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Abstract  – We evaluated the Azodyn wheat crop model as a cultivar decision support tool using a set of 14 genotypes, tested in 21 contrasting
environments. The results showed that the Azodyn crop model satisfactorily simulated yield and grain protein content for a large range of
genotypes and environments, as shown by a root mean square error of 1.4 Mg ha–1 and 1.7 g 100 g MS–1, respectively. The comparison between
the observed and the simulated rankings of genotypes showed a ranking error of the model of one rank or less. The model was able to identify
the best genotype to be used to obtain the highest yield in 20 cases out of 33 and the highest grain protein content in 48 cases out of 64. As a
new way to evaluate crop models as a decision support tool for cultivar choice, we compared the Azodyn predictive accuracy against the cultivar
yield and grain protein average generally used by cultivar growers as a predictive model. We showed that in the main production conditions,
the Azodyn predictions fit the yield and grain protein content observed better than the average. 

crop model / cultivar / decision support tool / cultivar users / model evaluation

1. INTRODUCTION

 Given the high genetic innovation rate with about 20 new
cultivars are registered per year in the French winter wheat cat-
alogue, it becomes time-consuming and expensive to test all
new cultivars in all of the possible field conditions. Experi-
ments used to support the choice of a cultivar are generally
spread over large soil/climatic conditions with varied crop
management, representing users’ practices. Using these exper-
iments, mean yield and grain protein content or ranking order
between cultivars have been the most widely used statistics to
compare and predict yield and grain protein content of geno-
types over locations within a season, over the seasons at a given
location or over location by season combinations (Feyerherm
et al., 2004). 

Because of time constraints, financial resources, and the
large number of cultivars to be tested, these experiments are
generally restricted to a small number of treatments in which
the specific adaptations of the genotypes are not studied.
Shorter et al. (1991) proposed the use of crop models as useful
tools to help breeders to identify the best cultivar to use for var-
ious practices. In this way, models that were initially developed
to understand crop growth have been increasingly modified
(Boote et al., 2003; Colson et al., 1995) to help cultivar evalu-
ation. Recently, some crop models have been proposed to

evaluate a priori the effects of various phenotypic characters or
gene combinations on yield, for a wide range of environmental
conditions, to support breeding programs (Asseng et al., 2002a,
2003; Chapman et al., 2003; Hammer and Vanderlip, 1989).
They have also been used as tools for cultivar management,
identifying the best cultivar to be chosen, assuming the most
probable environmental limiting factors (Agüera et al., 1997;
Hammer and Muchow, 1994; Muchow et al., 1994). However,
all the models mentioned above are mainly used in research,
education, or for the overall design of cropping systems, gen-
erating information useful for system managers (Meinke et al.,
1997; van Ittersum et al., 2003) rather than for crop manage-
ment as described by Chatelin et al. (2005). 

Using a model to support cultivar management supposes that
the model be usable across a wide range of environmental con-
ditions and does not require too many parameters and inputs.
The model should also be able to answer the main questions
asked by the growers, better than their own tools usually do.
So well-tested simulation approaches may offer a time- and
cost-effective alternative to experiments for cultivar evaluation
and management. Nevertheless, this evaluation step is rarely
performed (Welch et al., 2002). 

The evaluation of crop models is traditionally performed
through their predictive quality, by comparing observed versus
simulated output data (Asseng et al., 2003; Brisson et al., 2003;
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Hoogenboom and White, 2003; Houles et al., 2004). This
approach is consistent with the main objective of researchers;
that is to find the model that fits reality the best. Conversely,
the use of models as decision-making tools does not necessarily
require a high predictive quality. An observed fit of medium
quality could be compatible with a good decision quality as, for
example, when ranking nitrogen strategies (David et al., 2004,
2005) or segregating wheat batches according to protein con-
centration predictions (Le Bail and Makowski, 2004). Thus, it
is essential to test the ability of the model to improve the deci-
sion as compared with the decision that would be taken without
the model, and not only to quantify its predictive quality.

Because of a relatively small number of genotypic parame-
ters and inputs and their easy measurement in field conditions,
the Azodyn model was chosen as a cultivar evaluation tool. It
is hoped that the model could be developed for cultivar evalu-
ation for different cultivar users, such as breeders, producers
or technical institutes. The model simulates the grain yield and
grain protein content of a wheat crop given the availability of
soil nitrogen, weather data and cultivar characters. The predic-
tive quality of the model has already been estimated for a wide
range of environments in agricultural conditions (David et al.,
2004; Jeuffroy and Recous, 1999; Jeuffroy et al., 2000) and for
various cultivars (Barbottin, 2004). The objective of our
research was to evaluate the ability of this model (a) to rank cul-
tivars for yield (Mg ha–1) and grain protein content (g 100 g–1)
for diverse environments and (b) to identify the best adapted
cultivar(s) for each nitrogen management condition simulated
compared with the cultivar growers’ predictive statistics.

2. MATERIALS AND METHODS

2.1. Wheat crop model Azodyn

The Azodyn wheat crop model has already been described
in previous papers (David et al., 2004, 2005; Jeuffroy and
Recous, 1999). It predicts the consequences of fertilizer man-

agement on crop yield, grain protein content and mineral N in
the soil at harvest on a daily time step, taking into account soil
characteristics, weather conditions and cultivar characteristics
(Barbottin, 2004). It simulates the effects of nitrogen stress and
water deficiency on the availability of soil nitrogen, plant
growth, crop nitrogen uptake and finally, grain yield and nitro-
gen content. 

The model requires few input data that are easily measured
in farmers’ fields: soil characteristics from a classical soil anal-
ysis (%clay, %CaCO3 and %organic soil N), daily weather data
from the nearest weather station (mean temperature, total radi-
ation and rainfall) and crop above-ground biomass at the end
of winter. It requires developmental stages, varying among
genotypes (e.g. the date of the beginning of stem elongation and
flowering). Cultivar differences are also taken into account
using three genotypic parameters of the plant sub-model: the
maximum yield (Ymax), the maximum grain number that can
be elaborated according to radiation interception (GNmax) and
the maximum thousand-grain weight (TGWmax). 

2.2. Site specifications and cultivar measurement 

The model was evaluated on experimental data drawn from
fertilization experiments carried out in several sites in the major
wheat-growing areas of France, during two years (2000-01 and
2001-02). A description of the main characteristics of these
experiments is given in Table I, and more details were given
by Barbottin et al. (2005). The availability of soil N varied
greatly among sites because of (i) the various amounts of min-
eral N measured at the end of winter (from 30 kg ha–1 in Lille
to 175 kg ha–1 in Toulouse), (ii) the nature of the preceding
crops, leading to various amounts of mineral N from residue
mineralization during the cycle and (iii) the various N fertilizer
applications (high and low N levels) (Tab. I). Two N treatments
(high and low supply) were applied at each location and in each
year, except at the Lille experimental station. The high N level was
calculated as the amount of N necessary to reach the potential

Table I. Experiments used for model validation: characteristics of each experimental site and mean weather data during the crop cycle (from
sowing to the 1st August after harvest) (mean temperature: T, cumulative total radiation, and cumulative rainfall: CR).

Location Latitude, longitude Year Soil type
Soil mineral N 

at the end of winter 
(hg ha–1)

Preceding 
crop

Fertilizer N applied 
(low and high level)

(kg ha–1)

T
(°C)

Cumulative 
total radiation

(MJ.m–1)

CR
(mm)

Clermont-Ferrand 45°46’N, 03°05’E 2001 loamy-calcareous 75 Sunflower 30–130 11.40 3180 360

Clermont-Ferrand 45°46’N, 03°05’E 2002 loamy-calcareous 70 Sunflower 40–120 10.09 3244 320

Dijon 47°19’N, 05°01’E 2001 clay-loam 41 Vetch 100–190 10.57 3475 764

Le Moulon 48°48’N, 02°08’E 2001 loam 40 Oat 115–210 10.5 2928 808

Le Moulon 48°48’N, 02°08’E 2002 loam 45 Oat 120–210 10.3 3096 449

Lille 50°39’N, 02°57’E 2002 clay-loam 30 Rapeseed 180 9.7 2702 603

Mons 49°56’N, 02°56’E 2001 loam 55 Rapeseed 80–170 9.8 3010 638

Rennes 48°06’N, 01°47’W 2001 loamy-clay 84 Pea 80–190 11.47 3272 859

Rennes 48°06’N, 01°47’W 2002 loamy-clay 46 Faba bean 0–80 10.77 3339 374

Toulouse 43°31’N, 01°28’E 2001 loamy-calcareous 80 Pea 52–165 12.90 3782 599

Toulouse 43°31’N, 01°28’E 2002 loamy-calcareous 175 Pea 60–180 11.85 3607 431



The Azodyn crop model as a decision support tool to choose cultivars 109

yield of the experimental site, using the balance-sheet method
(Rémy and Hébert, 1977). The low N supply level was defined
as the high N level minus one hundred units of N. 

Weather conditions throughout the crop cycle were variable
among sites and years (Tab. I). Thus, 21 environmental condi-
tions were defined, varying in year, site and N fertilization
level. These environmental conditions differ in terms of mean
temperature (°C), cumulative rainfall (mm) and cumulative
solar radiation (MJ m–2) during the whole crop cycle, and were
characterized by several limiting factors that occurred and lim-
ited yield in comparison with the target (Barbottin et al., 2005).
According to the identified limiting factors, two groups of envi-
ronments could be defined: environments without limiting fac-
tors except nitrogen, and environments with multiple limiting
factors such as severe drought, lodging and foliar diseases,
which are not taken into account in the model. 

Ten cultivars were used in the first year, and fourteen in the
second year of these experiments. Cultivars differed in earli-
ness and yielding level, representing the range of French com-
mercial cultivars (Tab. II). They were sown in three replicates
in each of the 21 environments according to the regional sowing
date recommendations. In each case, the model inputs were
determined, and the yield and grain protein content of each gen-
otype were measured at harvest. 

At the end of winter and at harvest, one plot per replicate (1 m
on two consecutive sowing rows) was sampled for each envi-
ronment. Samples were separated into vegetative (leaf and
culm) and reproductive parts. Ears were separated into grains
and chaff. Yield was determined by weighing grain samples
after oven-drying for 72 h at 80 °C. Grains were then ground
in a mill to generate 1-mm particles and the nitrogen content

of grains was analyzed using a Carlo-Erba NA 1500 CN Ana-
lyzer (Fisons Instrument – Thermoelectron). Ten-milligram
samples were analyzed using the Dumas method consisting of
the combustion of the sample, separation of the different compo-
nents (N2, H2O, CO2, O2) and quantification of the N2 content.

2.3. Model evaluation procedure

The ability of the Azodyn model to predict the genotype
ranking and the best-adapted genotype(s) is called “decisional
quality”. It is generally assumed that breeders expect to identify
cultivars with high and stable yield and grain protein content
across a wide range of environments. Their choices are gener-
ally based on mean performance values and variance around
these means. For their part, technical advisors expect to identify
the best cultivars to be used for the regional soil/climatic and
crop management conditions. Lastly, farmers expect to use the
best cultivar for their specific growing conditions. We com-
pared the decisional quality of the model with that of the sta-
tistics generally used by breeders, technical advisors and
farmers to choose cultivars.

2.4. Identifying the best cultivar 

The model was run over the 246 combinations of cultivar ×
environment and the mean yield, mean grain protein content
and the environmental variance were estimated for each culti-
var. The environmental variance was estimated as proposed by
Becker and Leon (1988) as:

Table II. Cultivar earliness (heading scores from 1 = very late to 9 = very early) and parameter values for the Azodyn model (Ymax = maximum
yield, TGWmax = maximum thousand-grain weight and GNmax = potential number of grains per meter square per intercepted radiation unit).
Cultivar parameter values were estimated using an independent data set.

Genotype Earliness Cultivar parameter values

Heading score Ymax TGWmax GNmax

Unit less Mg ha–1 g Grains m–2 MJ–1

Arche 6 11.4 44.7 13.8

Baltimor 6 11.1 44.0 14.0

Camp-Rémy 5 10.7 44.9 13.3

DI9714 not available 10.9 51.0 12.0

Galibier 8 8.6 46.6 9.2

Hynoprécia 6.5 11.2 52.3 11.9

Isengrain 7 11.3 49.6 13.5

Oratorio 6.5 11.2 43.7 13.9

Ornicar 6.5 11.1 43.7 15.6

Récital 8 10.8 44.1 14.0

Renan 6 9.6 53.9 9.0

Rumba 5.5 11.0 50.2 12.0

Soissons 7 10.8 45.3 13.9

Trémie 7 11.4 52.6 12.0

S2 Ygi Yg–( )2/ N 1–( )
i n=

N

∑=
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where N is the number of observations for each cultivar, Ygi
represents the observed variable Y for the cultivar g in envi-
ronment i, and Yg is the mean value of variable Y for cultivar g.
In order to evaluate the ability of the model to identify signif-
icant cultivar groups, we performed a variance analysis on
observed and simulated yields and grain protein content using
the SAS PROC GLM procedure (SAS Institute, 1990). Signif-
icant differences in cultivars for mean yield and grain protein
content were identified using the Newman & Keuls test (α =
0.05).

2.5. Selecting the best cultivar to be chosen in each 
environment tested

Cultivars were ranked in each environment, considering
their observed and simulated yield and grain protein content.
Two cultivars were considered as belonging to two different
classes when they differed by more than 0.6 Mg ha–1 for yield
and more than 0.46 g 100 g–1 for grain protein content. These
thresholds represent the mean significant differences for yield
and grain protein content observed between cultivars, using the
test with a least square difference (LSD) below 0.05. As pro-
posed by David et al. (2004), observed and simulated rankings
were compared using the Spearman ranking order test in the dif-
ferent environments. Ranking error was estimated as the dif-
ference between observed and simulated ranking. 

2.6. Comparison with the most widely-used statistics 
to predict performance of genotypes 

We compared the predictions of the Azodyn crop model with
the predictions made using the average yield and grain protein
content as an estimator of the cultivars’ performance in each
environment. The mean squared error of prediction (MSEP) of
the Azodyn model was compared with the mean squared error
of prediction of the average model of each cultivar. The effi-

ciency of the Azodyn model was estimated as the ratio between
the MSEP of the Azodyn model and the MSEP of the average:

where Ygi is the observed variable Y for the cultivar g in envi-
ronment i, f(xi, βg) is the predicted value of the variable Y using
the Azodyn model using the input of case i and the cultivar
parameters βg, and  represents the mean observed varia-
ble Y value estimated in the N-i environments. When the effi-
ciency ratio (EF) is lower than 1, the MSEP of the genotypic
model is less than the MSEP of the average, which means that
it is preferable to use the model for cultivar choice instead of
the average observed in a range of environments.

3. RESULTS AND DISCUSSION

The model was run over the 246 combinations of cultivar ×
environment. We estimated the ability of the model: to account
for the average performances of the cultivars, to rank these cul-
tivars in each of the environments tested, and to be a better pre-
dictive tool than the average yield and the grain protein content.

3.1. Cultivar performance and stability

For the 21 environments tested, the model overestimated the
mean yield values and underestimated the grain protein values
for all genotypes (Tab. III). The root mean square error of the
model (RMSEP) was rather good for yield, and for grain protein
content (RMSEP yield = 1.4 Mg ha–1, RMSEP grain protein
content = 1.76 g 100 g–1). The prediction of the mean performance
for each genotype was greatly improved when environments

Table III. Observed and simulated mean yield, grain protein content (GPC) and associated variances (S²) for each cultivar in all the environ-
ments and in the environments without limiting factors except N (values in brackets). Values followed by the same letter are not significantly
different at the 0.05 probability level.

Cultivar Obs. yield Sim. yield Obs. S² for 
yield

Sim. S2 
for yield

Obs. GPC Sim. GPC Obs. S2 
for GPC

Sim. S2 
for GPC

Arche 8.1a (9.8) 9.3a (9.7) 3.2 (1.2) 1.7 (0.7) 10.6def (10.4) 9.2c (9.8) 1.4 (1.0) 1.8 (1.8)

Baltimor 8.1a (10.1) 9.1a (8.9) 4.0 (2.1) 1.1 (0.8) 10.5def (10.0) 9.9c (10.8) 3.1 (1.7) 2.3 (1.1)

Camp-Rémy 7.0bc (8.6) 9.1a (9.3) 3.0 (2.9) 1.6 (0.6) 11.6c (11.2) 9.4c (9.7) 1.7 (1.3) 1.6 (1.7)

DI9714 7.8ab (9.5) 9.2a (9.3) 2.3 (1.2) 1.7 (0.6) 11.2cd (10.9) 9.2c (9.9) 1.4 (0.9) 1.8 (1.7)

Galibier 5.9d (6.9) 7.2c (7.3) 1.9 (2.3) 1.0 (0.8) 14.0a (14.0) 12.0a (14.2) 2.5 (2.3) 7.3 (1.1)

Hynoprécia 8.2a (10.2) 9.4a (9.7) 3.4 (1.4) 1.4 (0.7) 10.9 (10.6) 9.1c (9.8) 1.1 (1.1) 1.9 (1.7)

Isengrain 8.1 (9.9) 9.4a (9.6) 3.3 (1.4) 1.2 (0.8) 10.5def (10.3) 8.9c (9.8) 1.2 (1.1) 1. 9 (1.8)

Oratorio 8.0ab (9.4) 9.1a (9.5) 2.8 (1.9) 1.2 (0.7) 11.0cde (10.7) 9.6c (10.5) 1.5 (1.6) 2.6 (1.9)

Ornicar 7.9a (9.4) 9.2a (9.2) 2.8 (2.0) 1.5 (1.5) 11.0cde (10.9) 9.0c (9.9) 1.7 (1.4) 1.9 (1.8)

Récital 7.0bc (8.6) 8.9a (9.3) 2.9 (1.4) 1.5 (1.1) 10.9cde (10.7) 8.8c (9.8) 1.0 (1.1) 2.2 (2.2)

Renan 6.8c (8.1) 8.0b (8.5) 1.8 (0.7) 1.9 (0.8) 12.4b (12.2) 10.7b (11.1) 1.7 (1.3) 2.2 (2.0)

Rumba 7.9ab (9.6) 9.2a (9.5) 3.2 (1.7) 1.4 (0.6) 11.0cde (10.6) 9.1c (9.6) 1.5 (0.8) 1.8 (1.9)

Soissons 7.4abc (9.0) 9.1a (9.4) 2.5 (1.0) 1.2 (0.8) 11.1cde (11.0) 8. 9c (9.8) 1.2 (1.6) 2.0 (1.9)

Trémie 8.3a (10.2) 9.4a (9.7) 5.0 (4.4) 2.1 (2.8) 10.2f (10.2) 9.4c (10.5) 2.1 (2.8) 2.7 (1.3)

EF

   
N
∑ 1/N Ygi f xi, βg( )–( )2

   
N
∑ 1/N Ygi Y i–( )–( )2

----------------------------------------------------------------=

Y i–( )
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with severe drought, lodging or diseases were excluded
(Tab. III). The root mean squared error of prediction for yield
decreased from 1.4 to 0.5 Mg ha–1 and from 1.76 to 0.88 g
100 g–1 for grain protein content. Nevertheless, it was possible
to reproduce significant differences in the yield and grain pro-
tein content between cultivars. According to the Student-New-
man-Keuls test (α = 0.05), the model was able to identify the
two genotypes (Renan and Galibier) that differed significantly
from the others for yield and grain protein content. 

Observed and simulated variances are presented in Table III.
In all cases the model underestimated yield variation (simulated
S2 values from 1.0 to 2.1 Mg2 ha–2, observed S2 values from
1.8 to 5.0 Mg2 ha–2). Because of the limiting factors that were
not taken into account by the model, such as foliar disease,
lodging and severe drought, the model was not able to repro-
duce yield losses due to these factors. Prediction of the envi-
ronmental variance was not improved when only the
environments without severe drought, lodging or diseases were
considered (simulated S2 values from 0.6 to 1.5 Mg2 ha–2,
observed S2 values from 0.7 to 4.4 Mg2 ha–2). Compared with
yield, variations in grain protein content around the mean value
seemed better simulated (simulated S2 values from 1.6 to 7.3 g2

100 g–2, observed S2 values from 1.0 to 3.1 g2 100 g–2) by the
model and it was possible to identify the three most variable
cultivars, i.e. with the highest S2 values, within the fourteen
tested for the grain protein: Baltimor, Galibier and Trémie
(Tab. III). 

These first results showed that it was possible to reproduce
cultivar effects on yield and grain protein content and to iden-
tify the highest-yielding genotype to be used in a wide range
of environments, using the Azodyn crop model with a small
number of cultivar parameters (at least five cultivar traits). The
results show that mean yield and grain protein content were
rather well estimated when a large number of different types
of environment were considered and were further improved
when considering environments varying in nitrogen availabil-
ity (Tab. III). Grain protein content predictions were not at all
satisfactory when all environments were considered. Yet, in the
most frequent situations of farmers’ fields in the north of France
(without severe disease and drought), the predictive quality was
rather good (RMSEP from 1.6 to 2.6 g 100 g–1) – even better
than some previous models (Asseng et al., 2002b; Brisson et al.,
2003). Simulation errors reported by our and other studies on
grain protein content show that good accuracy is rather difficult
to achieve (Houles et al., 2004; Meinke et al., 1998). Because
of the high sensitivity of nitrogen transfers into the grain to
weather factors (Smith and Gooding, 1999), it will probably be
difficult for crop models to reach lower prediction errors for this
variable. However, the increase in predictive quality for yield
and grain protein content did not appear to be essential, as good
decisions as to the choice of genotype can already be made with
the model.

3.2. Ranking order: identification of the best genotype 
for each environment

Because of the great genotype by environment interaction
effect on yield and grain protein content, cultivar growers gen-
erally prefer to choose the genotypes that will give the best
results in their own conditions. Cultivars were ranked accord-

ing to their observed and simulated yield and grain protein con-
tent. The results of the Spearman comparison test performed
between observed and simulated ranking order in the different
environments are presented in Table IV. 

The ranking ability of the model for yield was better than
for grain protein content. In 10 environments out of 21 for yield
but only 6 environments out of 21 for grain protein content, the
simulated ranking was satisfactorily close to the observed one
(Spearman coefficient 0.50). In more than 80% of cases for
yield and 77% of cases for grain protein content, the ranking
error was of one rank or less (Fig. 1a). In 61% of cases for yield
and 75% of cases for grain protein content, the model was able
to identify the best cultivars to use (corresponding to the first
rank) to reach the highest yield or grain protein content. When
the ranking order was not consistent with the observed one, the
model tended to underestimate (by one class) the number of
classes in comparison with the observed number of classes
(Tabs. V, VI). Thus, ranking differences between observed and
simulated data mainly concerned Isengrain, Récital, Soissons
and Trémie, for which the model overestimated the yield
(Tabs. V, VI). 

Comparison between observed and simulated ranking for
yield and grain protein content showed that the model was able
to rank most genotypes with one or less ranking error, inde-
pendently of the limiting factors considered. In each environ-
ment considered, the model was able to identify the best
genotype to use in order to reach the highest grain protein con-
tent and yield. Similar results were obtained by Mavromatis et
al. (2001) for a soybean crop model. Most of the ranking errors
were explained by cultivars for which yield and grain protein
content differences were not explained by the cultivar param-
eters used in the Azodyn model. 

These first results on model accuracy for cultivar-specific
adaptation to environmental factors, as defined by Gallais
(1992), may support using this type of crop model as a decision-
making tool for genotypic management over various nitrogen
and weather constraints, helping to identify the best genotype
to be used in each case. Nevertheless, since the response of gen-
otypes to diseases and water stress varies, there should be some
value in identifying the genotypes adapted to give the best gross
margin, even in low input crop management. To this end, as the
number of limiting factors is high and their period of occurrence
is variable, static agronomic models such as that proposed by
Loyce et al. (2002) could be more easily usable.
 

3.3. Predictive quality of the Azodyn crop model in 
comparison with the most frequently used statistics

The efficiency of the Azodyn model was tested against the
statistics normally used to predict wheat yield and grain protein
content in various environments, i.e. average yield and grain
protein content (Tab. VII). When evaluated for all environ-
ments, the Azodyn crop model did not appear to be better at
simulating genotype yield or grain protein content in different
situations than the average yield and grain protein content. In
eight cases out of fourteen, for yield, the prediction error of the
model was close to that of the average yield (model efficiency
from 0.9 to 1.3). When considering the environments without
severe drought, disease and lodging, i.e. the common conditions
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Table IV. Values of the Spearman ranking order test between observed and simulated cultivars ranking for yield and grain protein content
(GPC). Statistical significance is indicated near the coefficient values (*, **, *** significant at P ≤ 0.10, 0.05 and 0.01, respectively, ns = not sig-
nificant).

Site Year N level
Spearman correlation coefficient for 

yield
Spearman correlation coefficient 

for GPC

Clermont-F 2001 High N level 0.59** 0.03ns

Clermont-F 2001 Low N level  0.69*** 0.04ns

Clermont-F 2002 High N level 0.35ns 0.65**

Clermont-F 2002 Low N level  0.55*** 0.39ns

Dijon 2001 High N level 0.34ns 0.24ns

Dijon 2001 Low N level 0.08ns   0.81***

Le Moulon 2001 High N level  0.00ns 0.27ns

Le Moulon 2001 Low N level    0.66*** 0.03ns

Le Moulon 2002 High N level  0.24ns 0,42ns

Le Moulon 2002 Low N level  0.15ns 0.45ns

Lille 2002 High N level   0.47** 0.22ns

Mons 2001 High N level    0.64*** 0.55*

Mons 2001 Low N level    0.65*** 0.58*

Rennes 2001 High N level  0.07ns  0.13ns

Rennes 2001 Low N level  0.25ns 0.28ns

Rennes 2002 High N level   0.51** 0.52*

Rennes 2002 Low N level    0.64***  0.18ns

Toulouse 2001 High N level    0.85***  0.53ns

Toulouse 2001 Low N level  0.03ns  0.15ns

Toulouse 2002 High N level  0.17ns  0.37ns

Toulouse 2002 Low N level    0.69***  0.59**

Table V. Percentage of cases for each genotype with differences between observed and simulated ranking (Drank) of 0, 1, 2, 3, 4 and 5 ranks
for yield.

Cultivar Drank = 0 Drank = 1 Drank = 2 Drank = 3 Drank = 4 Drank = 5

Arche 29 33 29 0

Baltimor 11 33 44 0 11

Camp-Rémy 43 52 5

DI9714 29 62 5 5

Galibier 67 22 0 11

Hynoprécia 10 67 14

Isengrain 19 38 29 5 5

Oratorio 33 67

Ornicar 33 67

Récital 14 52 24 5 0 5

Renan 76 24

Rumba 29 67 5

Soissons 29 43 19 10

Trémie 33 44 11 11
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of winter wheat in France, the model’s efficiency was rather
high. The efficiency ratio varied from 0.5 to 1.3 (Tab. VII).
Thus, the Azodyn model appeared to be a better tool for pre-
dicting the yield of all cultivars than the average yield. In all

cases, the efficiency of the model for grain protein prediction
was low. The efficiency ratio varied from 1.2 to 6.2 in all envi-
ronments and from 1.0 to 2.4 for the environments without
severe drought, disease and lodging. 

We evaluated the ability of the model to give a better pre-
diction than the average yield and grain protein content gener-
ally used by cultivar growers to predict cultivar performances.
This evaluation step is rarely done in the literature for a model
used as a decision-making tool. The results obtained for yield
show that the crop model has the same predictive quality as the
average yield when run for a wide range of environments and
was more accurate when used on the main wheat-growing envi-
ronments in France. 

These results obtained for a user-oriented model, using a
small number of cultivar parameters to reproduce cultivar by
environment interaction, show that it is pertinent for cultivar
growers to use the Azodyn crop model as a decision tool. The
parameters used in this study were estimated on an independent
data set and are easily measurable during registration or breed-
ing trials. Indeed, this calibration step has been shown to be one
of the constraints identified for models to be used routinely for
crop management (Meinke et al., 1998).

4. CONCLUSION

The rapid turnover of winter wheat cultivars in France elim-
inates the possibility that cultivar growers can carry out exper-
iments to evaluate any new cultivar in a large range of
environments. Our results have shown that the user-oriented
wheat model Azodyn sufficiently reproduced cultivars’ mean
yield and grain protein content for a wide range of environ-
ments, using only five cultivar traits in the model. The simu-
lated ranking of genotypes in the 21 environments tested show
that this crop model is a useful tool for evaluating a genotype

Table VI. Percentage of cases for each genotype with differences between observed and simulated ranking (Drank) of 0, 1, 2, 3, 4 and 5 ranks
for the grain protein content.

Cultivar Drank = 0 Drank = 1 Drank = 2 Drank = 3 Drank = 4 Drank = 5

Arche 38 24 38

Baltimor 11 22 56 11

Camp-Rémy 43 52 5

DI9714 33 52 14

Galibier 78 0 11 11

Hynoprécia 19 62 19

Isengrain 24 33 33 10

Oratorio 33 67

Ornicar 44 53

Récital 14 48 29 10

Renan 81 19

Rumba 29 57 14

Soissons 29 29 43

Trémie 33 33 22 11

Figure 1. Percentage of cases, out of 246 combinations of cultivar by
environment, with differences in ranking between observed and simu-
lated ranking, of 0, 1, 2, 3, 4 and 5 ranks, for yield (a) and grain protein
content (b). Ranking order was estimated using observed and simu-
lated yield and grain protein content.
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within a group of genotypes, always identifying the best gen-
otype as regards yield or the best grain protein content. More-
over, when considering the main production conditions, the
model was shown to be a better tool for yield and grain protein
content prediction than the average generally used by cultivar
growers. Thus crop models may be used as tools to help breed-
ing programs and technical advisors, identifying cultivar char-
acters to be selected or cultivars to be used in specific
environments.
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