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Introduction

The gonadotrophins, luteinizing hormone (LH) and folliclestimulating hormone (FSH), are produced by the gonadotroph cells of the anterior pituitary and play important roles in reproductive function. Tight control over the production of these hormones is crucial, particularly in females, to coordinate follicle selection and terminal follicular growth as well as the timing and number of ovulations. Synthesis and release of LH and FSH are regulated by hypothalamic gonadotrophin-releasing hormone (GnRH) and gonadal steroids. Despite these common regulators, divergences in the circulating patterns of LH and FSH are often encountered, suggesting that these regulators act differentially on the production of LH and FSH and/or that other factors are specifically involved in the control of FSH synthesis.

While the pulsatile pattern of GnRH release is essential for the activation and secretion of both gonadotrophins, changes in pulse frequency observed during the oestrous cycle differentially affect the LH and FSH production. High frequencies of GnRH pulses are associated with greater LH secretion whereas lower frequencies favour FSH secretion [START_REF] Wildt | Frequency and amplitude of gonadotrophin-releasing hormone stimulation and gonadotrophin secretion in the rhesus monkey[END_REF][START_REF] Dalkin | The frequency of gonadotrophin-releasing-hormone stimulation differentially regulates gonadotrophin subunit messenger ribonucleic acid expression[END_REF][START_REF] Kaiser | Differential effects of gonadotrophin-releasing hormone (GnRH) pulse frequency on gonadotrophin subunit and GnRH receptor messenger ribonucleic acid levels in vitro[END_REF][START_REF] Molter-Gerard | Differential regulation of the gonadotrophin storage pattern by gonadotrophinreleasing hormone pulse frequency in the ewe[END_REF]. In addition, the FSH secretion is controlled, independently of LH, by transforming growth factor-b (TGFb) superfamily members such as activins and inhibins. Activin, a dimer of two highly related b-subunits (b A and/or b B ), stimulates FSHb gene expression and FSH release, whereas inhibin, a heterodimer composed of one a-subunit and one b-subunit (b A or b B ), decreases FSH synthesis and release [START_REF] Carroll | Inhibin, activin, and follistatin: regulation of follicle-stimulating hormone messenger ribonucleic acid levels[END_REF]. Activin is secreted by the gonads and within the pituitary, where it acts as an autocrine and/or paracrine regulator of FSH synthesis. Recently, other members of the TGFb superfamily, the bone morphogenetic proteins (BMPs), were shown to modulate preferentially FSH secretion. In ovine pituitary cells, BMP-4 (50 ng/ml) and BMP-6 (100 ng/ml) inhibited FSHb mRNA expression and FSH release [START_REF] Faure | BMP-4 inhibits follicle-stimulating hormone secretion in ewe pituitary[END_REF].

By contrast, in the murine LbT2 gonadotroph cell line and rat pituitary cells, BMP-6 and BMP-7, at higher concentrations (1 mg/ml), BMP-2 and BMP-15 (100 ng/ml) were able to stimulate basal FSH secretion and FSHb promoter activity [START_REF] Huang | A novel role for bone morphogenetic proteins in the synthesis of follicle-stimulating hormone[END_REF][START_REF] Otsuka | A novel function of bone morphogenetic protein-15 in the pituitary: selective synthesis and secretion of FSH by gonadotropes[END_REF][START_REF] Lee | Bone morphogenetic protein 2 and activin A synergistically stimulate follicle-stimulating hormone beta subunit transcription[END_REF]. This difference of BMP effect between the mouse and the sheep could reflect a dissimilar pattern of BMP receptors on gonadotroph cells driving different signalling pathways. Alternatively, different BMPs could differentially affect FSH synthesis.

The TGFb superfamily members act through two types of serine/threonine kinase receptors, type I and type II (for review: [START_REF] Miyazawa | Two major Smad pathways in TGF-b superfamily signalling[END_REF][START_REF] Shimasaki | The bone morphogenetic protein system in mammalian reproduction[END_REF]. Activin signals through activin receptor types IIA (ActRIIA) or IIB (ActRIIB) and activin receptor type IB (ActRIB, also known as activin receptor-like kinase 4 or ALK-4). Specific BMP signalling requires BMP receptor type II (BMPRII) and BMP receptor types IA (BMPRIA or ALK-3) or IB (BMPRIB or ALK-6). The ligand-type II receptor complex induces phosphorylation and activation of type I receptors that in turn trans-phosphorylate receptor-activated Smad proteins within the cytoplasm. These then interact with common Smad4, and the resulting complex translocates to the nucleus to affect gene transcription. Activin leads to the specific activation of Smads 2 and 3, whereas BMPs activate Smads 1, 5 and 8. The combinations of activin and BMP ligands and receptors are not unique. For example, ActRIIA and ActRIIB can bind to BMP-6 [START_REF] Ebisawa | Characterization of bone morphogenetic protein-6 signaling pathways in osteoblast differentiation[END_REF], whereas BMPRII binds specifically to BMP ligands [START_REF] Liu | Human type II receptor for bone morphogenetic proteins (BMPs): extension of the two-kinase receptor model to the BMPs[END_REF][START_REF] Nohno | Identification of a human type II receptor for bone morphogenetic protein-4 that forms differential heteromeric complexes with bone morphogenetic protein type I receptors[END_REF]. Regarding type I receptors, ActRIA (also known as ALK-2) has been identified as a type-I receptor for BMPs [START_REF] Macias-Silva | Specific activation of Smad1 signaling pathways by the BMP7 type I receptor, ALK2[END_REF].

To further explore BMP action at the gonadotroph cell level, we have examined the effects of BMP-4 on mouse LbT2 cell LH and FSH b-subunit mRNA levels and gonadotrophin release. Considering that activin and GnRH are important modulators of FSH synthesis, it is of interest to determine if BMP-4 interacts with these two factors and to explore the signalling pathways through which BMP-4 exerts its effect.

Materials and Methods

Cell culture

Mouse LbT2 cells (provided by Dr P Mellon, University of California, San Diego, CA, USA) were routinely maintained in Dulbecco's modified Eagle's medium (DMEM) with 10% foetal calf serum (Hyclone, Logan, UT, USA) on flasks coated with Matrigel (1:29; BD Biosciences Clontech, Cowley, Oxford, UK). For experimental purposes LbT2 cells were set up as described previously [START_REF] Nicol | Differential secretion of gonadotrophins: investigation of the role of secretogranin II and chromogranin A in the release of LH and FSH in LbT2 cells[END_REF]) at a density of 2 . 75!10 6 /well. After overnight incubation, cells were treated with 0 or 50 ng/ml recombinant human activin A (R&D Systems, Abingdon, Oxon, UK) Ga daily 1-h pulse of 10 nM GnRH (Bachem, St Helens, Merseyside, UK), in the presence or absence of 50 ng/ml recombinant human BMP-4 (R&D Systems) for 3 days. Media were collected daily for measurement of secreted FSH and LH by RIA. On day 4, total RNA was extracted from cells for the measurement of FSHb, LHb, GnRH receptor (GnRH-R) and follistatin mRNA levels by quantitative RT-PCR. In addition, on day 4, after a final pulse of GnRH, protein extracts were prepared for western blot analysis.

Mouse FSH and LH RIAs

RIAs for mouse FSH and LH were performed as previously described [START_REF] Mcneilly | Characterization of the ovine LH b-subunit gene: the promoter is regulated by GnRH and gonadal steroids in transgenic mice[END_REF], using reagents supplied by Dr A Parlow (NHPP, Harbor-UCLA, Torrance, CA, USA). The minimum detectable concentrations were 1 ng/ml and 200 pg/ml for FSH and LH respectively. The intra-and inter-assay coefficients of variation were !10% for both assays.

Qualitative RT-PCR

The expression of BMP receptor mRNA in LbT2 cells was assessed by RT-PCR, using adult mouse pituitary as a positive control. Total RNA was extracted using TRI Reagent (Sigma-Aldrich Ltd). Aliquots were treated with DNase I using DNA-free (Ambion (Europe) Ltd, Huntingdon, Cambs, UK) and reverse transcribed, using random hexamers, with Taqman Reverse Transcription reagents (PE Biosystems, Warrington, Cheshire, UK) according to manufacturers protocol. PCR was performed for 35 cycles using ThermoStart Taq DNA polymerase (Abgene, Epsom, Surrey, UK). Primer sequences were as follows: BMPRIA: fwd: CCTGTTGTTATAGGTCCGTT; rev: TCTCCT-ACTGGAATAAATGC; BMPRIB: fwd: AGATTGGAAA-AGGCCGCTATG; rev: GATGTCAACCTCATTTGTG-TC; BMPRII: fwd: GAGGACTGGCTTATCTTCAC; rev: AGCTCCTTCTAGCACTTCTG. Predicted product sizes were 194, 473 and 245 bp respectively.

Immunostaining

LbT2 cells, cultured on Labtek II chamber slides (Fisher Scientific UK, Manchester, UK) were washed with PBS, fixed in Bouin's solution for 5 min, washed and then permeabilized using 10% normal goat serum, 1% BSA in PBS (blocking solution) containing 0 . 2% Igepal CA-630 for 20 min at room temperature. After washing, cells were blocked for 1 h, then incubated at 4 8C overnight with rabbit polyclonal antibodies directed against BMPRIA, BMPRIB (ten [START_REF] Ten Dijke | Identification of type I receptors for osteogenic protein-1 and bone morphogenetic protein-4[END_REF] or BMPRII [START_REF] Rosenzweig | Cloning and characterization of a human type II receptor for bone morphogenetic proteins[END_REF], diluted at 1:50. Antibodies were kindly donated by Dr C-H Heldin (Ludwig Institute for Cancer Research, Uppsala, Sweden). Negative controls were performed with 1:100 goat serum in place of the primary antibody. Slides were washed and then incubated at room temperature for 1 h with goat anti-rabbit Alexa 488 (Molecular Probes, Eugene, OR, USA) diluted 1:200. After washing, the slides were mounted using Permafluor fluorescent mounting medium (Beckman Coulter, High Wycombe, UK) and examined using a LSM 510 confocal microscope (Carl Zeiss Ltd, Welwyn Garden City, Herts, UK).

Quantitative RT-PCR

Levels of mRNA for FSHb, LHb, GnRH-R and follistatin were measured using Taqman RT-PCR. Primer and probe sequences were designed using Primer Express software and synthesized by PE Biosystems or by Biosource Europe SA (Nivelles, Belgium). FSHb, LHb and GnRH-R primer/ probe sequences have been previously reported [START_REF] Nicol | Differential secretion of gonadotrophins: investigation of the role of secretogranin II and chromogranin A in the release of LH and FSH in LbT2 cells[END_REF]. The sequences for follistatin were as follows: fwd: GGGCTGGATGGGAAAACCTA; rev: CGGCTGCTC-TTTGCATCTG; probe (FAM labelled): CGCAAC-GAATGTGCACTCCTCAAGG. Ribosomal 18S primers and probe were from a Taqman Ribosomal RNA Control Reagents kit (VIC labelled probe). RNA was prepared, DNase I-treated and reverse transcribed as described above. RNA was added to RT reactions at 10 ng/ml. A PCR mix was prepared, consisting of Taqman Universal PCR Master Mix (1!), gene specific forward and reverse primers (300 nM each) and probe (200 nM), and ribosomal 18S forward and reverse primers (50 nM each) and probe (200 nM). This was aliquoted into tubes, then cDNA was added at 1 ml/25 ml reaction mix. Aliquots (25 ml) were transferred to wells in a 96-well PCR plate, with each sample run in duplicate. Plates were sealed with optical adhesive covers and the PCRs run on ABI Prism 7900HT PCR machine using standard conditions. Controls included cDNA prepared with omission of reverse transcriptase. Prior to analysis, a validation assay was performed to demonstrate that amplification of target genes and the reference (18S) were approximately equal. Quantification of specific mRNA levels was performed by the DDC t method (Bulletin no.2; PE Biosystems). Standard PCRs using each set of primers were run on an agarose gel to confirm amplification of a single product of the correct size. Unless otherwise stated all reagents, equipment and software were from PE Biosystems.

Western blotting

To investigate activation of Smads, ERK1/2, p38 MAPK and cAMP response element-binding protein (CREB), LbT2 cells were treated as described above except that on day 4, a final pulse of GnRH was given (duration of 1 h for Smad study and 10 or 20 min for ERK1/2, p38 and CREB studies). The cells were then washed with ice-cold PBS and lysed in buffer containing 10 mM Tris (pH 7 . 4), 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton X-100, 0 . 5% Igepal CA-630, 100 mM sodium fluoride, 10 mM sodium pyrophosphate, 10 mM sodium orthovanadate, protease inhibitor cocktail. The protein concentration was determined using a Bio-Rad DC protein assay (Bio-Rad Laboratories Ltd).

After 5 min at 95 8C in reducing buffer, proteins were separated on SDS-PAGE gels and electroblotted onto Immobilon membranes (Millipore Corporation, Bedford, MA, USA). For Smad and ERK analysis, membranes were blocked for 1 h at room temperature in Tris-buffered saline, 0 . 1% Tween (TBST) containing 5% fat-free dry milk and then incubated in primary antibody overnight at 4 8C. The P-Smad1/5 rabbit monoclonal, P-ERK1/2 and total ERK1/2 polyclonal antibodies were from Cell Signaling Technology (Danvers, MA, USA) and were all used at 1:1000 dilution. The Smad1/5 and Smad2/3 polyclonal antibodies were from Upstate Biotechnology (Lake Placid, NY, USA) and were used at 1:500 and 1:1000 dilutions respectively. The P-Smad2/3 antibody was provided by Dr C-H Heldin (Ludwig Institute for Cancer Research, Uppsala, Sweden) and used at 1:2000 dilutions. After washing in TBST, the membranes were incubated with Amersham ECL peroxidaselabelled anti-rabbit antibody (GE Healthcare UK Ltd, Little Chalfont, Bucks, UK) for 1 h at room temperature. Immunoreactive proteins were detected using Amersham ECL Plus western blotting detection reagents and exposure to Hyperfilm ECL (both from GE Healthcare UK Ltd). For quantification, the membranes were scanned on a Typhoon 9400 variable-mode imager (GE Healthcare UK Ltd). In each case, the membrane was probed first with the antibody against the phosphorylated protein, then stripped using buffer containing 2% SDS, 62 . 5 mM Tris (pH 6 . 8), 0 . 1 M 2-mercaptoethanol for 30 min at 75 8C. After washing, immunodetection was repeated using antibody against the total protein. For P-p38 and P-CREB analysis, membranes were blocked in Odyssey blocking buffer (Licor Biosciences UK Ltd, Cambridge, UK) and primary antibodies were diluted in Odyssey buffer diluted 1:1 with PBS, 0 . 1% Tween 20 (PBST). The primary antibody against the phosphorylated protein was combined with a monoclonal anti-a-tubulin to act as loading control for quantitation. The P-p38 and P-CREB antibodies (Cell Signaling Technology) were used at 1:1000 dilutions and a-tubulin monoclonal (Sigma) was used at 1:3000 dilutions. After washing in PBST the membranes were incubated with a mixture of goat anti-rabbit IR Dye 680 and goat anti-mouse IR Dye 800CW for 1 h at room temperature. Immunoreactive proteins were detected and quantified using an Odyssey Infrared Imaging System (Licor Biosciences UK Ltd).

Statistical analysis

Results are reported as meanGS.E.M. from one representative experiment. Experiments were carried out at least three times. Analyses of interactions between BMP-4 and other treatment groups were carried out using two-way ANOVA and the Bonferroni method. Comparisons between treatments on FSH, LH concentrations, FSHb and LHb mRNA levels and phosphorylated protein intensities were analysed by one-way ANOVA followed by Tukey's multiple comparison test. The value of P!0 . 05 was considered significant.

The statistical analyses were performed using GraphPad Prism version 4.00 (GraphPad Software, San Diego, CA, USA).

Results

Expression of BMP receptors in LbT2 gonadotrophs and adult mouse pituitary

Qualitative RT-PCR analysis of total RNA prepared from mouse LbT2 gonadotroph cells and adult mouse pituitary was carried out using primers specific for BMPRIA (ALK-3), BMPRIB (ALK-6) and BMPRII. As shown in Fig. 1A, products of the expected size were observed for all three receptor types in both LbT2 cells and adult mouse pituitary. In negative controls, performed by omitting reverse transcriptase enzyme in RT reactions, no PCR products were detected (not shown). Particularly in LbT2 cells, the levels of BMPRIB mRNA appeared to be lower than the other two receptor types. Immunostaining using specific antibodies confirmed the presence of expressed protein for all three BMP receptor types in LbT2 cells when compared with a negative control (Fig. 1B).

Effects of BMP-4 on gonadotrophin secretion and FSHb and LHb mRNA expressions

To determine whether BMP-4 was capable of modifying gonadotrophin production and secretion in LbT2 gonadotrophs, cells given activin Ga daily 1 h pulse of GnRH for three days were also treated with BMP-4. Secretion profiles for FSH and LH, representing the total protein secreted during day 3 GnRH treatment and the subsequent overnight incubation, and the corresponding day 4 b-subunit mRNA levels are shown in Fig. 2. As expected, FSH secretion increased (P!0 . 001) in response to activin and this effect was increased synergistically (P!0 . 001) in the presence of GnRH, although GnRH alone had no effect (Fig. 2A). While BMP-4 alone had no effect on FSH secretion, it increased the release of FSH in response to activin and activinCGnRH (P!0 . 01 and P!0 . 001 respectively).

Similarly, the FSHb mRNA expression was up-regulated by activin (P!0 . 05) and this effect was also increased synergistically by GnRH (P!0 . 001; Fig. 2B). BMP-4 alone, or in combination with activin or GnRH, had no effect on FSHb mRNA, but it further increased activinC GnRH-stimulated mRNA levels (P!0 . 01).

LH release from LbT2 cells was stimulated by GnRH (P!0. 001) and these levels almost doubled when GnRH was combined with activin (P!0 . 001, Fig. 2C). BMP-4 alone or in combination with activin and/or GnRH did not affect LH release. By contrast, while LHb mRNA expression also increased in response to GnRH and activinCGnRH (P!0 . 001), these levels were reduced (P!0 . 05) by BMP-4 (Fig. 2D).

Effects of BMP-4 on GnRH-R and follistatin mRNA levels

To investigate the possible underlying mechanisms for the effects of BMP-4 on gonadotrophin production and release in LbT2 gonadotrophs, GnRH-R and follistatin mRNA levels on day 4 from cells treated as described were measured. As shown in Fig. 3A, activin and GnRH alone produced small increases in GnRH-R mRNA levels, but combined activinC GnRH was required to achieve a significant (P!0 . 001) effect. BMP-4 reduced GnRH-R mRNA expression in both the GnRH-and activinCGnRH-treated cells (P!0 . 01 and P!0 . 001 respectively). Follistatin mRNA levels, on the other hand, increased in response to activin and activinC GnRH (P!0 . 01 and P!0 . 001 respectively, Fig. 3B).

BMP-4 treatment significantly reduced the activin-stimulated increase in follistatin mRNA (P!0 . 05), but had no effect on the increase observed in response to activinCGnRH.

Activation of Smad signalling pathways by BMP-4 and activin

To determine whether or not the BMP and activin signalling pathways could interact at the Smad activation level, LbT2 cells cultured in the presence or absence of activin Ga daily 1 h pulse of GnRH for 3 days were also exposed to BMP-4. On day 4, a final 1-h pulse of GnRH was given and proteins extracted for western blot analysis, using antibodies specific for P-Smad1/5 and P-Smad2/3, to look at the BMP and activin signalling pathways respectively. As shown in Fig. 4A, BMP-4, but not activin, induced the appearance of a band at w60 kDa, corresponding to the phosphorylated form of Smad1/5. The presence of activin and/or GnRH with BMP-4 did not affect the intensity of this band when compared with BMP-4 treatment alone. By contrast, activin (G GnRH) induced activation of Smad2/3 as indicated by increased intensity of band(s) at w55-58 kDa corresponding to phosphorylated Smad2/3 (Fig. 4B). When cells were treated with both BMP-4 and activinGGnRH, band intensity did not change compared with activinGGnRH alone. It should be noted that the results shown here were obtained using an antibody against P-Smad2/3 and that two bands were observed. However, it appeared that the upper band (P-Smad2) was mainly responsible for the increased signal in response to activinGGnRH and indeed, identical results were obtained using an antibody specific for P-Smad2 (data not shown).

Effects of BMP-4 on the GnRH-induced activation of ERK1/2, p38 MAPK and CREB

As there is evidence that, as well as signalling through the Smad pathways, TGFb family members may also utilize other downstream signalling pathways, we examined whether or not BMP-4 activated or influenced the activation of other pathways known to be active in gonadotrophs. The LbT2 cells were cultured in the presence or absence of activin G a daily 1-h pulse of GnRH G BMP-4 for 3 days.

On day 4, a 10-or 20-min pulse of GnRH was given to cells previously exposed to GnRH and proteins extracted for western blot analysis, using antibodies specific for the phosphorylated forms of ERK1/2, p38 MAPK and CREB. As expected, GnRH induced ERK1/2 phosphorylation, with the same effect observed in the presence and absence of activin (P!0 . 001; Fig. 5A). BMP-4 had no effect on ERK activation. The results shown here were from cells that are given GnRH for 20 min on day 4. After 10-min GnRH supply the same trend was observed, but the result did not reach significance (data not shown). As shown in Fig. 5B,p38 MAPK was also activated by GnRH (P!0 . 01), but in this case activin increased the response observed with GnRH alone (P!0 . 05). BMP-4 treatment, in the presence of activinCGnRH, reduced phosphorylated p38 levels (P!0 . 01). In this case, the treatment 10-min GnRH supply gave the optimum result, as after 20 min GnRH levels of phosphorylated p38 were unmeasurable in our detection system. CREB was activated by GnRH alone (P!0 . 001; Fig. 5C) and neither activin nor BMP-4 had a significant effect. Again, 20-min GnRH produced the optimum result, although after 10 min a statistically similar effect was observed (data not shown).

Discussion

Earlier studies have identified BMPs as modulators in the regulation of FSH synthesis and release. In rodent primary pituitary cells and the mouse LbT2 gonadotroph cell line, different BMPs (BMP-15, as well as BMP-6 and -7 at high doses) exert a stimulatory effect on FSHb transcription [START_REF] Huang | A novel role for bone morphogenetic proteins in the synthesis of follicle-stimulating hormone[END_REF][START_REF] Otsuka | A novel function of bone morphogenetic protein-15 in the pituitary: selective synthesis and secretion of FSH by gonadotropes[END_REF], whereas in ovine primary pituitary cells, BMP-4 and BMP-6 have inhibitory effects on FSHb mRNA expression and FSH release [START_REF] Faure | BMP-4 inhibits follicle-stimulating hormone secretion in ewe pituitary[END_REF].

In the present study we report that, in LbT2 mouse gonadotroph cells, BMP-4 alone had no effect on FSHb mRNA and FSH release, as reported previously for BMP-2, -6 and -7 used at comparable doses [START_REF] Huang | A novel role for bone morphogenetic proteins in the synthesis of follicle-stimulating hormone[END_REF][START_REF] Lee | Bone morphogenetic protein 2 and activin A synergistically stimulate follicle-stimulating hormone beta subunit transcription[END_REF]). Remarkably, BMP-4 increased both FSHb mRNA and FSH secretion when combined with activin A and GnRH. Recent studies observed synergistic effects on FSHb transcription between BMP-2 and activin A in LbT2 cells [START_REF] Lee | Bone morphogenetic protein 2 and activin A synergistically stimulate follicle-stimulating hormone beta subunit transcription[END_REF]. Moreover, our data show for the first time that LHb mRNA and LH secretion remained unaffected by BMP-4 treatment but that, interestingly, the up-regulation of LHb mRNA in response to GnRH was reduced.

Our results underline the opposite actions of BMP-4 on FSH expression in ewe primary pituitary cells and murine homogeneous gonadotroph cells. In ewe pituitary cells BMP-4 and BMP-6 decreased both basal and activin-stimulated FSHb mRNA levels and FSH release [START_REF] Faure | BMP-4 inhibits follicle-stimulating hormone secretion in ewe pituitary[END_REF]. The reasons for this differential effect are not clear. They may reflect different specific patterns of BMP receptors between ewe gonadotroph cells and LbT2 cells leading to activation of different signalling pathways and/or different intra-cellular components. The present results demonstrate that LbT2 cells express mRNAs encoding the BMP receptors BMPRIA, BMPRIB and BMPRII, confirming data from [START_REF] Lee | Bone morphogenetic protein 2 and activin A synergistically stimulate follicle-stimulating hormone beta subunit transcription[END_REF], in contrast to another study in which only BMPRIA and BMPRII were found [START_REF] Otsuka | A novel function of bone morphogenetic protein-15 in the pituitary: selective synthesis and secretion of FSH by gonadotropes[END_REF]. However, in our study, BMPRIB mRNA does appear to be expressed at lower levels than BMPRIA and BMPRII. Furthermore, immunocytochemistry confirmed the presence of proteins corresponding to the three types of receptors. In contrast to LbT2 cells, BMPRIB was not detected in ewe gonadotroph cells [START_REF] Faure | BMP-4 inhibits follicle-stimulating hormone secretion in ewe pituitary[END_REF]. The bioavailability of different receptors could dictate the FSH response to BMPs. Even if [START_REF] Otsuka | A novel function of bone morphogenetic protein-15 in the pituitary: selective synthesis and secretion of FSH by gonadotropes[END_REF][START_REF] Takeda | Effects of peroxisome proliferator-activated receptor activation on gonadotrophin transcription and cell mitosis induced by bone morphogenetic proteins in mouse gonadotrope LbT2 cells[END_REF]. BMP-4 action required the presence of activin and was amplified when GnRH was added in combination with activin. This action was not accompanied by changes in the level of P-Smad1/5, suggesting that other signalling proteins and/or pathways are involved. A recent study suggested that Smad8 might be the preferred signalling protein in the BMP pathway since overexpression of Smad8, but not Smad1 or 5, enhanced the FSHb promoter activity in response to BMP-2 [START_REF] Lee | Bone morphogenetic protein 2 and activin A synergistically stimulate follicle-stimulating hormone beta subunit transcription[END_REF]. It is possible that BMP-4 may be acting through the modulation of activin and/or GnRH pathway. Previous data have shown that activin transmits its signal through Smad2 and/or Smad3 phosphorylation [START_REF] Dupont | Activin signaling pathways in ovine pituitary and LbT2 gonadotrope cells[END_REF][START_REF] Suszko | Regulation of the rat follicle-stimulating hormone b-subunit promoter by activin[END_REF][START_REF] Bernard | Both SMAD2 and SMAD3 mediate activin-stimulated expression of the follicle-stimulating hormone b subunit in mouse gonadotrope cells[END_REF]). While we detected an increase in the phosphorylated forms of Smad2/3 in the presence of activin, the addition of BMP-4G GnRH in LbT2 cell medium did not change the level of P-Smad2/3. Thus, the interaction between BMP-4, activin and GnRH does not modify Smad1/5 or Smad2/3 phosphorylation.

It is unclear whether follistatin plays a role in this system, as the effects of BMP-4 on expression of follistatin mRNA were inconsistent. Activin-stimulated mRNA was reduced by BMP-4 treatment, in contrast to activinCGnRH-stimulated mRNA which remained unaffected. In addition, increased follistatin synthesis did not have any effect on Smad2/3 phosphorylation. However, it should be emphasized that the activin and BMP-4 levels used in this study would most likely be sufficient to completely override any possible effects of endogenous follistatin, which may be more relevant in vivo, where levels of endogenous activin and BMPs would be lower. The ability of follistatin to bind BMPs, albeit with a lower affinity than activin [START_REF] Balemans | Extracellular regulation of BMP signaling in vertebrates: a cocktail of modulators[END_REF], suggests it may well be involved in the BMP-mediated regulation of FSH production in vivo.

Since there is evidence that BMPs can operate through Smad-independent pathways such as MAPK signalling molecules [START_REF] Lou | Involvement of ERK in BMP-2 induced osteoblastic differentiation of mesenchymal progenitor cell line C3H10T1/2[END_REF][START_REF] Xiao | Bone morphogenetic proteins, extracellular matrix, and mitogenactivated protein kinase signaling pathways are required for osteoblastspecific gene expression and differentiation in MC3T3-E1 cells[END_REF][START_REF] Derynck | Smad-dependent and Smad-independent pathways in TGF-beta family signalling[END_REF], changes in levels of phosphorylated ERK1/2 and p38 were measured. As expected, GnRH activated the phosphorylation of ERK1/2 [START_REF] Liu | GnRH activates ERK1/2 leading to the induction of c-fos and LHb protein expression in LbT2 cells[END_REF], but this response was not modified by activin, corroborating previous data [START_REF] Gregory | Synergy between activin A and gonadotrophin-releasing hormone in transcriptional activation of the rat follicle-stimulating hormone-beta gene[END_REF]. The presence of BMP-4 did not affect GnRH-mediated activation of ERK1/2. Previous studies have shown that BMPs can induce the p38 MAPKdependent pathway [START_REF] Iwasaki | Specific activation of the p38 mitogen-activated protein kinase signaling pathway and induction of neurite outgrowth in PC12 cells by bone morphogenetic protein-2[END_REF][START_REF] Nakamura | p38 mitogen-activated protein kinase functionally contributes to chondrogenesis induced by growth/differentiation factor-5 in ATDC5 cells[END_REF]). In the current study we observed that the level of GnRH-enhanced p38 activation was increased by activin, confirming a previous report [START_REF] Coss | p38 Mitogen-activated protein kinase is critical for synergistic induction of the FSHb gene by gonadotropin-releasing hormone and activin through augmentation of c-fos induction and smad phosphorylation[END_REF], and this correlated with increased FSHb mRNA and FSH secretion. This p38 activation in response to GnRHCactivin was reduced by BMP-4, contrary to the increase in FSHb mRNA and FSH secretion. As GnRH alone induced the p38 activation, but had no effect on FSHb mRNA and FSH secretion, which remained equivalent to those in untreated cells, the exact role of p38 in regulating FSH production is unclear. The BMP-induced reduction in p38 MAPK does, however, correlate with a decrease in LHb mRNA expression. GnRH is also known to activate CREB protein in gonadotroph cell lines [START_REF] Duan | Estradiol suppresses phosphorylation of cyclic adenosine 3 0 , 5 0 -monophosphate response element binding protein (CREB) in the pituitary: evidence for indirect action via gonadotrophin-releasing hormone[END_REF][START_REF] Shafiee-Kermani | Chronic gonadotrophinreleasing hormone inhibits activin induction of the ovine folliclestimulating hormone beta-subunit: involvement of 3 0 , 5 0 -cyclic adenosine monophosphate response element binding protein and nitric oxide synthase type I[END_REF]. Our results confirm that GnRH activates CREB, but CREB phosphorylation was not significantly affected by activin and/or BMP-4. Our current data, therefore, indicate that the classical upstream activin (Smad2/3) or GnRH (ERK, CREB) pathways are not modified in the presence of BMP-4. The p38 MAPK signalling appears to be modulated by BMP-4, but whether this has direct effects on FSH production/secretion remains to be determined. Considering the synergistic effects of BMP-2 and activin on FSHb transcription in LbT2 cells, it has recently been suggested that each ligand employs different, non-overlapping mechanisms to generate their effects [START_REF] Lee | Bone morphogenetic protein 2 and activin A synergistically stimulate follicle-stimulating hormone beta subunit transcription[END_REF]. A summation of the independent signalling pathways activated by BMP-4, activin and GnRH could mediate their combined response with an amplified action occurring specifically at the level of the FSHb promoter. So far, it is not known if BMP-4 exerts its effect directly on the FSHb promoter and detailed analyses will be necessary to localize the site of BMP action.

In addition to its effect on FSHb mRNA and FSH release, BMP-4 also regulated LHb expression. In the present study, we obtained clear evidence that BMP-4 decreased levels of GnRH and activin-induced LHb mRNA. This effect appeared to be mediated, at least partly, by the downregulation of GnRH-R mRNA. The inhibitory effect of BMP-4 on LHb and GnRH-R mRNA levels is contradictory to the stimulatory action of activin [START_REF] Pernasetti | Cell-specific transcriptional regulation of follicle-stimulating hormone-b by activin and gonadotrophin-releasing hormone in the LbT2 pituitary gonadotrope cell model[END_REF][START_REF] Nicol | Differential secretion of gonadotrophins: investigation of the role of secretogranin II and chromogranin A in the release of LH and FSH in LbT2 cells[END_REF][START_REF] Yamada | Differential activation of the luteinizing hormone b-subunit promoter by activin and gonadotrophin-releasing hormone: a role for the mitogen-activated protein kinase signaling pathway in LbT2 gonadotrophs[END_REF]. Several studies indicate a correlation between GnRH-R density and a differential gonadotrophin response to GnRH [START_REF] Kaiser | A mechanism for the differential regulation of gonadotrophin subunit gene expression by gonadotrophin-releasing hormone[END_REF][START_REF] Bedecarrats | Differential regulation of gonadotrophin subunit gene promoter activity by pulsatile gonadotrophin-releasing hormone (GnRH) in perifused LbT2 cells: role of GnRH receptor concentration[END_REF]. High levels of GnRH-R are associated with preferential LHb gene expression whereas lower levels favour the stimulation of FSHb gene expression, suggesting a role for GnRH-R levels in mediating these differential responses. Thus, we propose that BMP-4, partly by inhibiting GnRH-R expression, could induce an inhibition of the LHb mRNA level, potentially through p38 MAPK activation, and promote an increase in the level of FSHb mRNA and FSH release. The absence of any effect of BMP-4 on LH release compared with its effect on LHb mRNA levels may simply reflect the release of stored LH via the regulated secretory pathway [START_REF] Nicol | Influence of steroids and GnRH on biosynthesis and secretion of secretogranin II and chromogranin A in relation to LH release in LbT2 gonadotroph cells[END_REF][START_REF] Nicol | Differential secretion of gonadotrophins: investigation of the role of secretogranin II and chromogranin A in the release of LH and FSH in LbT2 cells[END_REF].

In conclusion, our results show that BMP-4, activin and GnRH act in a synergistic manner to up-regulate FSHb mRNA and FSH release. By contrast, BMP-4 reduces the GnRH and/or activin-induced up-regulation of LHb and GnRH receptor mRNA. We demonstrated that the classical upstream BMP signalling molecule(s) are activated in the LbT2 cells by BMP-4, but other signalling molecules/ pathways must be involved in order to obtain the effects on FSH production observed in response to the interaction of BMP-4 with activin/GnRH. Naturally, these results need to be checked in primary cell cultures to determine if the difference in the effects of BMP-4 in the present mouse LbT2 gonadotroph cell line and our previous studies in sheep primary cells is due to different paracrine or autocrine mechanisms involving an interaction with other pituitary cell types. In contrast to mouse pituitary, BMP-4 mRNA was not detected in LbT2 cells (Lee et al. 2007, our unpublished data) arguing for a paracrine role. Collectively, the present data reinforce the concept of a role for BMP-4 in the control of FSH and reveal a novel involvement in LH control.

Figure 1

 1 Figure 1 Expression of BMP receptors. (A) mRNAs for BMP receptors IA, IB and II were detected in untreated LbT2 cells and adult mouse pituitary by RT-PCR at 35 cycles. (B) BMP receptor proteins IA, IB and II were detected in untreated LbT2 cells by immunofluorescence. Bar represents 10 mm.

Figure 2

 2 Figure 2 Effects of BMP-4 on gonadotrophin secretion and FSHb and LHb mRNA expression. (A) FSH and (C) LH secreted on day 3 from LbT2 cells cultured with 0 or 50 ng/ml BMP-4 in the presence and absence of 50 ng/ml activin AGa daily 1 h pulse of 10 nM GnRH for 3 days were measured by RIA. Results represent total hormone secreted during the 1 h GnRH treatment and the subsequent overnight incubation; nZ5. (B) FSHb and (D) LHb mRNA levels on day 4 in LbT2 cells, cultured as described, were measured by Taqman quantitative RT-PCR; nZ3. Different letters indicate significant differences between treatment groups. Values represent meansGS.E.M. from one representative experiment. Five experiments were performed with similar results.

Figure 3

 3 Figure3Effects of BMP-4 on GnRH-R and follistatin mRNA expression. LbT2 cells were cultured with 0 or 50 ng/ml BMP-4 in the presence and absence of 50 ng/ml activin AGa daily 1-h pulse of 10 nM GnRH for 3 days. On day 4, total RNA was prepared and (A) GnRH receptor and (B) follistatin mRNA levels were measured by Taqman quantitative RT-PCR. Different letters indicate significant differences between treatment groups. Values represent meansG S.E.M. from one representative experiment; nZ3. Five experiments were performed with similar results.Figure4Activation of Smad signalling pathways. LbT2 cells were cultured with 0 or 50 ng/ml BMP-4 in the presence and absence of 50 ng/ml activin AGa daily 1 h pulse of 10 nM GnRH for 3 days. On day 4, the cells were given a further 1-h GnRH treatment and total protein extracts prepared. Levels of (A) phosphorylated Smad1/5 and (B) phosphorylated Smad2/3 were measured by western blotting and expressed relative to the respective total Smad proteins. Different letters indicate significant differences between treatment groups. Values represent meansGS.E.M. from one representative experiment; nZ2.

Figure 4

 4 Figure3Effects of BMP-4 on GnRH-R and follistatin mRNA expression. LbT2 cells were cultured with 0 or 50 ng/ml BMP-4 in the presence and absence of 50 ng/ml activin AGa daily 1-h pulse of 10 nM GnRH for 3 days. On day 4, total RNA was prepared and (A) GnRH receptor and (B) follistatin mRNA levels were measured by Taqman quantitative RT-PCR. Different letters indicate significant differences between treatment groups. Values represent meansG S.E.M. from one representative experiment; nZ3. Five experiments were performed with similar results.Figure4Activation of Smad signalling pathways. LbT2 cells were cultured with 0 or 50 ng/ml BMP-4 in the presence and absence of 50 ng/ml activin AGa daily 1 h pulse of 10 nM GnRH for 3 days. On day 4, the cells were given a further 1-h GnRH treatment and total protein extracts prepared. Levels of (A) phosphorylated Smad1/5 and (B) phosphorylated Smad2/3 were measured by western blotting and expressed relative to the respective total Smad proteins. Different letters indicate significant differences between treatment groups. Values represent meansGS.E.M. from one representative experiment; nZ2.

Figure 5

 5 Figure 5 Activation of ERK, p38 MAPK and CREB signalling. The LbT2 cells were cultured with 0 or 50 ng/ml BMP-4 in the presence and absence of 50 ng/ml activin AGa daily 1-h pulse of 10 nM GnRH for 3 days. On day 4, the cells were given a final GnRH pulse for 10 or 20 min and levels of (A) phosphorylated ERK1/2 expressed relative to total ERK1/2, (B) phosphorylated p38 expressed relative to a-tubulin and (C) phosphorylated CREB expressed relative to a-tubulin were measured by western blotting. Different letters indicate significant differences between treatment groups. Data shown for ERK1/2 and CREB are from 20-min GnRH treatment groups and for p38 from the 10-min GnRH treatment. Values represent meansGS.E.M. from one representative experiment; nZ2.
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