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  ABSTRACT 

  The first national single-step, full-information (phe-
notype, pedigree, and marker genotype) genetic evalu-
ation was developed for final score of US Holsteins. 
Data included final scores recorded from 1955 to 2009 
for 6,232,548 Holsteins cows. BovineSNP50 (Illumina, 
San Diego, CA) genotypes from the Cooperative Dairy 
DNA Repository (Beltsville, MD) were available for 
6,508 bulls. Three analyses used a repeatability animal 
model as currently used for the national US evalua-
tion. The first 2 analyses used final scores recorded up 
to 2004. The first analysis used only a pedigree-based 
relationship matrix. The second analysis used a rela-
tionship matrix based on both pedigree and genomic 
information (single-step approach). The third analysis 
used the complete data set and only the pedigree-based 
relationship matrix. The fourth analysis used predic-
tions from the first analysis (final scores up to 2004 and 
only a pedigree-based relationship matrix) and predic-
tion using a genomic based matrix to obtain genetic 
evaluation (multiple-step approach). Different allele 
frequencies were tested in construction of the genomic 
relationship matrix. Coefficients of determination be-
tween predictions of young bulls from parent average, 
single-step, and multiple-step approaches and their 
2009 daughter deviations were 0.24, 0.37 to 0.41, and 
0.40, respectively. The highest coefficient of determina-
tion for a single-step approach was observed when us-
ing a genomic relationship matrix with assumed allele 
frequencies of 0.5. Coefficients for regression of 2009 
daughter deviations on parent-average, single-step, and 
multiple-step predictions were 0.76, 0.68 to 0.79, and 
0.86, respectively, which indicated some inflation of 
predictions. The single-step regression coefficient could 

be increased up to 0.92 by scaling differences between 
the genomic and pedigree-based relationship matrices 
with little loss in accuracy of prediction. One complete 
evaluation took about 2 h of computing time and 2.7 
gigabytes of memory. Computing times for single-step 
analyses were slightly longer (2%) than for pedigree-
based analysis. A national single-step genetic evalua-
tion with the pedigree relationship matrix augmented 
with genomic information provided genomic predictions 
with accuracy and bias comparable to multiple-step 
procedures and could account for any population or 
data structure. Advantages of single-step evaluations 
should increase in the future when animals are pre-
selected on genotypes. 
  Key words:    best linear unbiased predictor ,  genomic 
prediction ,  single nucleotide polymorphism ,  genetic 
evaluation 

  INTRODUCTION 

  Genomic evaluations are currently calculated with 
a multiple-step procedure (VanRaden, 2008; Hayes et 
al., 2009). A typical evaluation requires 1) traditional 
evaluation with an animal model, 2) extraction of 
pseudo-observations such as deregressed evaluations or 
daughter deviations (DD), 3) estimation of genomic 
effects for genotyped animals usually using simple sire 
models, and possibly 4) combining the genomic index 
with traditional parent averages (PA) and EBV (Hayes 
et al., 2009; VanRaden et al., 2009b). Those steps are 
dependent on many parameters and assumptions. For 
example, estimation of genomic effects has several 
options (Meuwissen et al., 2001; Gianola et al., 2006; 
VanRaden, 2008; de los Campos et al., 2009). The SNP 
marker effects can be estimated with different assump-
tions regarding the prior distribution of such effects. 
Genomic effects can also be estimated with a simple 
model that includes a genomic relationship matrix de-
rived from genotypes and variances of the SNP marker 
effects (Nejati-Javaremi et al., 1997). Both methods are 
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equivalent except for numerical properties (VanRaden, 
2007).

Initially, genomic evaluation was tested with simu-
lated data and a variety of assumptions (VanRaden, 
2008). Experiences with actual data from dairy cattle 
(Hayes et al., 2009; VanRaden et al., 2009b) indicated 
that using a large number of markers with equal vari-
ance for all markers is appropriate for most traits. Lim-
iting the number of SNP markers to only those with 
large effects resulted in reduced accuracy (Cole et al., 
2009). However, little (if any) loss of accuracy occurred 
for most dairy cattle traits by assuming equal rather 
than different variance for each SNP marker (Cole et 
al., 2009; VanRaden et al., 2009b). Further, assuming 
equal variance allows the use of the same genomic rela-
tionship matrix for all traits.

Current experiences with genomic evaluations from 
the multiple-step procedure seem mixed. Genomic 
evaluations are more accurate than PA and approach 
the accuracy of evaluations for progeny-tested bulls, 
but they also seem inflated (VanRaden et al., 2009a). 
Although their inflation is lower than that of current 
PA, the potentially great utilization of top genomically 
evaluated young sires increases the importance of high 
accuracy and minimum bias. Inflation of genetic evalu-
ations by genomic information causes top young bulls 
to have an unfair advantage over older progeny-tested 
bulls. Some of the problems with genomic evaluations 
may be caused by incorrect parameters and strong as-
sumptions used in multiple-step procedures. However, 
effects of those parameters and assumptions are ex-
tremely difficult to verify, particularly in the presence 
of selection. An alternative explanation for the mixed 
results is that observed regressions and estimated reli-
abilities are biased downward by selective genotyping. 
A more serious problem is when pseudo-observations 
are poorly defined or of poor quality (e.g., for animals 
with small progeny numbers), which is often the case 
for monogastric species and for beef cattle.

Misztal et al. (2009) proposed a single-step evaluation 
in which the pedigree-based relationship matrix is aug-
mented by contributions from the genomic relationship 
matrix. They also suggested a computing procedure 
based on a nonsymmetric system of mixed model equa-
tions that was suitable for millions of animals. Legarra 
et al. (2009) derived a joint relationship matrix based 
on pedigree and genomic relationships. Even though 
the matrix was expensive and complex to create, com-
putations were feasible even for large data sets.

The single-step procedure provides a unified frame-
work, eliminates several assumptions and parameters, 
and provides the opportunity to calculate more accurate 
genomic evaluations than the multiple-step procedures. 
The objective of this study was to use a single-step pro-

cedure for genomic evaluation in a national evaluation 
setting and compare its performance to a multiple-step 
procedure.

MATERIALS AND METHODS

Data

Data were US Holstein information for final score 
used for May 2009 official evaluations (Holstein Asso-
ciation USA, 2009). A total of 10,466,066 records were 
available for 6,232,548 cows. Pedigrees were available 
for 9,100,106 animals. Genotypes for 6,508 bulls were 
generated using the Illumina BovineSNP50 BeadChip 
(Illumina, San Diego, CA) and DNA from semen con-
tributed by US and Canadian AI organizations to the 
Cooperative Dairy DNA Repository (Beltsville, MD); 
genotypes were provided by the Animal Improvement 
Programs Laboratory, Agricultural Research Service, 
USDA (Beltsville, MD).

Relationship Matrix with Pedigree  
and Genomic Information

Misztal et al. (2009) suggested that a numerator re-
lationship matrix (A) can be modified to a matrix (H) 
that includes both pedigree-based relationships and 
differences between pedigree-based and genomic-based 
relationships (AΔ): H = A + AΔ. In their examples, 
they used
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where subscripts 1 and 2 represent ungenotyped and 
genotyped animals, respectively, and G is a genomic 
relationship matrix. In tests, such H did not work be-
cause off-diagonals of H were not functions of G. As-
sume, for example, that no animal in G has records; 
then, according to H, the predicted breeding value for 
genotyped animals (u2) would be u u A A u2 1 21 11

1
1| = − ,  

where u1 is the predicted breeding value for ungeno-
typed animals, and G would have no role whatsoever.

Legarra et al. (2009) suggested deriving the joint 
density of u1 and u2 as p p p( ) ( | ) ( ).u u u u u1 2 1 2 2, =  The 

conditional distribution p ( | )u u1 2  is based on pedigree 

through the selection index or multivariate normal 
properties; p ( )u2  is based only on genomic informa-

tion, possibly from genomic relationships. The covari-
ance of the joint distribution of u1 and u2 is thus H:
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which could be implemented in tests by using comput-
ing algorithms such as in Misztal et al. (2009) with only 
a few more computations per round of iteration than 
for traditional evaluations. Convergence was readily 
obtained for medium-sized data sets (up to 1 million); 
however, for larger data sets, convergence was strongly 
dependent on the type of G used.

An inverse of H that allows for drastically simpler 
computations (see Appendix A) is
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where A22
1−  is the inverse of a pedigree-based relation-

ship matrix for genotyped animals only. This expression 
has also been independently derived by Christensen 
and Lund (2009). However, the new formula introduces 
a small problem: G is usually singular and, therefore, 
cannot be inverted without additional steps.

Models and Analyses

A repeatability animal model was used for analysis as 
is currently done for US national evaluation of Holstein 
conformation traits (Holstein Association USA, 2009). 
The first 2 analyses used final scores through 2004 only. 
The first analysis (Ped04) used only the pedigree-based 
relationship matrix; the second analysis (PedGen104) 
used relationships based on both pedigree and genomic 
information in a single-step approach. The third analy-
sis (Ped09) used the complete data set and only the 
pedigree-based relationship matrix. The fourth analy-
sis (PedGenM04) used predictions from Ped04 and a 
multiple-step approach to obtain genomic predictions 
(GP) as described by VanRaden et al. (2009b). Op-
tions in the last analysis were genomic relationship 
matrix and base allele frequencies. Both PedGen104 and 
PedGenM04 assumed equal variances per SNP marker 
effect.

“Raw” genomic relationships (Gb) were created as

 G
ZZ

b k
=

′
,  

where Z is an incidence matrix for SNP effects with 
elements
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for animal i and SNP j with allele frequency pj. Several 
allele frequencies were used to center the matrix: 0.5, 
base population estimated by linear regression of gene 
content (Gengler et al., 2007), and current population. 
The scaling parameter k was defined as

 k p pj j= ∑ −2 1( )  

(VanRaden, 2008), which assumes a priori independence 
of SNP effects (Gianola et al., 2009).

Another scaling parameter has been proposed by 
Gianola et al. (2009) with
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where p0 = α/(α + β) is the expected allele frequency, 
q0 = (1 − p0); α and β are parameters of the beta 
distribution fitting the base allelic frequency, and n is 
the number of SNP. That modification accounts for 
random ascertainment of SNP and their frequencies.

Matrices Gb were sometimes singular or close to sin-
gularity. To facilitate inversion, final analyses used a 
weighted G as proposed by VanRaden (2008): G = 
0.95Gb + 0.05A22. The weights were not critical, and 
replacing them with 0.98 and 0.02 caused negligible 
differences.

Because GP could be scaled incorrectly, a series of 
analyses used H−1:
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where λ scales differences between genomic and pedi-
gree-based information. More precisely (see Appendix 
B), λ  sets the value of G in H to a new value (G*):

 G G A* = + −⎡
⎣⎢

⎤
⎦⎥

− −
−

λ λ1
22

1
1

1( ) ,  

thus blending genomic and pedigree information. For λ 
= 1, G* = G; for λ = 0, G* = A22 and H = A. In fact, 
this corresponds to the following prior for genotyped 
animals:
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Comparisons were based on the regressions

DD = μ + δEBV04 + e

and

EBV09 = μ + δEBV04 + e,

where DD were deregressed evaluations (VanRaden 
et al., 2009b) from genotyped bulls without daughter 
records in 2004 but with daughter records in 2009 that 
were computed with complete final score data but with-
out genomic information; EBV09 are breeding values 
based on final scores up to 2009 but without genomic 
information; μ is a mean; δ is a regression coefficient; 
EBV04 are breeding values based on final scores up to 
2004; and e is residual error. Breeding values were cal-
culated for 2 sets of genotyped bulls: 1) 2,575 young 
bulls with no daughter records in 2004 but with daugh-
ter records in 2009 and 2) 3,933 evaluated bulls with 
daughter records in 2004. The most accurate method 
for prediction for young bulls would have μ close to 0, 
δ close to 1, and R2 as high as possible.

Both DD and EBV09 regressions were examined to al-
low more detailed comparison. Although DD computed 
through deregressed evaluations allow partial removal 
of the effect of PA, the removal is contingent on the 
accuracy of approximate reliabilities. Also, the goal of 
GP is not to predict DD but to predict future breeding 
values.

Software

Initial software for the construction of G and the 
multiple-step evaluation was provided by P. M. Van-
Raden (Animal Improvement Programs Laboratory, 
ARS, USDA, Beltsville, MD). Additional software for 
creating G was contributed by B. J. Hayes (Biosciences 
Research Division, Department of Primary Industries 
Victoria, Bundoora, Australia). Software refinement 
included rearrangements of code in Fortran 95 for ef-
ficient matrix multiplication, matrix inversion, and par-
allelization. Computation of A22 followed the formulas 
of Misztal et al. (2009), which used the algorithm of 
Colleau (2002). Genetic evaluation was performed by 
modified BLUP90IOD (Tsuruta et al., 2001; Misztal et 
al., 2002), which uses iteration on data with the precon-
ditioned conjugate gradient algorithm.

RESULTS AND DISCUSSION

Precomputation of G and A22 took 650 s and 45 
s, respectively, on an Opteron 64-bit processor with a 
clock speed of 3.02 GHz and a cache size of 1 MB, 
using one processor; their inversion took approximately 
150 s. Time per 1 preconditioned conjugate gradient 
round for PedGen104 was 13 s, which was 2% greater 
than 1 round for Ped04. Convergence rates (not shown) 
for PedGen104 and Ped04 were almost identical. A com-
plete analysis with PedGen104 took approximately 2 h. 
Memory requirement for precomputation of G was 2.7 
GB.

Table 1 shows R2 and δ for regression of 2009 DD and 
corresponding EBV09 on various 2004 predictions for 
young bulls. For PA, R2 was 24% with δ of 0.76. The δ 
showed that PA overestimated the genetic evaluation 
with progeny included by 27%. For the multiple-step 
approach, R2 increased to 40% and δ to 0.86. The in-
crease in R2 of 16% compared with PA R2 was slightly 
higher than the increase of 13% reported by VanRaden 
et al. (2009b). VanRaden et al. (2009a) reported a 
regression coefficient of 0.74. Differences from the re-
sults of VanRaden et al. (2009a,b) were caused in part 
by slightly different data (theirs included Canadian 
evaluations but fewer genotypes and US records) and 
methodology details (e.g., different computation of ap-
proximate reliabilities).

For the single-step approaches (Table 1), R2 for DD 
varied between 37 and 41%, and δ varied between 0.68 
and 0.79 depending on G. The highest single-step in-
crease in R2 over prediction from PA was 1% higher 
than the multiple-step increase, which indicated that 
single-step breeding values were slightly more accurate 
than those by the multiple-step as implemented here. 
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Table 1. Coefficients of determination (R2) and coefficients (δ) 
for regression of 2009 daughter deviations (DD) or corresponding 
estimated breeding values (EBV09) for bulls progeny tested from 2005 
through 2009 on 2004 predictions obtained by different algorithms 

Prediction method

DD EBV09

R2 (%) δ R2 (%) δ

Parent average 24 0.76 36 0.79
Multiple-step 40 0.86 50 0.82
Single-step1     
 G5 41 0.76 49 0.70
 GB 38 0.68 45 0.63
 GC 37 0.71 45 0.66
 GG – G5 41 0.79 50 0.73
 GG – GB 38 0.77 46 0.71
 GG – GC 39 0.79 46 0.73

1Assumed allele frequency of 0.5 (G5), base population (GB), cur-
rent population (GC), or calculated as in [30] of Gianola et al. (2009) 
(GG).



The best δ was 0.07 lower than the multiple-step δ, 
which indicated greater inflation of prediction for young 
bulls. The highest single-step R2 and δ (least inflation) 
were for G based on equal allele frequencies with extra 
benefits from modifications by Gianola et al. (2009). For 
simplification, subsequent comparisons used the equal 
allele frequency G but without the modifications.

The R2 values obtained using G matrix with equal 
allele frequency was greater compared with a G matrix 
created using base allele frequency. This was in the op-
posite direction to a similar study (VanRaden et al., 
2008). In addition, the latter study reported correlations 
of 0.6 between genomic- and pedigree-based inbreeding 
coefficients, whereas a correlation of 0.2 using base al-
lele frequencies was found in the current study. Further 
analyses need to be done to address such differences.

Results for EBV09 (Table 1) generally were similar 
to those for DD but with a slight advantage for the 
multiple-step approach. The δ indicated much greater 
inflation than for DD. Inflation on the EBV09 scale is 
important for producers because their comparisons are 
based on EBV and not on DD. It is debatable whether 
the results with EBV09 are valid in this case, because 
they contain information from PA. On the other hand, 
DD computed using approximated reliabilities may 
contain an extra noise.

Parent average was, in general, similar for runs with 
and without G. Thus, inflation higher than that in PA 
could be caused by too much indirect weight on ge-
nomic relationships. Inflation could be lowered by 
weighting ( )G A− −−1

22
1  by λ (see Appendix B). Table 2 

shows R2 and δ for DD and EBV09 with such a weight-
ing. As λ decreased from 1.0 to 0.5, R2 gradually de-
creased for DD but had an interim maximum for EBV09. 
At λ = 0.7, EBV09 R

2 increased to 51%, which was 1% 
better than for the multiple-step approach (Table 1); δ 
was also higher than for the multiple-step approach by 
0.01. The δ can be increased to 0.92 with only a slight 
decrease in R2. Because the primary interest of breeders 

is to identify animals with the highest genetic merit, a 
moderate reduction in bias (i.e., higher δ) would be 
preferred to a small increase in overall accuracy (R2).

Accuracy of the single-step approach was dependent 
on the choice of G and the weighting placed on the 
difference between G and A. With the proper choice, 
accuracy of the single-step approach was superior to 
that of the multiple-step approach. One reason why the 
choice of G is critical is that genomic and pedigree re-
lationship matrices should be compatible in both scale 
and structure. The importance of structure can be seen 
from the decomposition of the genomic breeding value 
in Appendix B. The weight of PA relative to genomic 
information depends on λ and even more on diagonals 
of G−1  and A22

1− .  In general, the diagonal of G−1  de-
pends on the genomic relationships and measures the 
amount of information provided to individual i by 
other animals.

The primary influence of the weighting factor (λ) 
appears to be related to the proportion of the additive 
variance explained by the genomic information (Ap-
pendix B). Snelling et al. (2009) found that different 
numbers of SNP genotypes used for the construction 
of G resulted in different decomposition of the addi-
tive variance between the genomic and polygenic ef-
fects. Genomic information from the best genotyped 
bulls would add relationship information for several 
animals and most likely result in higher additive vari-
ance. The Canadian official genomic evaluation system 
for Holsteins (Van Doormaal et al., 2009) assumes that 
only 80% of the additive variance is explained by the 
SNP information. Other factors behind the weighting 
factor may be related to final score as a trait in US 
Holsteins. For example, heritability based on records of 
grade animals is lower than with records on registered 
animals (Koduru, 2006). Other issues are preferential 
treatment of bull dams and the nature of final score, for 
which the definition changes over time (Tsuruta et al., 
2005). Future studies with more traits and species will 
clarify the influence of the weighting factor as well as 
alternative weighting factors. Although our decomposi-
tion between the genomic and polygenic effects involved 
inverses of the respective matrices, it can also be done 
on the direct scale, by assuming that only part of the 
genetic variance is explained by the genomic informa-
tion (Christensen and Lund, 2009).

What G should be is still undetermined. As imple-
mented for this study, G was constructed so that linear 
effects were assumed for SNP genotypes while also col-
lecting information about realized relationships (Van 
Raden, 2008). Other alternatives exist. For example, 
matrix K in González-Recio et al. (2008) included a 
similarity index across genotypes. Probabilities for 

747HOT TOPIC: ONE-STEP GENOMIC EVALUATION FOR FINAL SCORE

Journal of Dairy Science Vol. 93 No. 2, 2010

Table 2. Coefficients of determination (R2) and coefficients (δ) for 
regression of 2009 daughter deviations (DD) or corresponding breeding 
values (EBV09) for bulls progeny tested from 2005 through 2009 on 
2004 predictions from a single-step approach using an allele frequency 
of 0.5 and different relative variances for the genomic matrix (λ) 

λ

DD EBV09

R2 (%) δ R2 (%) δ

1.0 41 0.76 49 0.70
0.9 41 0.81 50 0.76
0.8 41 0.84 51 0.79
0.7 40 0.88 51 0.83
0.6 40 0.90 50 0.85
0.5 39 0.92 50 0.88
0.3 35 0.91 47 0.89



identity by descent can also be used and averaged 
across loci (Villanueva et al., 2005).

Use of regression coefficients to measure bias was 
described by Reverter et al. (1994) and forms the basis 
of Method R estimation of variance components. How-
ever, the use of δ to calibrate GP might be problematic. 
First, it relies on the same set of equations being used 
for old and recent evaluations, which was not true for 
this study; the “old” evaluation (PedGen104) used H, 
whereas the “recent” evaluation (Ped09) used A. Second, 
as seen by experience with Method R, the estimated re-
gression coefficient has large error and might be biased, 
especially with selection (Cantet et al., 2000; Schenkel 
and Schaeffer, 2000). On the other hand, little bias and 
very efficient computations were reported by Druet et 
al. (2001), who traced the bias to the use of fixed effects 
estimated from subsets of the data.

For this study, G was constructed with equal vari-
ances assumed for SNP marker effects. When variances 
are not equal; for example, as in Bayes-A or Bayes-
B (Meuwissen et al., 2001), an equivalent G can be 
constructed by scaling contributions from different 
markers. Such construction requires precomputing 
those variances based on genotyped individuals and 
pseudo-data.

The generalization of the single-step approach to 
multiple traits is obvious when G is identical for each 
trait. However, separate G matrices for each trait may 
require single-trait analyses. For several traits, the ben-
efits and simplicity of multiple-trait analysis using the 
same G may overcome the loss of accuracy from using 
less than the optimal G for each trait.

The single-step approach to evaluation as described 
in this study is easy to implement just by modifying the 
relationship matrix for current evaluations. Aside from 
simplification of genomic evaluation, the procedure is 
expected to improve evaluations for all ungenotyped 
animals. Updated PA and PTA for descendants of geno-
typed animals are possible using multiple-step methods 
with additional calculations (see http://aipl.arsusda.
gov/reference/changes/eval0901.html). Advantages of 
single-step evaluations should increase in the future 
when animals have been pre-selected on genotypes. 
Traditional evaluations expect that Mendelian sam-
pling averages zero, but in the future only animals with 
positive Mendelian sampling may receive phenotypes.

A substantial part of any current genomic selection 
is validation for young animals. In contrast, in BLUP 
based on pedigree information, such a validation is 
rarely performed and is implicitly replaced by vari-
ance component estimation, although some validation 
is performed indirectly for analyses used by Interbull 
multiple-trait across-country (MACE) evaluations 
(Interbull, 2001). With some assumptions, it is pos-

sible that the parameters of a single-step procedure are 
regular variance components plus weighting factors, 
either as proposed in this study or different. In such a 
case, the validation steps can be replaced by parameter 
estimation, greatly simplifying the use of the genomic 
information. Ways to estimate values of weighting fac-
tors by REML, Markov chain Monte Carlo, or other 
methods remain to be investigated.

CONCLUSIONS

Full genomic and pedigree evaluations by the single-
step approach were as good as those obtained with the 
multiple-step approach in terms of accuracy and bias. 
Generalization for complex data structures or more 
complicated models are straightforward. Additional 
computational cost was small relative to pedigree evalu-
ation. The highest accuracy was obtained with a scaled 
genomic relationship matrix created under the assump-
tion of equal allele frequencies. The main advantages 
of the single-step approach are its simplicity and au-
tomatic weights for the various sources of information 
for the overall breeding value. Moreover, advantages 
of single-step evaluations should increase in the future 
when animals are preselected on genotypes.
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APPENDIX A

Let the inverse of the numerator relationship matrix (A) be:

  A
A A

A A
− =

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

1
11 12

21 22
,  

where animals are partitioned into 2 groups with group 2 denoting genotyped animals.
To derive an inverse for the combined relationship matrix of Legarra et al. (2009), using the properties of the 

inverse of partitioned matrix, useful identities from A−1A = I are

  A11A11 + A12A21 = I,       [A1]

  A21A12 + A22A22 = I,       [A2]

  A11A12 + A12A22 = 0,       [A3]

  A21A11 + A22A21 = 0, and       [A4]

  A A A A A11 12 22
1

21

1
11−( ) =−

−
.       [A5]

Using [A1] through [A4] and multiplying the whole-population matrix
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gives H−1H = I.
A direct approach to getting H−1 comes from the distribution function. Based on the conditional distribution

  u u A A u A A A A1 2 12 22
1

2 12 22
1

2111| ∼ N − −−( ),  

and [A1] through [A5], the full distribution can be written as
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The matrix in [A6] is the inverse of the variance matrix of the full distribution. Therefore,
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APPENDIX B

To illustrate the role of λ and decomposition of joint predictions in PA, genomic prediction (GP), and pedigree 
prediction from the subset of genotyped relatives (PP22), consider H−1  after including λ:

  H
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Denote H−1 as {hij}, A−1 as {aij}, G−1 as {gij}, and A22
1

22
−  as .{ }aij  Consider the equation for breeding value ui of 

individual i without records or progeny, in the spirit of VanRaden and Wiggans (1991); k indicates genotyped 
individuals (in A22), and j indicates all individuals (in A):
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Thus, for λ = 0, only contributions from pedigree relationships remain.
Consider more specifically young animal i without records or progeny. The equation with inbreeding ignored 

is
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where s and d correspond to sire and dam, respectively. Then,
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that is, parent average, genomic prediction, and subset pedigree prediction, with weights summing to 1. These are 
the same sources of information as in VanRaden et al. (2009b) except that they are estimated jointly. Note that 
PP22 might be different from PA because 1) both parents might not be genotyped and 2) only the subset of 
genotyped animals is considered if PP22 is computed independently (as in PedGenM04). If λ = 0, only PA remains; 
if λ = 1, then weighting of the 3 sources of information depends on the elements aii = 2, gii, and aii22,  which 
measure precision of the 3 information sources relative to other breeding values. That approach is similar to the 
reliabilities used to combine the 3 information sources in VanRaden et al. (2009b).

Journal of Dairy Science Vol. 93 No. 2, 2010

752 AGUILAR ET AL.


	Hot topic: A unified approach to utilize phenotypic, full pedigree, and genomic information for genetic evaluation of Holstein final score1
	Introduction
	Materials and Methods
	Data
	Relationship Matrix with Pedigree and Genomic Information
	Models and Analyses
	Software

	Results and Discussion
	Conclusions
	Acknowledgments
	References
	Appendix A
	Appendix B


