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  aBStraCt 
  Currently, genomic evaluations use multiple-step 

procedures, which are prone to biases and errors. A 
single-step procedure may be applicable when genomic 
predictions can be obtained by modifying the numera-
tor relationship matrix A to H = A + AΔ, where 
AΔ includes deviations from expected relationships. 
However, the traditional mixed model equations require 
H−1, which is usually difficult to obtain for large pedi-
grees. The computations with H are feasible when the 
mixed model equations are expressed in an alternate 
form that also applies for singular H and when those 
equations are solved by the conjugate gradient tech-
niques. Then the only computations involving H are 
in the form of Aq or AΔq, where q is a vector. The 
alternative equations have a nonsymmetric left-hand 
side. Computing AΔq is inexpensive when the number 
of nonzeros in AΔ is small, and the product Aq can 
be calculated efficiently in linear time using an indi-
rect algorithm. Generalizations to more complicated 
models are proposed. The data included 10.2 million 
final scores on 6.2 million Holsteins and were analyzed 
by a repeatability model. Comparisons involved the 
regular and the alternative equations. The model for 
the second case included simulated AΔ. Solutions were 
obtained by the preconditioned conjugate gradient al-
gorithm, which works only with symmetric matrices, 
and by the bi-conjugate gradient stabilized algorithm, 
which also works with nonsymmetric matrices. The 
convergence rate associated with the nonsymmetric 
solvers was slightly better than that with the symmetric 
solver for the original equations, although the time per 
round was twice as much for the nonsymmetric solvers. 
The convergence rate associated with the alternative 
equations ranged from 2 times lower without AΔ to 
3 times lower for the largest simulated AΔ. When the 
information attributable to genomics can be expressed 
as modifications to the numerator relationship matrix, 

the proposed methodology may allow the upgrading 
of an existing evaluation to incorporate the genomic 
information. 
  Key words:    best linear unbiased predictor ,  genomic 
selection ,  single nucleotide polymorphism ,  genetic 
evaluation 

  IntrODuCtIOn 

  Availability of dense molecular markers of type SNP 
led to the recent introduction of the genome-wide or 
genomic selection evaluation models. Those models are 
most often based on the simultaneous estimation of 
SNP marker effects a. Differences among methods are 
mostly on the a priori distribution of marker effects a
(Meuwissen et al., 2001; Gianola et al., 2006). Efficient 
procedures exist for the computation of a, even for large 
data sets (Legarra and Misztal, 2008). 

  The genomic evaluation is currently implemented as 
a multistep procedure. For example, an implementa-
tion for US dairy cattle (VanRaden, 2008; VanRaden 
et al., 2009) requires 3 steps: a) regular evaluation by 
the animal model, b) estimation of genomic effects for 
a relatively small number of genotyped animals, and c) 
estimation of genomic breeding values by a selection 
index. The elements in the index include a parent aver-
age or PTA from step a), genomic solutions from step 
b), and a parent average or PTA computed based on 
genotyped ancestors. Weights in the index are functions 
of heritability and accuracy. The marker-assisted selec-
tion program in France simultaneously fits QTL and 
polygenic effects, with weights depending on associated 
variance components (Guillaume et al., 2008). 

  Advantages of the multistage procedure include no 
change to the regular evaluations and simple steps for 
predicting genomic values for young genotyped ani-
mals. Disadvantages are requirements for parameters 
in steps b) and c) such as prior variances and weights, 
and loss of accuracy and biases attributable to selec-
tion. Whereas the model in a) uses the information 
on all animals and can be multitrait, the model in b) 
is equivalent to a single-trait sire model for a highly 
selected set of sires. Incorrect parameters in b) and 
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c) can result in unexpected changes for high-reliability 
bulls. Neuner et al. (2008) claimed that problems asso-
ciated with the multistep procedure reduce its benefits, 
especially for cows.

VanRaden (2008) investigated 2 options for step b): 
“nonlinear,” based on estimating effects attributable 
to SNP markers with a prior mixture distribution for 
those effects, and “linear,” based on prior normal dis-
tribution for SNP markers. The latter is equivalent to 
using mixed model equations with a genomic relation-
ship matrix. For most dairy traits, predictions based on 
the estimation of marker effects with nonlinear predic-
tions were practically equivalent to linear predictions 
and thus to predictions with BLUP using a genomic 
relationship matrix (Cole et al., 2009; VanRaden et al., 
2009). Therefore, using the genomic relationship matrix 
results in little or no loss of accuracy.

One way to simplify the multistep procedure is by 
incorporating the genomic information into step a), 
resulting in a single-step procedure. This could be ac-
complished by modifying the numerator relationship 
matrix A in that evaluation to include the genomic 
information. Such modifications are presented and dis-
cussed by Legarra et al. (2009) in a companion paper.

Assume that such a modification is known and that 
it involves relatively few elements of A. The mixed 
model equations require A−1, which is very easy to cre-
ate for large populations because of its sparsity and 
its special structure (Henderson, 1976). However, ob-
taining the inverse of the modified matrix is likely to 
be impossible in general for large populations. This is 
not only because the cost of inversion is high, but also 
because A is dense and thus too large to store for large 
pedigrees. Thus, an approach using a modified A is 
of little value unless a feasible computing approach is 
available. The purpose of this study is to develop an ef-
ficient computing strategy to obtain solutions to mixed 
model equations in which the numerator relationship 
matrix is modified by a known matrix accounting for 
the genomic information.

materIaLS anD metHODS

Assume regular mixed model equations as used in a 
traditional genetic evaluation, for simplicity with only 
a single random effect:

y = Xb + Zu + e,

where y is a vector of records, b is a vector of fixed 
effects, and u is a vector of animal effects. Under a 
polygenic infinitesimal model of inheritance, 
var 2u A( ) = sα , where A is the numerator relationship 

matrix based on pedigree. Furthermore, var 2e I( ) = se , 
and X and Z are appropriate incidence matrices.

Assume that the numerator relationship can be modi-
fied to account for genomic information:

H = A + AΔ,

where AΔ is a matrix that can be stored explicitly, and 
H is the new modified matrix. In the simplest case, a 
genomic relationship matrix G replaces the numera-
tor relationship matrix for the genotyped animals. Let 
indices 1 and 2 refer to ungenotyped and genotyped 
animals, respectively. Then 
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Legarra et al. (2009) proposed several H based on 
the partition of animals into several groups, including 
ungenotyped and genotyped animals. Although their 
different H are more complex than in the simple case, 
most quantities can be computed efficiently without any 
steps involving large matrix multiplications. Therefore, 
for simplicity of presentations, the following computing 
formulas assume the simple case above.

Solving Algorithm

Assume that G and A22 are available. Temporarily 
assume that H is positive definite. The regular mixed 
model equations are
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LHS w = RHS

using the usual notation, where LHS and RHS are the 
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Assume that the system of equations is solved us-
ing an algorithm that does not require the elements of 
LHS explicitly but only its product by a vector, say 
LHS q, as in the preconditioned conjugate gradient 
(PCG) iteration on data (Tsuruta et al., 2001). Then
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However, H−1 can be computed only for small popu-
lations; furthermore, H might be singular or close to 
singularity. Henderson (1984, 1985) and Harville (1976) 
described an unsymmetric set of mixed model equa-
tions in which only H, not necessarily of full rank, is 
required:
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or

LHSMw = RHSM.

For that set,

 

LHS q
X Xq + X Zq

HZ Xq + HZ Zq + q
c

Hc + qM
1 2

1 2 2

1

2 2

 =
¢ ¢

¢ ¢

é

ë

ê
ê
ê

ù

û

ú
ú
ú
=

é

ë

ê
a aêê

ê

ù

û

ú
ú
ú

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

c
Ac + A c + q

1

2 2 2D a

 

with

 RHS
r

Hr
r

Ar + A rM
1

2

1

2 2

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú
=

é

ë

ê
ê
ê

ù

û

ú
ú
úD

, 

The new formulas do not include H−1 but include 
AΔc2, Ac2, AΔr2, and Ar2. For the simplistic H, the 
first term can be computed directly at a low cost. The 
second term can also be computed inexpensively fol-
lowing the algorithm by Colleau (2002; see Appendix 
A), which uses only the pedigree information and is 
completed in the amount of time proportional to the 
number of animals. The same algorithm also can be 
used to compute Ar2. Selected elements of A can be 
computed recursively, for example, by using the algo-
rithm by Aguilar and Misztal (2008).

More Complicated Models

Assume a multiple trait model, possibly with effects 
such as random regression or maternal. The regular 
mixed model equations for such models can be pre-
sented as
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where parts not listed (…) are due to effects other 
than ˆ.u  By expanding the unsymmetric model by Hen-
derson (1984) to multiple traits, the quantities needed 
for the iterations become
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where quantities c1 and r1 are now associated with all 
effects other than the additive.

Nonsymmetric Solvers

The presented system of equations is nonsymmetric 
and the matrix H may be semipositive definite. The 
PCG algorithm (Barrett et al., 1994) is applicable only 
to symmetric systems of equations. Therefore, it is 
important to find a suitable conjugate-gradient type al-
gorithm and ensure that it would converge even with a 
poorly conditioned H. Barrett et al. (1994) and Van der 
Vorst (2003) reviewed and presented several algorithms 
for solving the linear systems of equations. Based on 
their studies, the standard algorithm for solving sparse 
systems with nonsymmetric LHS is bi-conjugate gradi-
ent stabilized (Bi-CGSTAB; Van der Vorst, 1992; see 
Appendix B). This algorithm requires 2 LHS times a 
vector products per round as opposed to just one with 
PCG. When that product uses the majority of the com-
puting time, Bi-CGSTAB is about twice as expensive 
as PCG per round of iteration.

Choice of Preconditioners

In initial tests (results not reported), Bi-CGSTAB 
converged very quickly with the unsymmetric equations 
for small models, but not for large ones. This was traced 
to large off-diagonal elements of the unsymmetric equa-
tions. The standard way in conjugate-gradient types 
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of algorithms to improve convergence is by choice of a 
preconditioner M, which approximates LHS but is eas-
ily invertible (Van der Vorst, 2003). Then the system of 
equations solved is equivalent to

M−1LHS w = M−1RHS,

which has better numerical properties than the original 
system. The preconditioner is never used explicitly, but 
only in multiplications with a vector.

Assuming a diagonal preconditioner,
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the LHS for regular equations after preconditioning is
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The symmetry can be partially restored with a modi-
fied preconditioner:
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When the genomic information is missing (AΔ = 0), 
the preconditioned left-hand side of the unsymmetric 
system of equations is the same as with the precondi-
tioned regular equations. With the genomic informa-
tion, the off-diagonal elements are likely to be small for 
small AΔ. The cost of the extra preconditioning is low 
because the product D2A

−1q, where q is a vector, can 
be done sequentially as D2(A

−1q).

Data

The data set included 10.5 million final scores on 
6.2 million Holsteins as used for the recent genetic 
evaluation by the Holstein Association. Analyses were 

by a repeatability animal model. Two sets of mixed 
model equations were considered: regular and unsym-
metric. For the second set, the genomic information 
was simulated for 5,000 randomly chosen animals as 
random numbers from the uniform distribution from 0 
to b, where b was set to 0.0, 0.01, 0.03, and 0.05. For b 
= 0 there was no adjustment (AΔ = 0). Only positive 
adjustments were included to avoid some elements of 
H being negative. Solving algorithms were PCG (for 
the regular equations only) and Bi-CGSTAB. The first 
algorithm used a diagonal preconditioner. The second 
algorithm used the modified preconditioner because no 
convergence was achieved with the diagonal precondi-
tioner. In all cases, the stopping criterion was set at 
10−12. Computing was by the regular and modified 
program BLUP90IOD (Tsuruta et al., 2001) and was 
carried out on an Opteron system running at 3 GHz.

reSuLtS anD DISCuSSIOn

The purpose of testing with the simulated genomic 
changes was to evaluate the computing feasibility of the 
method, and especially the robustness of the computing 
methodology. The results presented for the unsymmet-
ric equations are only with the modified preconditioner. 
The Bi-CGSTAB diverged with the regular precondi-
tioner and large data sets although it converged with 
small data sets. This is because products of A were 
very large for rows corresponding to popular bulls as 
all elements of A are positive; those products with A−1 
are small because of cancellations; a contribution to a 
parent by a progeny in A−1 is proportional to [… 1.0 
… −0.5 … −0.5 …], which sums to 0.

Table 1 shows the number of rounds and computing 
time with PCG and Bi-CGSTAB for the regular and 
unsymmetric equations and with varying magnitudes 
of simulated changes. For the regular equations, Bi-
CGSTAB was slightly faster but took twice the comput-
ing time (26 vs. 13 s). Figure 1 shows the convergence 
pattern for the regular equations. Whereas the pattern 
for PCG shows small fluctuations, the pattern for Bi-
CGSTAB has more abrupt changes. Some differences 
in the number of rounds to convergence may be due 
to differences in the convergence criteria. However, the 
differences in solutions were very small (correlations 
>0.99999).

For the unsymmetric equations with no simulated 
changes, the number of rounds approximately doubled 
and the computing time increased by 30% (from 26 
to 34 s). Adding small simulated changes (b = 0.01) 
increased the computing time per round by 10% (from 
34 to 37 s) and slightly deteriorated convergence. The 
number of rounds increased by about 30% when chang-
es were increased to b = 0.03 and again by 10% when 
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changes were increased by b = 0.05. Figure 2 shows the 
convergence pattern for the modified equations and b 
= 0.0 and 0.03. Much larger fluctuations than with the 
regular equations were observed, which may have been 
due to a more complex preconditioner. For a multiple-
trait random regression model, Aguilar et al. (2008) 
observed much larger fluctuations in the convergence 
pattern with a block-diagonal preconditioner as com-
pared with a diagonal one.

Additional computations will be necessary in practi-
cal applications of the method with the real genomic 
relationship matrix. For simple H, additional steps in-
clude the multiplications of G-A22 and A by a vector. 
The last one can be done efficiently using the algorithm 
of Colleau (2002) in linear time (see Appendix A). The 
cost of this algorithm is equal to scanning the pedi-
gree file twice and is small, especially with pedigrees in 
memory. Legarra et al. (2009) presented formulas for 
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Table 1. The number of rounds (computing time per round in seconds) for different computing algorithms and 
different magnitudes of modification to the numerator relationship matrix 

Solving algorithm1

Equation

Regular

Unsymmetric2

b = 0 b = 0.01 b = 0.03 b = 0.05

PCG 189 (13.1) — — — —
Bi-CGSTAB 166 (26.0) 318 (34.0) 369 (37.3) 477 (37.1) 520 (37.4)

1PCG = preconditioned conjugate gradient; Bi-CGSTAB = bi-conjugate gradient stabilized.
2Changes in relationships simulated from uniform (0, b) distribution for 5,000 randomly selected animals.

Figure 1. Convergence rate for the preconditioned conjugate gradient (PCG) and bi-conjugate gradient stabilized (Bi-CGSTAB) algorithms 
with the symmetric system of equations.



more realistic H and also computing details for a prod-
uct of that H by a vector. With such a product, the 
only components that cannot be computed in linear but 
rather in quadratic time (matrix-vector multiplication) 
are those corresponding to G and possibly those due 
to A22. If A22 needs to be available explicitly, it can be 
computed by the method of Aguilar and Misztal (2008). 
When applied to 17 million Holsteins, that method 
calculated about 80,000 inbreeding coefficients/s. As-
suming that computing one relationship costs no more 
than computing one inbreeding coefficient, on average, 
the computation of A22 for 20,000 animals would take 
40 min. Alternatively, A22 can be computed by the re-
peated applications of the algorithm of Colleau (2002), 
in which the vector to multiply by would contain one 
1.0 and zeros elsewhere.

When the number of genotyped animals is very high, 
say >50,000, storage and computations with matrix G 
and possibly A22 can be quite involving. A few choices 
may be applicable. First, some computations may eas-
ily be done in parallel. Current computers routinely 

include 4 processors (cores) per processor module, and 
computers with 4 modules are readily available. Second, 
some elements in AΔ may be very small or unimport-
ant and could be neglected. Neglecting small elements 
in the computation of sparse inverse for the purpose 
of calculating accuracies reduced the computations by 
50 times while retaining high precision (Thompson et 
al., 1994). Finally, genotypes of some animals may be 
unimportant and do not have to be included.

In summary, we have demonstrated that mixed 
model equations with small modifications to the nu-
merator relationship matrix can be solved efficiently by 
conjugate-gradient type algorithms. Only a few modi-
fications may be required for existing programs using 
the PCG algorithm.
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APPENDIX A

Below we show how to create a product Aq, where A 
is the numerator relationship matrix and q is a vector. 
The recurrence equation for the additive effect is

a = Pa + ϕ,

where a is a vector of animals ordered from oldest to 
youngest, ϕ is a diagonal matrix of Mendelian sam-
plings, and P is a matrix relating animals to their par-
ents; this matrix has at most 2 elements per row, both 
equal to 0.5. Following Quaas (1988),

Var(a) = A = (I − P)−1D(I − P)−1′,

where D = var(ϕ). Colleau (2002) showed that the 
product of A by a vector, for example,

v = Aq = (I − P)−1D(I − P)−1′q = (I − P)−1D 
[(I − P)−1′q],

can be solved in linear time. In particular, quantities r 
= (I − P)−1′q and v = (I − P)−1Dr can be obtained 
by solving (I − P)′r = q and (I − P)v = Dr, each one 
in a single sweep because (I − P) is triangular. The 
scalar formulas are

ri = ri + qi; rsi = rsi + ri/2; rdi = rdi + ri/2; i = n, ..., 1

vi = diri + (vsi + vdi)/2, i = 1, ..., n,

where si and di are positions of the sire and dam of 
animal i, respectively.

The Colleau (2002) algorithm can be used to com-
pute products of sections of matrices. For instance, 
the products below show how to compute A12q, A22q, 
A21q, or A22q:
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APPENDIX B

The pseudo-program below implements the Bi-CG-
STAB (Van der Vorst, 1992) for a system of equations 
Ax = b with M being a preconditioner. The major 
expenses in the algorithm are products of A by a vec-
tor, possibly followed by products of M−1, but only if 
M is of complex structure.
 
Compute r(0) = b − Ax(0) for some initial guess 
x(0) 

Choose  r r r (for example, = ( )0 ) 
for i = 1, 2, … 

  ri 1
i 1

r r-
-( )= ¢

  
  if ri 1-  = 0 method fails 
  if i = 1 
  p(i) = r(i−1)  
else 

  bi 1
i 1

i 2

i 1

i 1
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= + -( )- -
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1 1
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1

1
b w υυ  

 endif 

 solve M- ( )=1p̂ p
i  

 υ i
Ap( ) = ˆ 

 a i
i 1

1
r

=
¢

-

( )
r

 υυ
 

 g r
i 1

i
i

= -
-( ) ( )a υυ  

 check norm of g; if small enough: set 

x x p
i i 1

i
( ) -( )= +a ˆ and stop 

 solve Mg gˆ =  
 t Ag= ˆ 

 ωi
t g
t t

=
¢
¢
 

 x x p g
i i 1

i i
( ) -( )= + +a wˆ ˆ 

 r g t
i

i
( ) = -w  

 check for convergence; continue if necessary  
 for continuation it is necessary that wi ≠ 0 
end 
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