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Abstract

Epidemic models usually rely on the assumption of exponentially distributed sojourn times in infectious states. This is
sometimes an acceptable approximation, but it is generally not realistic and it may influence the epidemic dynamics as it
has already been shown in one population. Here, we explore the consequences of choosing constant or gamma-distributed
infectious periods in a metapopulation context. For two coupled populations, we show that the probability of generating
no secondary infections is the largest for most parameter values if the infectious period follows an exponential distribution,
and we identify special cases where, inversely, the infection is more prone to extinction in early phases for constant
infection durations. The impact of the infection duration distribution on the epidemic dynamics of many connected
populations is studied by simulation and sensitivity analysis, taking into account the potential interactions with other
factors. The analysis based on the average nonextinct epidemic trajectories shows that their sensitivity to the assumption on
the infectious period distribution mostly depends on R0, the mean infection duration and the network structure. This study
shows that the effect of assuming exponential distribution for infection periods instead of more realistic distributions varies
with respect to the output of interest and to other factors. Ultimately it highlights the risk of misleading recommendations
based on modelling results when models including exponential infection durations are used for practical purposes.
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Introduction

The use of mathematical models in the study of epidemic

dynamics, their mechanisms and their prevention and control

provided valuable insights and contributed to draw up the global

picture of epidemics occurrence, patterns and management [1].

Therefore, considering the impact of mathematical models in

epidemiology, it is important to build them on realistic assumptions.

Most often, in mathematical models for epidemic spread,

sojourn times in infectious states are exponentially distributed,

which means that the probability of recovery per unit of time is

constant, regardless of the time elapsed since infection. This

classical assumption is routinely used for mathematical tractability-

based reasons. Although this is sometimes an acceptable

approximation, it is not realistic in general.

Several papers have explored the impact of more realistic non-

exponentially distributed disease stages on the epidemic dynamics

(summarized by various criteria, such as basic reproductive number

(R0), extinction probability, speed of propagation, epidemic burden,

intensity of epidemic peak, etc) in single populations [2–5].

Most of these studies were motivated by the epidemiology of

childhood viral diseases, such as measles, in order to reproduce their

observed persistence patterns exhibiting localized extinctions. Since

models making the assumption of exponential distributed infectious

times were not able to mimic these observed patterns, Keeling and

Grenfell [3,6] tested constant sojourn times and provided

simulations characterized by increasing persistence and therefore

closer to observations. Independently, theoretical arguments were

provided by Lloyd [7,8] supporting the idea that constant infectious

periods had a destabilizing effect on the global dynamics leading

more often to extinction. This noticeable contradiction was

discussed by Keeling and Grenfell [9] who proposed as a possible

explanation the fact that parameters have to be updated with

respect to the model, when the same observed phenomenon was

described by different models. These authors argued that the results

provided by theoretical studies were not realistic since in these works

parameters were not updated when changing the model.

Recent papers in theoretical epidemiology have explored the

question of R0 estimation from data with respect to other

modelling assumptions, especially in the early phase of an

epidemic [4,10–13]. Their authors emphasized that caution has

to be paid when calculating R0 from estimations of the initial

growth rate, since the equation relating these two parameters

varies with respect to the distribution of the infection period.

Another category of modelling studies [14–19] have focused on

epidemic dynamics in a metapopulation context, an important

framework to explore when attempting to understand epidemic

dynamics at a large scale [20–24]. Indeed, human or animal

populations are not isolated; they influence each other (by

exchanging individuals, for instance). Therefore, pathogens spread

is the result of the complex interplay between intra-population

events and inter-population interactions.
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Despite the existence of numerous studies on these topics, less

attention has been paid to connect both aspects, non-exponentially

distributions for infectious periods and metapopulation global

dynamics. The metapopulation context can be illustrated, for

instance, by the transmission of an animal infection disease in a

group of connected farms. Since models are often used to test the

effectiveness of various interventions implemented at the scale of a

region including many herds and since the assumption on the

infectious stage distribution could affect model outcomes, it is

important to correctly assess its effect.

Here, we focus on the analytical and computer-based exploration

of different consequences of the introduction of non exponentially

distributed sojourn times in epidemic models developed for

metapopulation contexts. As already noticed, this is a question of

non negligible importance, especially when models are built to serve

as predictive tools. Indeed, the consequences of non realistic or

inadequate modelling choices could provide biased results and hence

orient towards inappropriate recommendations. Besides metapopu-

lation aspects, our study differs from recent work focused on R0

estimation as far as we adopt a different point of view on data.

Whereas these papers [10,12,13] are interested in the estimation of

R0 from data in the early stage of an outbreak, when little information

about a disease is available, and focus on the relationship between R0

and the observed growth rate, we address situations where some

knowledge about average epidemiological parameters of a disease is

available and when the modelling is used to predict propagation at

different time horizons. Indeed, such a situation can occur when

information such as mean and range of infection duration are

available based on expert opinion, but few data was collected. As an

example, it was shown that for the contagious bovine pleuropneu-

monia, a respiratory disease of cattle exhibiting very diverse clinical

patterns, constant infection durations were more appropriate than

exponentially distributed ones for describing experimental data [25].

In this study, we explore possible discrepancies in forecasted

dynamics in relation to model assumptions. More precisely, we are

interested in: (i) what would happen (in terms of global criteria such

as global epidemic burden, epidemic duration, extinction) if the

infectious period was constant or gamma instead of exponentially

distributed in a metapopulation context, when the epidemic is

described by a SIR (Susceptible-Infectious-Removed) model in each

patch and infection spreads between patches as a consequence of

individuals movements; (ii) how the differences between these global

criteria calculated for couples of distributions of the infectious period

would vary with respect to R0, the transmission rate, the mean

infection duration, the intensity of flows between patches and the

network structure in a stochastic metapopulation model (consisting

of p 6 (SIR) local models). Our approach is decomposed in two

steps. First we focus on analytical developments of a specific

criterion, the probability of early extinction, in single and two

coupled populations. Analytical calculation is dedicated to the

impact of the distribution of infectious period on the probability of

no secondary infections and of extinction after g generations by

extending the work of Keeling and Grenfell [3] to the case of gamma

distribution in single populations. The two-population case is also

explored concerning the probability that an infectious individual will

cause no secondary cases. Second, since analytical explorations are

intractable for more than two populations, we tackle the p-

population case, where populations are connected through various

networks and with different coupling intensities, by simulations using

event-driven and individual-based approaches and statistical analysis

of simulated data. We enlarge the framework by focusing on other

aspects of an epidemic (such as epidemic size and duration, etc) in

addition to the probability of early extinction. A sensitivity analysis

(conducted through an analysis of variance) of various epidemic

outputs (expressed as differences between outputs under different

assumptions on the infectious period distribution) with respect to

input factors such as R0 and network topology is performed.

Our paper is structured in several parts as follows: we first

present the basic mathematical formulation of epidemic models we

use, the main concepts necessary to the analytical explorations and

the main lines of the sensitivity analysis. In the theoretical part of

the results, analytical expressions of probabilities of early

extinction and of extinction after g generations for single

populations and two coupled populations are derived. In the

applied subsection of results, computer-based explorations are

performed for studying the sensitivity of the effects of infection

period distribution to the input factors in a metapopulation

framework. A general discussion is provided in the last section.

Throughout the article terms patch and population are used as syn-

onyms to designate a local community with homogeneous contacts.

Methods

State variables and transition probabilities of stochastic models are

first described. Then, we define probabilities of interest in single and

two-population models. Finally, we provide details on simulations

performed for models including more than two populations and on

statistical analysis of simulated data. Important parameters, variables

and functions used throughout the paper are defined in Table 1.

Formulation of the Stochastic Model
Analytical calculations and simulations are performed in a

continuous-time stochastic framework. Mathematical models used

here are classical epidemic models including three distinct disease

states and assuming a density-dependent force of infection. The

demography is not included, a situation that could fit to rapid

infections, spreading and developing on short time scales. The

metapopulation context is taken into account by the inclusion of

movements between local populations (into and from all compart-

ments) which are considered to have time invariant sizes on average.

Counts of individuals in each patch and for each disease state

are represented by random variables defined on a discrete state

space. The state of the global system at time t in patch i is

represented by the vector Xi(t)~(Si(t),Ii(t),Ri(t)), where Si(t),
Ii(t) and Ri(t) represent the number of susceptible, infectious and

recovered individuals respectively.

For the Markovian case, where the probability of future

behaviours of the process depends only on the present state, all

sojourn times are exponentially distributed. This implies that, for

instance, the rate of recovery is constant with respect to time

(illustrating the memorylessness of exponential distribution).

Transition probabilities for elementary changes in random

variables in each patch i are defined as follows:

P½Si(tzDt)~Si(t){1,Ii(tzDt)

~Ii(t)z1jX(t)�~biSiIiDt=Nizo(Dt)

P½Si(tzDt)~Si(t){1,Sj(tzDt)

~Sj(t)z1jX(t)�~sijSiDtzo(Dt)

P½Ii(tzDt)~Ii(t){1,Ri(tzDt)

~Ri(t)z1jX(t)�~cIiDtzo(Dt)

P½Ii(tzDt)~Ii(t){1,Ij(tzDt)

~Ij(t)z1jX(t)�~sijIiDtzo(Dt)

P½Ri(tzDt)~Ri(t){1,Rj(tzDt)

~Rj(t)z1jX(t)�~sijRiDtzo(Dt)

ð1Þ

Impact of Infection Duration
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where c is the recovery rate, bi and Ni are respectively the
transmission rate and the population size of patch i and sij~sji

(with sii~0) is the per capita rate of migration from patch i to
patch j.

When the sojourn time in infectious compartment is not

exponentially distributed, the associated jump process is no longer

Markovian. An appropriate way to deal with this case is to

consider the explicit history of each individual rather than a

population-based perspective, since in the absence of the lack-of-

memory property, removal times of individuals now depend on the

time of entering the infective state. In an individual-based

formulation, each individual ind of a population i can experience

one of the three possible types of transitions during the interval

(t,tzDt):

P(ind gets infected in(t,tzDt)jind was susceptible at t)

~biIiDt=Ni

P(ind moves from patch i to patch j in(t,tzDt)jind was in patch i at t)

~sijDt

P(ind recovers in(t,tzDt)jind has been infectious for dind time at t)

~
fn(dind )Dt

1{Fn(dind )
,

ð2Þ

where fn and Fn are respectively the probability density and

distribution functions of the random variable TI which represents

the sojourn time in the infectious state. We take fn:C(n,nc) (with

integer n§1) since this formulation embraces the three distribu-

tions of TI under study: exponential (for n~1), constant (when

n??) and gamma (for 1vnv?). This last case could

correspond to a situation where the infectious state of a disease

consists in n distinct stages, which can be differentiated based on

distinct symptoms. Indeed, the duration of a process decomposed

in a sequence of n independent stages can be modelled by a

C(n,nc) distribution (which can be written as the sum of n
independent exponentially distributed random variables of

parameter c). This restriction to integer values for the shape

parameter n (which corresponds to the Erlang distribution) is very

useful in modelling since it captures real scenarios. The mean of

the infectious period is the same for all distributions,

E(TI )~1=c~tIVn.

Definition of Probabilities of No Secondary Cases in
Single and Two Coupled Populations and of Extinction
after g Generations of Infecteds in Single Populations

The probabilities of producing no secondary cases related to

early extinction and of extinction after g generations summarize

the main interesting dynamical behaviours, since they provide

information on extinction at different stages in the epidemic

evolution. They also allow the comparison between models

incorporating gamma distributed infectious sojourn times (with

exponential distributed and constant infectious periods are the two

extremes) with equal means and with different variances. Prior to

performing the comparison of these probabilities provided in the

results section, we define them in the context of single and two-

coupled populations.

Similarly to Keeling and Grenfell [3], the individual level

perspective is considered by introducing the random variable Xr

representing the number of secondary cases generated by an

infectious individual (R0 is then the expected value of Xr).

Subscripts indicating the population (as in eq. (1)) are not used in

order to avoid overloading notations. According to [3], the

probability of generating r secondary cases by any infectious

individual, depending on the shape parameter n of fn, is given by

the expression:

Pn(r)~P(Xr~r)~

ð?
0

fn(u)e{bSu=N (bSu=N)r

r!
du, ð3Þ

if we assume that new infections are realisations of a homogeneous

Table 1. Summary of important parameters, variables and
functions.

Name Expression Definition

S(t) Number of susceptibles at t

I(t) Number of infecteds at t

R(t) Number of recovereds at t

TI (day) R.v.* infectious period

c (day{1) Recovery rate

tI (day) 1=c Mean of TI

b (day{1) Transmission rate

s (day{1) Intensity of migration

l bS=N Rate of generation of new cases

R0 b=c Basic reproductive number

R bS=Nc Effective reproductive number

Xr R.v.* number of secondary cases
generated by an infectious
individual

fn(u):C(n,nc) (cn)nun{2e{unc

(n{1)!

Probability density function of TI

T1 (day) Mixed r.v.* time spent in the first
population by an individual during
his infectious period in a 2-
population model

g(u,t) cf. eqs. (4) and (14) Continuous component of T1

mu e{s1u Mass component of T1

Pn(r) cf. eqs. (3) and (9) Probability of Xr~r in single
populations

P2pop
n (r) cf. eq. (4) Probability of Xr~r in a

2-population model

Pn(0) cf. eqs. (5) and (9) Probability of Xr~0 in single
populations

P2pop
n (0) cf. eq. (6) Probability of Xr~0 in a

2-population model

Pn,ext(g) cf. eq. (7) Extinction probability after g

generations of infecteds in single
populations

P2pop
n (0D1 jump) cf. eq. (15) Probability of Xr~0 in a

2-population model given that the
infectious individual generating
secondary cases moves only once
between populations

Gn(z) cf. eq. (10) Probability generating function of
Xr

CY
f

cf. eq. (8) Sensitivity index equal to the
contribution of factor f to the
variation in Y

*R.v. = random variable.
All the variables or functions indexed by n are related to the distribution C(n,nc)

of TI .
doi:10.1371/journal.pone.0009371.t001

ð2Þ

Impact of Infection Duration
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Poisson process and are produced at a constant rate l~bS=N.

That is, the proportion S=N of susceptible individuals

remains constant at the beginning or for the duration of an

epidemic, which could be generally not so unrealistic for large

populations.

In the case of two coupled populations, the production of new

cases in each patch is assumed to follow homogeneous Poisson

processes of intensities l1 and l2 respectively. Let us also define

T1, the random variable representing the time spent by an

individual in the first patch (assumed to be his origin) during his

infectious period u, over all successive sojourns. Given TI~u, T1 is

mixed, since it consists of a mass at u (associated with the Dirac

mass equal to 1 in u and to 0 elsewhere) and an absolutely

continuous component on (0,u). The mass component, noted by

mu, corresponds to the case where the individual does not leave his

initial patch. The continuous component, noted by g(u,t), is a

continuous function of variables u (the infectious duration of the

individual) and t (the part of u spent in population 1). We also

introduce r1, the variable representing the number of secondary

cases that this individual generates in the first patch, given that he

globally produces r secondary infections. Then, the probability of

generating r secondary cases in two coupled populations by any

infectious individual moving from one population to the other,

depending on n and noted by P2pop
n (r) is defined by:

P2pop
n (r)~P(Xr~r secondary cases in the two patches)~

ð?
0

fn(u)
Xr

r1~0

ðu{

0

g(u,t)e{l1t (l1t)r1

r1!
e{l2(u{t) (l2(u{t))r{r1

(r{r1)!
dtzmue{l1u (l1u)r

r!

0
@

1
Adu:

ð4Þ

From eqs. (3) and (4), probabilities of generating no secondary

cases (r~0), are obtained for single and two coupled populations:

Pn(0)~

ð?
0

fn(u)e{ludu ð5Þ

and

P2pop
n (0)~

Ð?
0

fn(u)e{l1u
Ð u{

0
g(u,t)e(u{t)(l1{l2)dtzmu

� �
du, ð6Þ

respectively, where mu~e{s1u and g(u,t) has to be calculated.

Another criterion for comparing the impact of fn shape on

epidemic dynamics is the extinction probability after g genera-

tions, if the production of new cases is interpreted as a branching

process. Similarly to [3], this probability can be expressed in a

single population under a recursive form:

Pn,ext(g)~
X?
r~0

Pn(r)Pn,ext(g{1)r: ð7Þ

Ingredients for a Sensitivity Analysis of the Outputs of
Epidemic Dynamics in Metapopulations

Analytical investigations become less tractable for more

than two populations, especially for situations where the

connections between populations are not homogeneous, i.e. not

all populations are connected or migration intensities are different

between couples of populations. Moreover, the matter of

extinction in metapopulations was explored by simulations

elsewhere [1].

In order to explore more broadly the interplay between

infectious period shape and other factors (such as R0 and

network connectivity) in terms of impacts on metapopulation

dynamics, a sensitivity analysis evaluating how model out-

puts vary when entries are modified is performed. Special atten-

tion is paid to the potential influence of the network (mainly in

terms of mean connectivity) through which populations are

connected.

The sensitivity analysis is conducted through an analysis of

variance (ANOVA). In this kind of analysis, the variance of each

dependent variable is partitioned into components due to different

factors in order to see if the variability observed in the dependent

variable is due to variations in factors or results from ‘‘by-chance’’

effects. Factors are independent variables whose values are

controlled and varied by the experimenter. Dependent variables

represent the response that is observed as a consequence of the

independent variables being manipulated.

In the following, details are given on the input factors, the

dependent variables and the formulas used to assess the effect of each

factor.

Several input factors are tested: (i) the shape of the infectious

period distribution, (ii) R0, (iii) the transmission rate (b), (iv) the

mean infection duration (tI ), (v) the migration rate (s) and (vi) the

network topology.

Three special shapes for the infectious duration distribution

belonging to gamma family are considered: TI*C(1,c) (:Exp(c);

exponential), TI~1=c (constant) and TI*C(3,3c) (gamma).

For each of the remaining input factors, several values (reported

in Table 2) are chosen to illustrate a large panel of possible realistic

situations in terms of capacity of transmission, average duration of

infection as well as coupling and connectivity between populations.

In these scenarios, R0 (calculated as b � tI ) lies on a range from 0.4

to 9.

Several networks structures are proposed in order to test the

influence of the connectivity structure, both in terms of mean

connectivity and degree distributions (since not all nodes in a

network have the same number of connections). These two

characteristics are known to be particularly important for

mechanisms by which diseases spread over networks [26]. First,

the networks tested here are chosen to represent a large panel of

topologies according to the two mentioned features. They are the

ring, the star, the completely connected network, the homoge-

ð4Þ

Table 2. Values taken by input factors in ANOVA.

Parameters Definition Values

Distribution Infectious period
distribution

TI*Exp(c), TI*C(3,3c), TI ~1=c

b (day{1) Transmission rate 0:08, 0:1, 0:2, 0:3

tI (day) Mean infection duration 5, 10, 15, 30

s (day{1) Intensity of migration 10{4, 2:5610{4, 7:5610{4, 10{3

Network Network topology Complete, Ring, Star,
Homogeneous-random (6, 10, 20,
30, 40, 50)*, Scale-free (6, 10, 20, 30,
40, 50)*

All the values for the 4-uples (b, tI , c and Network) were considered for each of

the three shapes of the infection duration distribution (960 different scenarios).

In ANOVA all these factors were treated as ordinal variables by transforming

numerical values in ordered categories.
*Numbers in brackets represent mean connectivities of networks that were tested.
doi:10.1371/journal.pone.0009371.t002
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neous-random network and the scale-free network. For our

metapopulation comprising 100 population (or nodes) the mean

connectivity is equal to 99 for the completely connected network, 2

for the ring network and 1.98 for the star network. For the

homogenous-random and scale free networks several average

degrees of connectivity were tested: 6, 10, 20, 30, 40 and 50.

Second, for a given mean connectivity, the networks tested are also

different according to the distribution of their degree of

connectivity: e.g. a homogenous-random network is characterized

by a Poisson distribution, whereas a scale-free network has a

power-law tail and comprises both highly connected hubs and very

low connected nodes [26].

All the scenarios obtained by crossing the values given in Table 2

are simulated: 960 scenarios are tested for each of the three

distributions of the infectious period. For each scenario, the

parameters are taken equal for all populations.

The following dependent variables (represented here by epidemic

outputs) are considered for each simulated scenario corresponding to a

fixed set of parameters and many simulation runs: (i) the proportion

of minor epidemics, (ii) the epidemic duration, (iii) the date of intra-

population epidemic peak averaged over all the populations of the

network, (iv) the date and (v) the size of the epidemic peak of the

metapopulation (considered as a whole) and (vi) the final epidemic

size. All but (i) criterion are calculated for major epidemics only.

Minor epidemics (assimilated to the probability of early extinction)

and major epidemics (i.e. epidemics that do not undergo early

extinction) are distinguished according to the proportion of

population that is finally infected. More precisely, for each scenario

P(minor epidemic)~P(early extinction)~P(s(?)w0:95) (where

s(?) represents the proportion of susceptibles in the total population

at the end of the outbreak) and is calculated as

Pnruns

1
1s ?ð Þw0:95

nruns
(where

nruns is the number of simulation runs by scenario). Similarly, major

epidemics correpond to epidemic trajectories which satisfy the

constraint s(?)ƒ0:95.

Criteria (iv), (v) and (vi) are calculated at both individual and

population levels. For each scenario and for all but (i) dependent

variables, means and variances over major epidemics among

simulation runs are calculated.

Since we focus our interest on the shape of the distribution of

the infectious period, we separately consider this factor. Therefore,

for each scenario, three variants are considered for each

dependent variable except for the proportion of minor epidemics:
0E{G’ (difference between the value of the output simulated with

the exponential distributed infectious period and the value

corresponding to the gamma distributed infectious period),
0G{C’ (difference between the value of the output simulated

with the gamma distributed infectious period and the value

corresponding to a constant infectious period) and 0E{C’
(difference between the value of the output simulated with the

exponential distributed infectious period and the value corre-

sponding to a constant infectious period).

The global contribution of factor f to the variations in the

dependent variable Y is assessed through a sensitivity coefficient, CY
f ,

including the principal effect and first-order interactions in which

factor f is involved [27]:

CY
f ~

SSY
f z

1

2

X
l,l=f

SSY
f :l

SSY
tot

: ð8Þ

In eq. (8) SSY
tot~

P
f (SSY

f z1=2
P

l,l=f SSY
f :l)zSSY

error~

SSY
regzSSY

error is the total sum of squares (i.e. the sum of squared

distances from any point in the dataset to the mean of the data) for

the dependent variable Y , SSY
f is the sum of squares related to the

principal effect of factor f on Y and SSY
f :l represents the sum of

squares related to the effect of interactions between factors f and l

on Y . In our analysis, one ANOVA is carried out separately for

every dependent variable Y which corresponds to each of the

three variants (’E{G’, ’G{C’ and ’E{C’) of epidemic outputs

previously described. f corresponds to each of our input factors.

Logarithmic transformation is used for the dependent variables.

This or other appropriate transformations of dependent variables

are sometimes needed to render linear their relationships with

factors, in order to fulfil one of the main assumptions of standard

ANOVA (which assumes a linear regression).

In order to more specifically identify factors influencing the

proportion of minor epidemics (accounting for early extinction) we

also calculate partial rank correlation coefficients (PRCC) for this

variable. PRCCs allow the quantification of the non linear

association between a given input and the dependent variable

when controlling for the other input parameters.

Simulations are performed using a model including p~100
populations of Ni~20 individuals each, coupled by identical

migration rates (sij~sji~s,Vi,j) and with equal transmission rates

(bi~b,Vi). The initial condition is generated by randomly seeding

5 of 100 populations of the network (Ii(0)~1 and Si(0)~19 for 5

of 100 populations and 0 and 20 respectively for all remaining

ones; Ri(0)~0,Vi). For each scenario, 300 simulation runs are

performed using a time continuous event-driven approach based

on eqs. (1) and (2) and including three categories of possible events:

(i) infection of a susceptible individual (to which corresponds an

Figure 1. Comparison of probabilities of no secondary cases in
a two-population model. On y-axis P refers to P

2pop
3 (0) (closed

circles) and P2pop
? (0) (open circles). On x-axis Pexp refers to P

2pop
1 (0). For

each of the three probabilities, 100 points with different parameter
combinations were generated (l1,l2,s1 and s2 were drawn from
exponential distributions and c was taken equal to 1). The points
represent means over 100000 Monte-Carlo simulations of a time
continuous event-driven approach: one infectious individual is intro-
duced in one population and the probability of no secondary cases is
calculated based on the time spent in each population. Estimated
average standard deviation for computed values was below 0:001. All
parameters and variables are explained in Table 1.
doi:10.1371/journal.pone.0009371.g001
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exponential distributed sojourn time in compartment S of

parameter biSiIi=Ni), (ii) recovery of an infectious individual (to

which corresponds exponential, gamma distributed or constant

sojourn times in compartment I of parameters c, n and nc and 1=c
respectively) and (iii) migration of an individual between

populations regardless of his disease state (to which corresponds

an exponential distributed sojourn time in the population of origin,

i, before leaving for population j, of parameter sij ). In the case

where all transitions are Markovian we use the classical Gillespie’s

algorithm (details in [1], p201) that simulates the time until the

next event and its type. For gamma distributed or constant

infectious duration, when the transitions from infectious to

recovered states are no longer Markovian, it is necessary to

explicitly simulate the history of each individual instead of using

the Gillespie’s algorithm. In this individual-based approach, the

time until the next event considering the metapopulation as a

whole will be the minimum over all the individual times.

Algorithms are implemented in C language. The various network

topologies underlying the metapopulation are generated using

sispread software [28].

Results

Comparison of Probabilities of No Secondary Cases and
of Extinction after g Generations of Infecteds in Single
Populations with Respect to the Infectious Period Distribution

First, we expanded the work of Keeling and Grenfell [3] who

treated the case of constant distributions for one population, to the

gamma distributed sojourn times. We then extended our analysis

to the case of two populations.

For a gamma distributed infectious period TI*C(n,nc) (i.e.

fn(u)~(cn)nun{1e{ucn=(n{1)!, where n takes positive nonzero

integer values), eq. (3) becomes:

Pn(r)~

ð?
0

(lu)r(cn)nun{1e{u(cnzl)

r!(n{1)!
dt

~
R=n

1zR=n

� �r
1

1zR=n

� �n

Cr
n,

ð9Þ

where R~R0S=N~bS=Nc~l=c is the effective reproductive

number and Cr
n~

nzr{1

r

� �
~(nzr{1)!=((n{1)!r!). This

generalizes the expressions found in [3] for the cases where

TI* Exp(c) and TI~1=c which can be recalculated from eq. (9)

by making n~1 and n??, as P1(r)~
R

1zR

� �r
1

1zR

� �
and

P?(r)~e{R Rr

r!
respectively.

The probability of generating no secondary infections, Pn(0),
defined in eq. (5), can be viewed as a particular case of the

probability generating function (p.g.f.) of Xr. Let Gn(z)~P?
r~0

Pn(r)zr (z[(0,1)) denote the p.g.f. of Xr when TI*C(n,nc).

Using eq. (9) Gn(z) becomes:

Gn(z)~
1

1z(R(1{z))=n

� �n

: ð10Þ

Figure 2. Comparison of probabilities of no secondary cases in a two-population model where individuals move only once. Variation
of P

2pop
1 (0D1){P

2pop
3 (0D1) is represented as a function of l2=c and l1=c which vary on plausible ranges of values, under the constraint l2=c§l1=c. All

parameters and variables are explained in Table 1.
doi:10.1371/journal.pone.0009371.g002
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For any z in (0,1), Gn(z)ƒGnz1(z) (the inequality is strict unless

z~1). This is easily shown by considering the continuous function

G(x)~
1

1z(R(1{z))=x

� �x

which has a negative derivative G’(x)~

G(x)
R(1{z)

R(1{z)zx
zln

x

R(1{z)zx

� �
for any z[(0,1). Moreover,

limn?? Gn(z)~e{R(1{z) which corresponds to the p.g.f. of Xr when

the infectious sojourn time is constant. As Pn(0)~Gn(0), we have,

Vnw1:

P1(0)wPn(0)wP?(0): ð11Þ

This inequality implies that, for a given individual, the probability of

producing no secondary infections is the greatest if the sojourn time in

the infectious compartment follows an exponential distribution, which

means that in this case the infection is more prone to extinction in

early phases.

An order relation can be also established on Pn,ext(g) defined in eq.

(7). As Pn,ext(0)~Pn(0), following eq. (11), we have more generally

that Pn,ext(0)§Pnz1,ext(0), Vn§1. By recurrence, we can show that

this inequality holds for all g. We assume that this statement is true for

g{1 and will prove that it is also true for g. Indeed, by using the fact

that, for any z in (0,1), Gn(z) is strictly decreasing in n (unless z~1)

we have that: Pn,ext(g)~Gn(Pn,ext(g{1))§Gn(Pnz1,ext(g{1))§

Gnz1(Pnz1,ext(g{1))~Pnz1,ext(g). This inequality, suggesting that

the exponential model drives more often to extinction even in long

term, also holds for the ultimate extinction (whose probability is, for a

Galton-Watson process, equal to the smallest positive root of

Gn(z)~z). This corroborates the well known result postulating the

decrease of the extinction probability as n increases.

Comparison of Probabilities of No Secondary Cases in a
System of Two Coupled Populations with Respect to the
Infectious Period Distribution

The main scope of this section is to derive a simpler expression

for eq. (6), at least for special cases. In a more general context,

Takacs [29] provided the distribution of the total time spent in one

given state during the time interval (0,u) for a process which is

assumed alternating between two states. The case where the

process is Markovian is treated as a particular case in [29]. Then,

g(u,t) can be calculated as LdtV(u,u{t), where V(u,t)~

e{s1(u{t) 1z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1s2(u{t)

p Ð t

0
e{s2yy{1=2I1 (2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1s2(u{t)y

p
)dy

� �
is given in [29], with I1(x)~

P?
j~0

(x=2)2jz1

j!(jz1)!
the modified Bessel

function of the first kind of order 1.

Instead of differentiating V(u,u{t) we prefer to provide a more

direct and intuitive way to calculate g(u,t). If the number of jumps

from one population to the other, which can be odd (2kz1) or

Figure 3. Dynamics of global number of cases and cumulative incidence described by a stochastic metapopulation model based on
a completely connected network. Early extinct trajectories were not considered. The mean (blue curve) was calculated over major epidemics only
(corresponding to a final attack rate greater than 5%). Simulations are performed using a time-continuous event-driven approach with TI*Exp(c)
(top panel), TI*C(3,3c) (middle panel) and TI ~Const~1=c (bottom panel). Parameters values are given in the subsection Examples of Results.
doi:10.1371/journal.pone.0009371.g003
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even (2k), is taken into account, we can write g(u,t)~P?
k~1

g2k(u,t)z
P?

k~0

g2kz1(u,t). Let us explain the case where the

number of switches between populations is odd (~2kz1), the

individual spending kz1 time intervals in each patch. If the

respective durations of these time intervals are t1,j and t2,j

(j~1,:::,kz1), their joint probability density function is:

ft(t1,1,t2,1,t1,2,t2,2,:::,t1,kz1,t2,kz1)

~s1e{s1t1,1 s2e{s2t2,1 :::s1e{s1t1,kz1 e{s2t2,kz1

~skz1
1 e

{s1

Pkz1
j~1

t1,j sk
2e

{s2

Pkz1
j~1

t2,j

~skz1
1 e{s1tsk

2e{s2(u{t):

g2kz1(u,t) is obtained by integrating over all possible values of t1,j

and t2,j :

ðt

0

ðu{t

0

:::

ðt{t1,1{:::{t1,k{1

0

ðu{t{t2,1{:::{t2,k{1

0

ft(x1,1,x1,2,:::,x1,k ,x2,k)dx1,1dx1,2:::dx1,kdx2,k

~s1
(s1t)k

k!
e{s1t (s2(u{t))k

k!
e{s2(u{t):

ð12Þ

The case where the number of jumps is even is inferred in a similar

manner:

g2k(u,t) ~
(s1t)k

k!
e{s1ts2

(s2(u{t))k{1

(k{1)!
e{s2(u{t): ð13Þ

Finally, by summing up eqs. (12) and (13) over all values of k we

obtain:

g u,tð Þ

~e{s1t{s2 u{tð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1s2t u{tð Þ

p
u{t

I1 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1s2t u{tð Þ

p� �
zs1I0 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s1s2t u{tð Þ

p� � !
,

ð14Þ

Figure 4. Dynamics of infected populations and cumulative incidence (in number of populations) described by a stochastic
metapopulation model based on a completely connected network. Early extinct trajectories were not considered. The mean (blue curve) was
calculated over major epidemics only (corresponding to a final attack rate greater than 5%). Simulations are performed using a time-continuous
event-driven approach with TI*Exp(c) (top panel), TI*C(3,3c) (middle panel) and TI ~Const~1=c (bottom panel). Parameters values are given in
the subsection Examples of Results.
doi:10.1371/journal.pone.0009371.g004

ð12Þ

ð14Þ
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where I0(x)~
P?
j~0

(x=2)2j

j!j!
is the modified Bessel function of the first

kind of order 0.

When replacing eq. (14) in eq. (6), the expression of P2pop
n (0) is

too cumbersome for allowing the comparison with respect to

different shapes of fn. In order to circumvent this problem, the

comparison is first explored numerically and then performed

analytically on simplified but realistic cases.

We calculate P
2pop
1 (0) (TI*Exp(c)), P

2pop
3 (0) (TI*C(3,3c)) and

P2pop
? (0) (TI~1=c) for 100 distinct sets of parameter values (for s1,

s2, l1 and l2). Each value of P2pop(0) in Figure 1 represents the mean

over 100000 Monte-Carlo simulations of a time continuous event-

driven approach. According to our simulations, P2pop
n (0) decreases

with n for most of the parameter combinations tested. Nonetheless,

the graphic also suggests the existence of regions in the parameter

space where P2pop
? (0)wP

2pop
1 (0) (both probabilities being close to 1).

The following two special cases illustrate each of these situations.

Let us consider the case where the individual cannot transmit

the disease within his initial population (l1~0) where he cannot

return (s2~0) once he left. If we take s1~l2~m, we have

P
2pop
1 (0)~

1z2m=c

(1zm=c)2
vP2pop

? (0)~e{m=c(1zm=c) for all m=cvr,

where r is the root of P
2pop
1 (0){P2pop

? (0)~0.

Another example practically relevant corresponds to a situation

where the number of movements between patches is fixed and equal

to one and there is the same probability to switch between patches

(s1~s2~s). This configuration could correspond to a metapopu-

lation of farms, where animals do not change their original location,

unless their are sold (or bought), events that generally occur only

once during their lifetime. In this specific case, g(u,t) is replaced by

g(u,tD1 jump) and can be calculated using Bayes’ formula as

g(u,tD1 jump)~
g(u,t,1 jump)Ð u

0
g(u,t,1 jump)dt

~
se{suÐ u

0
se{sudt

~
1

u
: When re-

placing this expression in eq. (6), where T1 is reduced to its

Figure 5. Dynamics of global number of cases and cumulative incidence described by a stochastic metapopulation model based on
a scale-free network with mean degree of connectivity equal to 10. Early extinct trajectories were not considered. The mean (blue curve) was
calculated over major epidemics only (corresponding to a final attack rate greater than 5%). Simulations are performed using a time-continuous
event-driven approach with TI*Exp(c) (top panel), TI*C(3,3c) (middle panel) and TI ~Const~1=c (bottom panel). Parameters values are given in
the subsection Examples of Results.
doi:10.1371/journal.pone.0009371.g005
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continuous component only, we obtain:

P2pop
? 0j1 jumpð Þ~ e{l1=c{e{l2=c

(l2{l1)=c
,

P
2pop
1 0j1 jumpð Þ~ ln(l2=cz1){ln(l1=cz1)

(l2{l1)=c
,

P2pop
n 0j1 jumpð Þ~ nn

(n{1)(l2{l1)=c

1

(l1=czn)n{1
{

1

(l2=czn)n{1

 !
:

ð15Þ

P2pop
n (0D1 jump) can also be viewed as the mean of the

random variable h(TI ), where h(u)~
e{l1u{e{l2u

u(l2{l1)
. Indeed,

P2pop
n (0D1 jump)~

Ð?
0

(cn)nun{2e{unc

(n{1)!

e{l2u

u
du

ðu

0

e{t(l1{l2)dt

� �
~

Ð?
0

(cn)nun{2e{unc

(n{1)!

(e{l1u{e{l2u)

u(l2{l1)
du~E½h(TI )�. According to

Jensen’s inequality applied to the convex function h(u), we obtain

that P2pop
n (0D1 jump)~E½h(TI )�§h(E½TI �)~P2pop

? (0D1 jump). For

l2=c and l1=c varying on a plausible range of values we have that

P
2pop
1 (0D1 jump){P

2pop
3 (0D1 jump)w0, as illustrated in Figure 2. In

this case P
2pop
1 (0D1 jump)§P

2pop
3 (0D1 jump)§P2pop

? (0D1 jump).

Contrary to single homogeneously mixing populations, where

the probability of generating no secondary cases always decreases

as n increases, in the case of two coupled populations the

monotony of P2pop
n (0) depends on parameter values: it is increasing

when P2pop
n (0) is close to 1 and decreasing elsewhere.

Examples of Simulated Epidemic Dynamics in a
Metapopulation

As an example, here we present for comparison graphical results

for a complete graph and a scale-free network with mean degree

of connectivity equal to 10. These results illustrate the impact of

the mean connectivity and the distribution of the degree of

Figure 6. Dynamics of infected populations and cumulative incidence (in number of populations) described by a stochastic
metapopulation model based on a scale-free network with mean degree of connectivity equal to 10. Early extinct trajectories were not
considered. The mean (blue curve) was calculated over major epidemics only (corresponding to a final attack rate greater than 5%). Simulations are
performed using a time-continuous event-driven approach with TI*Exp(c) (top panel), TI*C(3,3c) (middle panel) and TI ~Const~1=c (bottom
panel). Parameters values are given in the subsection Examples of Results.
doi:10.1371/journal.pone.0009371.g006

ð15Þ
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connectivity on the outputs of an epidemic spreading on the

network, since the two networks selected are different with respect

to these two factors. For each of the three models based on

different infectious period distributions, TI*Exp(c) (exponential),

TI~1=c (constant) and TI*C(3,3c) (gamma), with equal mean

1=c~10 days (corresponding to R0~2), simulations were per-

formed for p~100 populations of Ni~20 individuals each,

coupled by identical migration rates (sij~sji~0:001,Vi,j) and

characterized by equal transmission rates (bi~0:2day{1,Vi). Five

of the 100 populations were randomly seeded with I(0)~1.

Whatever the scenario considered (Figures 3, 4, 5, 6) and for the

parameter values used here, there is a high variability in incidence

at the individual and the population levels. Epidemic spread is

slowed down by the random nature of the migration between

populations. This effect is increased when the mean connectivity

decreases (Figures 5, 6). Regardless of the network structure,

noteworthy differences between dynamics with respect to the

distribution of infectious sojourn time are obtained for the

amplitude and the date of the epidemic peak and the epidemic

duration. Peaks of the mean incidence at individual and

population levels decrease from TI~Const~1=c to

TI*C(3,3c) and to TI*Exp(c). In contrast, the epidemic

duration and the variability in incidence increase from the

constant to the exponential distributed sojourn times in infectious

status (left graphs of Figures 3, 4, 5, 6). For both network

topologies in our example, the maximal epidemic duration roughly

doubles between the constant and the exponential distributed

infectious time based models. The main difference between the

networks tested, which could potentially interfere with the

influence of the infection time distribution, is illustrated in

Figure 7. This figure represents the empirical distribution of the

final epidemic size calculated on the 300 stochastic simulations for

each scenario. The proportion of minor epidemics is significantly

lower in the completely connected graph compared to the low

connected scale-free network (right and left panels of Figure 7

respectively), since this latter network facilitates the occurrence of

Figure 7. Distribution of the final epidemic size. Calculation was performed on 300 simulations of a stochastic metapopulation model based on
a completely connected graph (left panel) and on a scale-free network with mean degree of connectivity equal to 10 (right panel), with TI*Exp(c)
(top graphs), TI*C(3,3c) (middle graphs) and TI ~Const~1=c (bottom graphs). Parameters values are given at page 10.
doi:10.1371/journal.pone.0009371.g007
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early fade-outs. Moreover, this probability decreases from

exponentially distributed to constant infectious durations for both

networks. This tendency is more marked for the scale-free

network.

Sensitivity Analysis of the Outputs of Epidemic Dynamics
in Metapopulations

As illustrated by simulations described in the previous section, the

choice of the distribution of the infection duration has various

impacts on global epidemic outputs such as epidemic duration,

epidemic size or epidemic peak in a metapopulation. In addition,

these impacts could vary with respect to other parameters. The

sensitivity analysis provides a quantification of these potential

interactions. Namely, we explore whether predominant contribut-

ing factors are the same for every output of the epidemic and also if

they are identical for the three variants ’E{G’, ’G{C’ and ’E{C’
of a given output. Results are summarized in Figure 8, 9 and 10:

each bar is decomposed in segments with heights equal to the

sensitivity coefficients, which evaluate the percentage of the global

variability of the dependent variable explained by each factor.

In order to explicitly illustrate our sensitivity analysis approach,

let us describe, as an example, the statistical analysis performed on

the epidemic size. For a given set of parameters we simulate

epidemics with exponentially, gamma distributed and constant

infectious periods and calculate means and variances of their

epidemic sizes, noted by MESexp, MESgamma, MESconst, VESexp,

VESgamma, VESconst respectively. To account for nonlinear

relationships between outputs and factors we apply the log

transformation to outputs. Then, a classical ANOVA is performed

on each couple of differences, as dependent variables, (log(ME-

Sexp)-log(MESgamma)), (log(MESgamma)-log(MESconst)), (log(ME-

Sexp)-log(MESconst)), (log(VESexp)-log(VESgamma)), (log(VESgamma)-

log(VESconst)) and (log(VESexp)-log(VESconst)). For each of these

dependent variables, sensitivity coefficients are then calculated

using the equation (8) for each of the factors of interest (Figures 8,

9, 10). Let us focus on differences between exponential and

gamma based models. For instance, according to Figure 8, we can

say that R0 is the most influential factor impacting on the

difference in the mean epidemic expressed in terms of infected

individuals. In other words, the error in the prediction of the mean

epidemic size committed if an exponential distribution was used

instead of more realistic gamma distribution for the infectious

duration heavily depends on R0. At a population scale, the most

important factor for the epidemic size is the migration intensity,

whereas differences in variances are almost equally and weakly

impacted by all factors.

Figure 8. Results of ANOVA on 960 simulated scenarios of epidemic spread with parameter values given in Table 2. Dependent
variables (on x-axis) are logarithm of means (over the non early extinct dynamics) of global variables (directly referring to individuals regardless of their
population of origin): size and duration of the epidemic, size and date of the epidemic peak. For each of these outputs three variants are considered
with respect to the distribution of infection duration: ’E{G’ (difference between the value of the output simulated with the exponentially
distributed infectious period and the value corresponding to the gamma distributed infectious period), ’G{C’ (difference between the value of the
output simulated with the gamma distributed infectious period and the value corresponding to a constant infectious period) and ’E{C’ (difference
between the value of the output simulated with the exponentially distributed infectious period and the value corresponding to a constant infectious
period). Different pattern fills correspond to contributions of five input factors (mean infection duration, network, transmission rate, R0 and migration
intensity) to the variation in outputs amongst scenarios.
doi:10.1371/journal.pone.0009371.g008
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More generally, when analyzing means over major epidemics of

outputs directly referring to individuals, the main factors

explaining their variations are first the mean infection duration

and second the network structure or R0, depending on the output

of interest (Figure 8). The migration intensity contributes the least

to the majority of outputs. This order of importance is preserved

for most outputs whatever the distributions compared (’E{G’,
’G{C’ and ’E{C’). For outputs directly referring to the

population level (Figure 9), the mean infection duration and the

network structure are the most important factors for the majority

of outputs. As an exception, the migration intensity plays the

major role for the ’E{G’ variant of the epidemic size and of the

peak of prevalence. The outputs expressed as variances over all

simulated major epidemics (Figure 10) are less influenced by input

factors. For the majority of outputs the most contributing factors

are R0, the network structure, and the mean infection duration. It

is noticeable that the variance of ’E{C’ variant of nearly all

outputs is better explained (higher coefficients of determination

R2) by input factors than ’G{C’ and ’E{G’ variants.

Regarding the early extinction, the most important correlations

of the proportion of minor epidemics are with R0 (PRCC =

20.57), the migration intensity (PRCC = 20.48) and the network

(PRCC = 20.36). The metapopulation epidemic has more chanc-

es to go extinct as R0 decreases and as populations are less

connected. The distribution of the infectious period is more

weakly correlated with the proportion of early extinct dynamics

(PRCC = 0.13).

Discussion

In this paper, we studied the impact of the infectious period

distribution on the global dynamics described by a metapopulation

model comprising many patches. Since assuming exponential

sojourn times in infected states is a common approximation used

in most of mathematical models, we were interested in evaluating

the potential bias that such an assumption would introduce at a

global scale of an epidemic. Besides some analytical developments

extending the work of Keeling and Grenfell [3] in single

populations, we deliberately focused our attention on metapopu-

lations. There are two main reasons for this choice. First, the

impact of the infection period distribution in single populations

was extensively explored in the literature ([2,3] and many other

studies, especially in the context of HIV epidemic). Second, we

were interested in exploring the potential interactions between

effects of the infection duration distribution and of exogenous

factors (such as the topology of the network underlying the

metapopulation, or the migration intensity), elements which are

not present in single populations.

Figure 9. Results of ANOVA on 960 simulated scenarios of epidemic spread with parameter values given in Table 2. Dependent
variables (on x-axis) are logarithm of means (over the non early extinct dynamics) of global variables (referring to populations): size and duration of the
epidemic, size and date of the epidemic peak. For each of these outputs three variants are considered with respect to the distribution of infection
duration: ’E{G’ (difference between the value of the output simulated with the exponentially distributed infectious period and the value
corresponding to the gamma distributed infectious period), ’G{C’ (difference between the value of the output simulated with the gamma
distributed infectious period and the value corresponding to a constant infectious period) and ’E{C’ (difference between the value of the output
simulated with the exponentially distributed infectious period and the value corresponding to a constant infectious period). Different pattern fills
correspond to contributions of five input factors (mean infection duration, network, transmission rate, R0 and migration intensity) to the variation in
outputs amongst scenarios.
doi:10.1371/journal.pone.0009371.g009
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First, we performed analytical investigations. As mentioned above,

we extended developments of [3] for single populations to the case of

gamma distributed infectious durations, and showed that the

probability of extinction in early phases increases with the variance

of the infectious duration (which is the largest for exponential

distribution, given the same mean for all distributions and n§1 for

C(n,nc)). This result corroborates what it was shown for branching-

type epidemic processes with an R0w1 [2]. The same order in the

extinction probabilities holds after g generations of infecteds.

The case of two coupled populations was also explored through

a similar approach invoking Poisson processes for the generation

of secondary infection and Markovian transitions for the migration

between patches. Under the constraint that an individual changes

only one time his patch of residence during the duration of his

infectious period, a plausible assumption for real animal

populations, we showed that here again the probability of

producing no secondary cases is the greatest when TI is

exponentially distributed. Inversely, we identified special cases

where the probability of early extinction in a two-population

system increases as n increases. This occurs, for instance, under a

specific constraint on parameters, in a situation where the

individual cannot transmit the disease within his initial population

where he cannot return once he left.

Therefore, caution has to be paid when interpreting extinction

results provided by mathematical models: the extinction proba-

bility could be over or underestimated in situations where the

exponential distribution is particularly not appropriate for

modelling the infection duration. This could be the case for long

lasting diseases where the probability of recovering strongly

depends on the disease stage.

Although analytical explorations were performed on SIR
models, they would be completely transposable to the SEIR case,

as the introduction of a latent period would not affect the

quantities analyzed in this study. Besides, some of our results, as

those in [3], were rigorously proved based on the assumption of no

depletion of susceptibles during the epidemic process. Since this is

an acceptable approximation when sizes of target populations are

large, it could become awkward to defend it when working with

small populations.

In a second part, we focused on a metapopulation context

comprising more than two patches and relatively small population

sizes, without making the assumption of constant proportion of

susceptibles over time. Since analytical explorations were too

complex for this case, it was studied by simulations and statistical

analysis of simulated data. As already mentioned above, in the

metapopulation framework, we were not exclusively interested in

Figure 10. Results of ANOVA on 960 simulated scenarios of epidemic spread with parameter values given in Table 2. Dependent
variables (on x-axis) are logarithm of variances (over the non early extinct dynamics) of global variables (directly referring to individuals regardless of
their population of origin): size and duration of the epidemic, size and date of the epidemic peak and date of intra-population epidemic peak. For each of
these outputs three variants are considered with respect to the distribution of infection duration: ’E{G’ (difference between the value of the output
simulated with the exponentially distributed infectious period and the value corresponding to the gamma distributed infectious period), ’G{C’
(difference between the value of the output simulated with the gamma distributed infectious period and the value corresponding to a constant
infectious period) and ’E{C’ (difference between the value of the output simulated with the exponentially distributed infectious period and the
value corresponding to a constant infectious period). Different pattern fills correspond to contributions of five input factors (mean infection duration,
network, transmission rate, R0 and migration intensity) to the variation in outputs amongst scenarios.
doi:10.1371/journal.pone.0009371.g010
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the potential effect of the shape of the infection duration

distribution on epidemic dynamics. We also explored in which

extent this effect could be influenced by other factors, especially

those directly related to the metapopulation structure, such as the

mean degree of connectivity of the network or the migration

intensity between patches.

The impact of network topology on the spread of epidemics was

previously explored (see [30] for a review). However, the

assumption for the distribution of infection period was neither

discussed nor taken into account in those studies. In addition, most

often, the nodes of such networks are individuals and not

populations and infection spread between patches is indirectly

considered through distance-based transmission rates. In our

study, both intra-population epidemic dynamics (described by a

specific SIR model for each patch) and inter-population spread of

infection (taken into account through migration of individuals)

were considered.

The sensitivity analysis performed indicated that the most

important factors which influence the impact of infection duration

distribution on epidemic outputs in metapopulations are R0, the

network structure and the mean infection period. This means that

under or overestimation of epidemic outputs such as epidemic

duration and prevalence peak size, due to specific modelling

choices concerning the distribution of infection duration, depends

on other factors related to the infectious potential of the pathogen

and to the way the populations are connected. Nevertheless, these

effects are not identical for all criteria: for instance, the peak of

population prevalence is strongly influenced by the migration

intensity (Figure 9), whereas variation in its date is mostly

explained by the network topology (Figure 10). A similar statistical

analysis conducted within a single population and including only

the transmission rate and the mean infections duration as factors

(results not shown) reveals that R0 is the most influential factor on

size-related outputs (such as epidemic burden or epidemic peak),

whereas the mean infection duration preferentially impacts time-

related outputs (such as epidemic duration or peak date).

The sensitivity indices and hence the relative importance of

each factor in explaining the variability of a given criterion could

depend on the number of factors included in the analysis, but their

relative ordering should not change.

As a first analysis of the potential effect of the shape of infection

duration distribution on global dynamics, all intra-population

parameters have been considered consistent among populations of

the network. We also considered small intra-patch population sizes

(equal to 20). This could correspond to a group of small farms but

also to the classes of a school and hence refers to human

populations. Further research is needed to investigate heteroge-

neous metapopulations characterized by unequal contributions of

patches to the global spread of a disease and also to rigorously

assess the robustness of results to changes in the population size.

We have shown that the effect of assuming exponential

distribution for infection periods instead of more realistic

distributions varies with respect to the output of interest and

to other exogenous factors. Attention has to be paid to all these

elements in practice. For example, when evaluating control

strategies at a global level by modelling approach in order to

optimize their use, expected losses due to the disease spread as

well as expected gains due to interventions may be misestimated.

Future research should more closely explore under what

circumstances the exact distributions are relevant in order to

assess in which situation effort should be put into obtaining

them.
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