of each single-
locus cannot explain all the phenotypic variation of a
particular trait. The dependency of one locus upon
another, referred to as epistasis, also contributes towards
the phenotypic variation. The inclusion of epistatic
effects through interactions of different QTL regions
(same or different chromosomes) in QTL mapping
allows for the detection of novel loci. Epistatic QTL
explained between 3 to 25% of the phenotypic variation.
Epistasis QTL involving positions on GGA 1, 2, 3, 4, 5,
6, 7, 9, 10, 11, 17 and 27 were associated with body
composition traits in the current study. An earlier study
utilizing a White Leghorn × Red Jungle fowl cross iden-
tified many epistatic pairs that affected both early and
late growth [16]. They argued that, the degree of diver-
gence between their populations could be the reason for
the measured epistasis. Gene interactions may be the
norm rather than the exception. Limited studies on epis-
tasis QTL are due principally to the lack of statistical
methods with sufficient power to detect them, rather
than their lack of existence. Other studies have
described the effect of epistasis on fatness in mice
[11,17,18,33,34]. Genes that underlie interacting QTL
may interact biologically or may code for enzymes
involved in common pathways [35]. Several positional
candidate genes at the GGA2 284-286.1 cM region
[Yamaguchi sarcoma viral oncogene homolog 1 (YES1),
GATA-6-transcription factor (GATA-6), retinoblastoma
binding protein 8 (RBBP8), Rho-associated, coiled-coil
containing protein kinase 1 (ROCK1)] could be interact-
ing with other genes on GGA6 and 27 to affect abdom-
inal fatness in meat-type chickens. It appears that some
of the candidate genes that underlie QTL for ABFY are

Table 3: Epistatic QTL effects, locations and phenotypic variance explained for body composition traits in a chicken
line divergently selected for low or high growth (Continued)

2/2 192.0/288.0 14.87 89.41 17.43

2/6 292.4/73.0 17.49 82.27 24.73

2/27 292.4/0.0 20.15 1.68 12.06

5/6 20.1/75.0 16.17 49.50 11.01
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Figure 2 Two-dimensional profiles of Bayes factors (rescaled as 2logeBF) for fat yield (Figure 2A) and fat weight (Figure 2B) for
selected chromosomes. The upper diagonal shows the Bayes factor for the epistatic model, the lower diagonal shows the Bayes factor for the
full model with epistasis compared with no QTL.
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also associated with breast cancer in humans [28].
Therefore candidate genes within the QTL regions iden-
tified in this study should be investigated for their biolo-
gically significance to body composition in chickens and
to obesity and cancers in humans.

Conclusions
We have studied the main genetic and interactive effects
of trait loci that affect body composition in chickens.
Our studies have confirmed some known QTL http://
www.animalgenome.org/QTLdb/chicken.html and iden-
tified some novel QTL in the high and low growth line
intercross. The Bayesian statistical strategy has allowed
us to concurrently explore epistatic, sex-specific and
sex-antagonistic QTL. Identification of genes that
underlie QTL regions and their interactions as demon-
strated by significant QTL-QTL interactions should pro-
vide insight into an elaborate network of genes and will
help to elucidate their role in body composition and fat-
ness in chickens and possibly breast cancer in humans.

Methods
Experimental population
An F2 population was generated by inter-mating two
experimental boiler lines that had been divergently
selected for high (HG) or low growth (LG) rate [36]. In
the F0 generation, five HG males were mated to 16 LG
females (HL) and 5 LG males to 9 HG females (LH).
From the F1 generation, 3 HL males were mated with
30 HL females and 2 LH males were intercrossed with
20 LH females to generate an F2 resource population of
695 (371 males and 324 females) F2 individuals. The F2
population was produced in four hatches, fed a standard
broiler diets ad libitum (3050 kcal ME (Metabolizable
energy) from 0-3 wks, 3100 kcal ME from 4-9 wks), and
raised under standard management practices for nine
weeks. Blood was taken from all birds for genomic DNA
extraction. At 9-wk, birds were weighed after an over-
night fast and slaughtered. After evisceration, carcasses
were stored overnight at 4°C before dissection. The car-
cass traits measured are breast meat weight (BMW) and
yield (BMY), and its two components: P major and P.
minor weights, abdominal fat weight (ABFW) and thigh
+ drumstick weight (TDW). Trait weights were cor-
rected for week 9 body weight to generate P. major
yield, P. major yield, ABF yield (ABFY) and thigh +
drumstick yield (TDY).

Genotyping
DNA was extracted from whole blood by a quick pre-
paration method [8]. Microsatellite markers were
selected from the poultry genetic consensus map [37]
based on chromosomal locations and informativeness in
each F0 sire family. The platform used for genotyping

was developed at the Centre de Resources, Génotypage,
Séquençage (CRGS) of Génopole Toulouse Midi-Pyre-
nées (INRA, Toulouse, France). Genotyping of the DNA
samples employed 109 informative markers representing
20 autosomal linkage groups and was performed at
Labogena (INRA Jouy-en-Josas, France). Fluorescent
microsatellite analysis was performed on ABI 3700 DNA
sequencers (Applied Biosystems, Foster City, CA). Each
genotype was interpreted using both the GeneScan Ana-
lysis 3.7 and Genotyper Analysis 3.7 software (Applied
Biosystems, Foster City, CA). The GEMMA database
was used to manage the informativeness of the genotyp-
ing assays [38].

Data reformatting
The multi-allelic nature of microsatellite markers
required formatting to determine the F0 line of origin of
each marker. Using the F2 coding format from the R/qtl
software [39], the genotype of each individual at each
marker was coded as follows: AA (if the both alleles
were inherited from HG grandparents), AB (if the alleles
were derived from one HG and one LG grandparent),
BB (if both alleles were inherited from two LG grand-
parents), not BB (if one allele was inherited from an HG
parent and the origin of the other allele was indetermi-
nate), not AA (if one allele was inherited from an LG
parent and the origin of the other allele was indetermi-
nate) and NA (if the line of origin could not be deter-
mined for either allele).

Statistical analysis
Yi et al.’s [18,21] Bayesian model selection method was
used to simultaneously detect main effects and epistatic
and gene-sex interactions using the R/qtlbim software
[40]. Each chromosome was divided into one cM grids,
resulting in 2410 possible loci across the chicken gen-
ome. These preset loci were considered as possible QTL
positions. We placed an upper bound on the number of
QTL included in the model for each trait. The upper
bound was chosen based on the number of significant
QTL detected in the traditional interval mapping [21].
Based on this, the prior number of main-effect QTL was
set at lm and the prior for the expected number of all
QTL was lm + 3. We simultaneously modelled main
effects, QTL-QTL interactions and QTL-sex interac-
tions. We fitted the models using R/qtlbim [40], which
implements a Markov chain Monte Carlo (MCMC)
algorithm [18,21]. The MCMC algorithm generates pos-
terior samples from the joint posterior distribution of all
parameters in the model, proceeding to draw each para-
meter from its conditional posterior distribution using
the latest values of all other unknowns and the observed
data. Each iteration of the MCMC algorithm cycles
through all elements of the unknowns. This process was
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continued for many iterations in order to obtain random
samples from the joint posterior distribution. For each
analysis, the MCMC sampler was run for 1.2 × 105

iterations after the first 1000 iterations were discarded
as burn-in. To reduce serial correlation in the stored
samples, the chain was thinned by one in k = 40, yield-
ing 3 × 103 samples for posterior analysis. Convergence
diagnostics and mixing behavior assessed using graphical
and numerical methods provided by R/qtlbim showed
that the simulation chains converged and mixed well.
The posterior inclusion probability for each locus was

estimated as its frequency in the posterior samples. Each
locus may be included in the model through its main
effects and/or interactions with other loci (epistasis).
The larger the effect size for a locus, the more fre-
quently the locus was sampled. Taking the prior prob-
ability into consideration, we used the Bayes factor (BF)
to show evidence for inclusion versus exclusion of a
locus. The BF for a locus is defined as the ratio of the
posterior odds to the prior odds for inclusion versus
exclusion of the locus. A BF threshold of 3, or 2loge
(BF) = 2.1, is taken as supporting a claim of significance
[41]. The posterior inclusion probability and corre-
sponding BFs of main effects, epistatic interactions and
QTL-sex interactions were estimated separately. The
proportions of the phenotypic variance explained by the
genetic effect were estimated by its heritability.

Additional file 1: Sex-specific QTL effect, location and phenotypic
variance explained by the QTL for body composition traits in a chicken
line divergently selected for low or high growth.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1471-2164-11-
107-S1.DOC ]
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