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  aBStraCt 

  Dense molecular markers are being used in genetic 
evaluation for parts of the population. This requires 
a two-step procedure where pseudo-data (for instance, 
daughter yield deviations) are computed from full re-
cords and pedigree data and later used for genomic 
evaluation. This results in bias and loss of information. 
One way to incorporate the genomic information into 
a full genetic evaluation is by modifying the numera-
tor relationship matrix. A naive proposal is to substi-
tute the relationships of genotyped animals with the 
genomic relationship matrix. However, this results in 
incoherencies because the genomic relationship matrix 
includes information on relationships among ancestors 
and descendants. In other words, using the pedigree-de-
rived covariance between genotyped and ungenotyped 
individuals, with the pretense that genomic information 
does not exist, leads to inconsistencies. It is proposed to 
condition the genetic value of ungenotyped animals on 
the genetic value of genotyped animals via the selection 
index (e.g., pedigree information), and then use the 
genomic relationship matrix for the latter. This results 
in a joint distribution of genotyped and ungenotyped 
genetic values, with a pedigree-genomic relationship 
matrix H. In this matrix, genomic information is 
transmitted to the covariances among all ungenotyped 
individuals. The matrix is (semi)positive definite by 
construction, which is not the case for the naive ap-
proach. Numerical examples and alternative expressions 
are discussed. Matrix H is suitable for iteration on data 
algorithms that multiply a vector times a matrix, such 
as preconditioned conjugated gradients. 
  Key words:    genetic evaluation ,  genomic selection , 
 relationship matrix ,  mixed model 

  IntrODuCtIOn 

  Availability of dense molecular markers of type SNP 
has lead to the recent introduction of the so-called 
genome-wide or genomic selection evaluation models. 
Most such models are based on variants of simultaneous 
genome-wide association analysis, in which marker or 
haplotype effects (a) are estimated. Differences among 
methods are mostly on the a priori distribution of a
(e.g., Meuwissen et al., 2001; Gianola et al., 2006). 

  Although these methods are very promising for ani-
mal breeding, genotyping is not feasible for an entire 
population because of its high cost or logistical con-
straints (i.e., culled, slaughtered, or foreign animals). 
This is of importance, for example, for foreign bulls for 
which no genotyping is possible. Animals that are geno-
typed include prospective and old males, and possibly 
prospective mothers of future candidates (e.g., embryo 
transfer dams). 

  As not all animals can be genotyped, a 2- or 3-step pro-
cedure has to be followed; first, a regular genetic evalu-
ation is run; then, corrected phenotypes or pseudo-data 
are used in the second step, where the marker-assisted 
selection model is effectively applied (Guillaume et al., 
2008; VanRaden et al., 2009). These phenotypes are 
daughter yield deviations (DYD) and yield deviations 
(YD) for dairy cattle. 

  After computation of pseudo-data, genomic or 
marker-assisted predictions can be obtained by either 
simultaneously fitting polygenic and QTL effects 
(Guillaume et al., 2008), or by computing the genomic 
prediction and combining it with estimated breeding 
values from the animal model (VanRaden et al., 2009). 
Genomic predictions can be obtained either by esti-
mating a effects caused by markers or by using mixed 
model equations with a genomic relationship matrix G
(VanRaden, 2008). This assumes that a priori marker 
effects are normally distributed with a common vari-
ance. Although the assumption is arguable, positing a 
more complicated prior distribution resulted in little 
gain in practice (VanRaden et al., 2009). On the other 
hand, the genomic relationship matrix is simple to in-
terpret and handle. 
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Advantages of the multistage system include no 
change to the regular evaluations and simple steps for 
predicting genomic values for young genotyped animals. 
Disadvantages include weighting parameters, such as 
variance components (Guillaume et al., 2008) or selec-
tion index coefficients (VanRaden et al., 2009), and loss 
of information. Furthermore, the extension to multiple 
traits is not obvious and tracing back anomalies in a 
two-step procedure might become very complicated.

As for the loss of information, several problems exist 
in the use of DYD and YD. These problems are weights 
(caused by different amount of information in the origi-
nal data set), bias (caused by selection, for example), 
accuracy (for animals in small herds), and collinearity 
(for example, the YD of two cows in the same herd). As 
for the bias, if genomic selection is used, the expecta-
tion of Mendelian sampling in selected animals is not 
zero (Party and Ducrocq, 2009).

These problems may offset the benefit of marker-
assisted selection, particularly for cows (Neuner et al., 
2008, 2009). Also, in other species (sheep, swine, beef 
cattle) or traits (e.g., maternal traits, calving ease) 
DYD are more difficult to compute or even to define, 
or they might be poorly estimated—for example, if the 
contemporary groups are small.

One simplification of the current strategy would be 
to perform a joint evaluation using all phenotypic, 
pedigree, and genomic information. A possibility is to 
impute markers in ungenotyped animals via marker 
and pedigree information (i.e., linkage analysis) and 
estimate marker effects once imputation is done. How-
ever, in order to get a “best” predictor (in the sense of 
Henderson (1984), i.e., the conditional expectation), the 
incertitude in marker imputation, which is very high for 
most ungenotyped individuals, has to be accounted for 
via integration over the posterior distribution of marker 
imputations and marker effects. This can be achieved 
for example by peeling or Markov chain Monte Carlo 
(Abraham et al., 2007). However, this is unfeasible for a 
data set of even medium size when there are many loci 
or when many markers are missing, and particularly in 
the presence of loops, which are common in livestock 
pedigrees.

Another possibility is to use the same methodology as 
in the current evaluation (i.e., Henderson’s mixed model 
equations) except that the relationship matrix A needs 
to be modified to include the genomic information. The 
purpose of this study is to provide such a relationship 
matrix, based on transmissions from genotyped animals 
to their offspring, or selection indexes from genotyped 
to ungenotyped animals. This will blend complemen-
tary information from recorded pedigree and molecular 
markers. Computational methods for such a modified 

numerator relationship matrix, even if complex, can be 
found in Misztal et al. (2009).

metHODS

Covariance Matrix of Breeding Values  
Including Genomic Information

Let u be a vector of genetic effects. Under a poly-
genic infinitesimal model of inheritance, Var ,u A( ) = su

2  
where A is the numerator relationship matrix based on 
pedigree. Consider three types of animals in u: 1) 
ungenotyped ancestors with breeding values u1; 2) 
genotyped animals, with breeding values u2 (no ances-
tor is genotyped and phantom parents can be generated 
if necessary); and 3) ungenotyped animals with breed-
ing values u3, which might descend from either one of 
the three types of animals. A particular case is one in 
which ungenotyped animals are ancestors and progeny 
of genotyped animals—for example, a bull dam daugh-
ter of another bull. They are arbitrarily put in group 1. 
Then A can be partitioned as follows:

 A
A A A
A A A
A A A

=
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Let u2 = Za, Z being an incidence matrix and a the 
effects of markers. Matrix Z is centered by allele fre-
quencies (VanRaden, 2008). Then 

Var ,u ZZ
ZZ

G2
2 2 2( ) = ¢ =

¢
=s s sa u uk

 where k is twice the 

sum of heterozygosities of the markers (VanRaden, 
2008).

In some implementations, matrix G can be seen as an 
“improved” matrix of relationships (Amin et al., 2007). 
Villanueva et al. (2005) and Visscher et al. (2006) 
propose to use a realized matrix of transmissions from 
parents to offspring in the data, averaging across all 
positions in the genome; this proposal is impractical in 
a general manner as genotypes are needed over entire 
families. VanRaden (2008) discussed how the expecta-
tion of G above is A, the regular numerator relation-
ship matrix, and that G represents observed, rather 
than average, relationships. Therefore, it accounts for 
Mendelian samplings (i.e., it can distinguish full-sibs) 
and unknown or far relationships. The gain by using G 
has been shown (González-Recio et al., 2008; Legarra 
et al., 2008; VanRaden et al., 2009). In principle, the 
additive variance using G is identical to that using A 
(Habier et al., 2007).
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There is no need for G to have a particular genetic 
interpretation in terms of relationships. For example, 
using the reproducing kernel Hilbert spaces equations 
of González-Recio et al. (2008), Var ,u K2

2( ) = sa  where 
K is a matrix with “distances” among individuals. Ma-
trix K can be scaled to K* so that Var u K2

2( ) = *su by 
equating the expectation for the sum of squares of u2 in 
the data following polygenic and the reproducing kernel 
Hilbert spaces models. The expected sum of squares is, 
respectively (polygenic vs. reproducible kernel  
Hilbert spaces): E tr uu u A2 2 22

2¢( ) = ( )s  and 

E tr tr uu u K K2 2
2 2¢( ) = ( ) = ( )s sa * , where tr is the trace 

operator. In absence of inbreeding, tr(A22) = 1 and 
thus K* = K/tr(K). Note that matrix K is also cen-
tered, and pseudo-inbreeding coefficients can be ex-
tracted from the diagonal of K*. Of course, by using a 
reproducing kernel Hilbert spaces model any “genea-
logical” intuition is lost.

In the following, and for simplicity of notation, it will 
be assumed that su

2 1= .
Plug-in G. A simple way to use G is to plug it into 

A; this results in the following modified A:

 A
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A G A
A A A
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, [1]

where A22 has been simply replaced by G. A proposal 
by Gianola and De los Campos (2008) to come up with 
predictions of ungenotyped animals from predictions of 
genotyped ones is to use A G u12

1
2

- ˆ . Their proposal re-
duces thus to a selection index by making the assump-
tion that the covariance among individuals is described 
by Ag.

Matrix Ag is simple to use but not properly con-
structed. The use of G potentially modifies covariances 
in ancestors and descendants of genotyped animals. For 
example, assume two full-sibs in the genotyped animals 
whose genomic relationship is 0.6. By using Ag, it is as-
sumed that average relationship among their daughters 
is 0.25, whereas in fact it is 0.3.

It can be verified by small numerical examples that 
Ag is indefinite (i.e., some eigenvalues are negative 
and some positive); the reason is that it is not based 
in an underlying linear model leading to a matrix 
crossproduct of the type T’T plus a diagonal matrix, 
like the numerator relationship matrix (Quaas, 1988) or 
the marker-assisted BLUP (Fernando and Grossman, 
1989). Therefore, the statistical background is ill-de-
fined (Searle, 1971; Harville, 1976). A correct statistical 
inference can only be made if the covariance matrix is 

positive or semi-positive definite. Matrix Ag might lead 
to correct inferences if the matrix is reasonable and 
numerical errors are not big. This ought to be checked 
by simulations.

Modification for Progeny. For this different ap-
proach, consider the descendants of genotyped animals. 
Following the decomposition of A (i.e., Quaas, 1988), let 
P be a matrix containing expected transmissions from 
ancestors to offspring, that is, with values of 0.5 in the 
son-dam and son-sire cells. Then u = Pu + φ, where φ 
is a vector of Mendelian samplings and founder effects 
(Quaas, 1988). The variance of φ is indicated as D.

In this particular group of animals:

 u P P P
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u
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Then

 u T P u P u3 33 32 2 31 1 3= + +( )j , 

which can be seen as a regression equation, and where 
T33 = (I − P33)

−1 (Quaas, 1988).
Then 

 
Var u T P GP P A P P A P

P A P D
3 33 32 32 31 11 31 32 21 31

31 12 32 3

( ) = ¢ + ¢ + ¢(
+ ¢ + ) ¢¢T33

 

 Cov ,u u = T P A P A A3 1 33 31 11 32 21 31( ) +( ) =  

 Cov ,u u = T P G P A3 2 33 32 31 12( ) +( ) 

Then the covariance matrix becomes:
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.
 

  [2]

Variance caused by Mendelian sampling in D3 is  
related to inbreeding in the founders 
Var ,j s( ) = - +( )( )( )1 2 4 2/ /F Fs d u  where Fs and Fd are 

inbreeding coefficients of sire and dam; this can be ex-
tracted from the diagonal of G if needed. Otherwise, 
D3 is the same as in classical methods. Assuming that 
D3 is equivalent in both cases (i.e., parents are not in-
bred), Ap can be formed by appropriately modifying 
A:
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Again, matrix Ap might not be fully coherent (and 
indeed might be indefinite) because matrix G also in-
cludes information about the ancestors of genotyped 
animals. For example, two genotyped animals, say A 
and B, that have no relationship in the numerator re-
lationship matrix A might show some relationship in 
G, because of a common, unrecorded, ancestor. Thus, 
a relationship can be posited between the ancestors of 
A and B. Matrix Ap would work if all founders were 
genotyped (e.g., in a nucleus scheme); in this case, the 
system is fully coherent. For practical purposes, Ap 
might be reasonable because most information for sire 
evaluation is contained in the progeny, and not in the 
ancestors.

Modification for the Whole Pedigree. There is no 
distinction between ancestors or progeny of genotyped 
animals in this method; animals in 1 are ungenotyped, 
whereas animals in 2 are genotyped.

Then A
A A
A A

=
é

ë

ê
ê
ê

ù

û

ú
ú
ú

11 12

21 22

 with inverse A
A A

A A
- =

é

ë

ê
ê
ê

ù

û

ú
ú
ú

1
11 12

21 22
.

Based on selection index theory and properties of the 
normal distribution, conditionally on pedigree (Sorens-
en and Gianola, 2002, p. 254; Gelman et al., 2004, p. 
86), the distribution of breeding values of ungenotyped 
animals, conditioned on breeding values of genotyped 
animals, is:

 p Nu u A A u A A A A1 2 12 22
1

2 11 12 22
1

21( ) = -( )- -,  [3]

(which is the best predictor if we assume normality), 
or,

 
u u u A A u

A A A A A

1 1 2 12 22
1

2

11 12 22
1

21
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1

= ( )+ = +

( ) = - = ( )

-

-
-

E e e
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Var .
 

This can be seen just as a regression equation. Now 
substitute u2 = Za. Then

 u A A Za1 12 22
1= +- e 

so that

 Var .u A A GA A A A A A1 12 22
1

22
1

21 11 12 22
1

21( ) = + -- - -  

This can be reduced to

 Var u A A A G A A A1 11 12 22
1

22 22
1

21( ) = + -( )- -  

 Var u ZZ G2( ) = ¢ =/  andk  

 Cov , .u u A A G1 2 12 22
1( ) = -  

Note that A A A A12 22
1 11

1
12-

-
= -( ) . This might be conve-

nient for computation as A11 and A12 are sparse and 
simpler to create, following Henderson’s rules, than A12 
and A22.

Let us now call H the covariance matrix of breeding 
values including genomic information. This is:

 

H
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H H
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 [4]

Matrix H is identical to Ap if all founders are 
genotyped, because in that case A12 = T1P12A22. By 
construction, this matrix is semipositive or positive 
definite, which implies that the statistical background 
is sound (e.g., Harville, 1976). It is possible to come 
up with rules for inverting H, in the lines of Wang et 
al. (1995). However, H−1 might be difficult to invert 
because full positive definiteness of G is not guaran-
teed and therefore their inverse (which is needed to get 
H−1) might not exist, or might be very ill-conditioned. 
Positive-definitiveness of H is not necessary for predic-
tion (Harville, 1976; Henderson, 1984). Two alterna-
tive expressions for H that might be computationally 
convenient are:

 H
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  [5]
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  [6]
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Computational Suggestions. An outline of some 
ideas for solving mixed model equations for big data 
sets will be shown here including matrix H (similar al-
gorithms can be conceived for Ap and Ag), whereas the 
companion paper by Misztal et al. (2009) gives more 
details and examples. Henderson (1984, 1985) gave ex-
pressions for the computation of the mixed model equa-
tions without use of the inverse of the relationship 
matrix. These expressions are valid for singular matri-
ces (Harville, 1976), which might be the case for G as 
it was in our experience (unpublished). For the  
random effects the equation is: 
HZ R Z I u Wu HZ R y¢ +é
ëê

ù
ûú

= = ¢- -1 1ˆ ˆ .

This equation can be solved, in methods such as pre-
conditioned conjugated gradients, by repeatedly multi-
plying matrix W times the current guess of u. This 
requires computing the product Hq, where q is a vec-
tor. This is feasible using [6]. Whereas G is created 
explicitly, only A−1 can be created efficiently; A22 can 
be created from pedigree by computing single elements 
of the A matrix using recursive (Aguilar and Misztal, 
2008) or indirect (Colleau, 2002) algorithms. For large 
data files, matrix G can be computed in parallel or 
even using iteration on data on genotype files. It will be 
assumed that A22 and G can be computed and stored 
in core. First, Aq can be computed by Colleau’s (2002) 
indirect algorithm by reading twice the pedigree file 
without explicitly creating A. This algorithm works by 
reading a pedigree twice. The other part is a product of 
the form NQRSVq. This product can be computed as 
N(Q(R(S(V(q))))). The only difficult parts are the 
computations of s A A t= -

22
1

21 1, where t1 is a vector of 
size equal to the number of ungenotyped animals, and 
its symmetric product of the form A A12 22

1- . The product 
p = A21t1 can be found as follows. Let be the product 

A
A A
A A

t
0

A t
A t

=
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ù

û

ú
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z
y

, whose result y is 

needed. Now let A* be the ordered relationship matrix 
(parents before offspring), and x a vector containing 
the reordered elements in t1 and zero otherwise (i.e., 
the values in x corresponding to animals in A22 are 
zero). Then, the product A*x can be computed by 
solving the system of equations A*−1y* = x by Col-
leau’s algorithm and rearranging y* into z and y.

The product s A p= -
22

1  can be computed directly if 
A22

1-  has been previously computed; or done by solving 
A22s = p if it has not. Both operations have quadratic 
cost on the number of genotyped animals, say n. Even 
if A22 cannot be stored, solving A22s = p can in prin-
ciple be done by an iterative solver and repeated use of 
the Colleau’s algorithm to compute the successive 
products A22s. The opposite (multiplication followed 

by indirect algorithm) strategy can be applied in com-
puting the product with N. Product by S will involve 
n2 operations. If G is smaller than Z, products can be 
computed as s = Gp = Z(Z′p)/k at a cost of 3nm (m 
being the number of markers). Overall, one iteration of 
the full algorithm involves reading the pedigree file 6 
times, plus a number of operations being several times 
n2 or 3nm. For example, for 10 million animals in pedi-
gree and n = 10,000 genotyped individuals, computing 
time per iteration will be roughly proportional to n2. 
Thus, solving the mixed model equations may be fea-
sible even for large pedigrees. More detailed explana-
tions on the algorithms and preliminary studies of their 
performances can be found in the companion paper by 
Misztal et al. (2009).

Example

Consider the pedigree in Figure 1. Animals 1 to 8 are 
unrelated founders, whereas animals 9 to 12 are geno-
typed. As an example, let G be a matrix with 1 on the 
diagonal and 0.7 otherwise (i.e., all animals are related 
although their founders are supposedly unrelated). The 
regular numerator relationship matrix A is in Table 
1; only a slight modification is needed to get Ag (not 
shown). The modified Ap, for progeny, is in Table 2, 
and the pedigree modified H is in Table 3. Even for this 
small example, Ap is indefinite, whereas H is positive 
definite.

It can be seen that in the latter, the relationships 
among genotyped individuals are projected backward 
and forward. The backward projection implies, for ex-
ample, that parents of 9 and 10 are related, and 1 and 
2 are not. In fact other possibilities exist (for example, 
that 2 and 3 were related but not 1 and 4), but the se-
lection index gives a parsimonious solution. This is not 
the case in Ap, where there is no backward projection. 
The nonexistence of this backward projection makes 
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Figure 1. Example pedigree. Genotyped animals are in bold.



Ap for 1 to 12 indefinite, as the covariance structure it 
defines is ill-posed.

Also, in comparison to A, it can be seen that inbreed-
ing coefficients appear in descendants of genotyped 
animals as these are related.

DISCuSSIOn
The system in [6] might also be expressed as if the 

overall genetic value was the sum of 2 different genetic 
values: the one in the infinitesimal model plus a differ-
ence whose covariance matrix is G − A22. In the naive 
approach, this difference is not correctly accounted for 
in the relatives. If G = A22 (which will not happen in 
practice), matrices A and H are identical as expected. 
Further, this shows that genetic variance in the popula-
tion is the same on average (i.e., there is no artificial 
inflation). These are of course desirable properties.

The proposed matrix H is based on selection index 
principles or, equivalently, in assumptions of A being 
multivariate normal. Conditioning on breeding values 
of genotyped animals in [3] allowed us to develop a full 
multivariate distribution H. Thus, matrix H has been 
constructed from the joint density p(u1,u2) = p(u1|u2)
p(u2), where p(u2) is obtained from genomic data. This 
distribution includes desirable aspects well known in 
genetic evaluation: the fact that sons inherit half their 
parents (as in the descendants of genotyped animals) 
and the notion of selection index (which is included in 
BLUP). So, these aspects are indeed used in the 2-step 
evaluation.

It is hard to envision other possibilities as it is not 
simple to come up with an underlying model and set up 
a probability distribution. For example, the “intuitive” 
expression ˆ | ˆ ˆu u A G u2 1 12

1
1= -  follows the logic of a se-
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Table 1. Numerator relationship matrix A for the pedigree in Figure 11 

1.00 0.50 0.25 0.13 0.13
1.00 0.50 0.25 0.13 0.13

1.00 0.50 0.25 0.13 0.13
1.00 0.50 0.25 0.50 0.38 0.13

1.00 0.50 0.25 0.25 0.13 0.13
1.00 0.50 0.25 0.25 0.13 0.13

1.00 0.50 0.25 0.13
1.00 0.50 0.25 0.13

0.50 0.50 1.00 0.50 0.25 0.25
0.50 0.50 1.00 0.50 0.25 0.38 0.25

0.50 0.50 1.00 0.50 0.50 0.25 0.25
0.50 0.50 1.00 0.50 0.25

0.25 0.25 0.25 0.25 0.50 0.50 1.00 0.13 0.56 0.50
0.25 0.25 0.25 0.25 0.50 0.50 1.00 0.25 0.13 0.50

0.50 0.25 0.25 0.25 0.50 0.13 0.25 1.00 0.56 0.19
0.13 0.13 0.13 0.38 0.13 0.13 0.25 0.38 0.25 0.56 0.13 0.56 1.06 0.34
0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.25 0.25 0.25 0.25 0.50 0.50 0.19 0.34 1.00

1Cells with 0 are empty to show the pattern. Coefficients for genotyped animals are in bold. Matrix Ag is obtained by setting the out-of-diagonal 
coefficients of genotyped animals to 0.7.

Table 2. Modified relationship matrix Ap including genomic information for genotyped animals and their progeny for the pedigree in  
Figure 11 

1.00 0.50 0.25 0.13 0.13
1.00 0.50 0.25 0.13 0.13

1.00 0.50 0.25 0.13 0.13
1.00 0.50 0.25 0.50 0.38 0.13

1.00 0.50 0.25 0.25 0.13 0.13
1.00 0.50 0.25 0.25 0.13 0.13

1.00 0.50 0.25 0.13
1.00 0.50 0.25 0.13

0.50 0.50 1.00 0.70 0.70 0.70 0.85 0.70 0.35 0.60 0.78
0.50 0.50 0.70 1.00 0.70 0.70 0.85 0.70 0.60 0.73 0.78

0.50 0.50 0.70 0.70 1.00 0.70 0.70 0.85 0.50 0.60 0.78
0.50 0.50 0.70 0.70 0.70 1.00 0.70 0.85 0.35 0.53 0.78

0.25 0.25 0.25 0.25 0.85 0.85 0.70 0.70 1.35 0.70 0.48 0.91 1.03
0.25 0.25 0.25 0.25 0.70 0.70 0.85 0.85 0.70 1.35 0.43 0.56 1.03

0.50 0.25 0.25 0.35 0.60 0.50 0.35 0.48 0.43 1.00 0.74 0.45
0.13 0.13 0.13 0.38 0.13 0.13 0.60 0.73 0.60 0.53 0.91 0.56 0.74 1.33 0.74
0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.78 0.78 0.78 0.78 1.03 1.03 0.45 0.74 1.53

1Cells with 0 are empty to show the pattern. Coefficients for genotyped animals are in bold.



lection index (or a multivariate normal distribution), 
but the covariances of u1 and u2 do not account for G 
as they should. It is not coherent to use G to derive 
Var(u2) and not to derive Cov(u1,u2). These covari-
ances can be derived for descendants using the trans-
mission vectors P and T as shown above, including G 
in the expression; however, it is more difficult to come 
up with a similar expression for ancestors. The selec-
tion index used as a conditional distribution overcomes 
this problem and accounts for G to generate the covari-
ance of u1 and u2. This resulted in a parsimonious in-
clusion of all information (full pedigree and genomic 
relationships).

All of these assumptions are actually applied in the 
2- or 3-step procedure for genomic selection mentioned 
previously, but as we discussed, information is lost by 
doing the steps procedure. A full relationship matrix 
would allow a joint evaluation and all the informa-
tion would be accounted for automatically. We have 
also sketched how computations could be feasible in 
practice. Some aspects, like computation of reliabilities, 
deserve further research.
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