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Abstract

Through the use of a sequence of fractional factorial designs, the growth inhibition of Salmonella typhimurium by many natural antimicrobial
compounds is studied and modeled. Two very important predictive variables are an appropriately weighted total of organic acid concentrations on
the one hand, and of aromatic compound concentrations on the other.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Nowadays, consumers request additive-free, fresher and more
natural tasting food products, while maintaining microbiological
safety (Gould, 1996). The use of natural antimicrobial com-
pounds, which belong to the general framework of preservation
processes, is thus of utmost interest in the food industry. Organic
acids and aromatic compounds belong to this type of additives, as
well as some salts.

The main drawback to the use of such a compound when it is
used alone as food preservative is the high effective concentration
needed for a lethal effect on the spoilage microbiota: it often
exceeds the threshold acceptable to consumers. In that context,
associating several of these compounds can be interesting.
Combinations of preservative effects including antimicrobials
addition have been already described as the Hurdle Technology
concept in food safety by Leistner (1985) (Gould et al., 1995).
This process for food stabilisation allows the same microbiolog-
ical security in food by using a much lower amount of each
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preservative compound or a lower intensity of the physical treat-
ment involved.

This paper describes an approach using fractional experimen-
tal designs to find which combinations of compounds used at
moderate levels are the most effective in preventing the growth of
Salmonella typhimurium which is of major concern to public
health and represents one of the most important serovars in Sal-
monella gastroenteritis in almost all countries (Ray, 2001; Moll
and Moll, 2002). We here mainly consider the statistical aspect of
the study. See Nazer et al. (2005) for other aspects.

2. Materials and methods

2.1. Antimicrobial agents

The compounds used in the study, the abbreviations used to
denote them here and their origin are listed in Table 1. Stock
solutions of organic acids and phosphates were made in distilled
water. Stock solutions of aromatic compounds were prepared by
dissolution in absolute alcohol.

2.2. Strain and growth conditions

The strain used in this study was Salmonella enterica subsp.
enterica serovar Typhimurium ATCC 13311. The bacteria were
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Table 1
Antimicrobial compounds

Compound Abbreviation Provider

Acetic acid acetic Labosi (France)
Citric acid citric Sigma-Aldrich (USA)
Lactic acid lactic Merck (Germany)
Benzoic acid benzoic Sigma-Aldrich (USA)
Paraminobenzoic acid paba Accros Organic (France)
Sodium acetate asod Labosi (France)
Potassium acetate apot Labosi (France)
Sodium lactate lacso Sigma-Aldrich (USA)
Sodium nitrite nitsod Prolabo (France)
Pyropolyphosphoric acid aphos Sigma-Aldrich (USA)
Sodium hexametaphosphate shmp Sigma-Aldrich (USA)
Sodium tripolyphosphate stpp Sigma-Aldrich (USA)
Geraniol geran Sigma-Aldrich (USA)
Carvacrol carvac Sigma-Aldrich (USA)
Eugenol eug Sigma-Aldrich (USA)
Thymol thymol Sigma-Aldrich (USA)
Citral citral Sigma-Aldrich (USA)
Menthol menth Sigma-Aldrich (USA)
trans-cinnamaldehyde cinnam Sigma-Aldrich (USA)
a-terpineol a-terp Sigma-Aldrich (USA)
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grown in BHI broth (Brain–Heart Infusion, Oxoid, UK) in the
absence or presence of antimicrobials. The medium was inocu-
lated at 1% v/v (approximately 106 cells/mL) with a standar-
dized inoculum.

Growth was monitored with a Bioscreen Microbiological
Growth Analyser (Bioscreen C, Labsystems, Finland), an appa-
ratus using 100-well microplates which can thus follow up to 100
growth curves simultaneously by measuring the optical density
(OD). In order to analyse the growth, the growth percentage at
12 h of culture was measured (Nazer et al., 2005). It is defined as:

G ¼ ðODt − ODt0Þtest
ðODt − ODt0Þcontrol

ð1Þ

where OD is the optical density at 600 nm, t=12 h, t0=0 h, test
makes reference to the culture grown with antimicrobials, and
control makes reference to the culture grown without antimicro-
bial. This variableG indicates howmuch the growth is reduced in
Fig. 1. Growth percentage G at 12 h for each aromatic compou
the presence of antimicrobials. The time 12 h has been chosen for
the best discrimination of growth curves.

2.3. Experimental designs and statistical analysis

For this problem, an usual experimental approach starting with
a low resolution fractional design to screen the factors followed by
designs of higher resolution to model the influence of the more
important factors was used. The analysis of each design led to the
next one. Through a final global analysis, the action of the com-
pounds under investigation, which at the beginning of the study
were the 20 listed in Table 1, was modeled. This statistical
approach is described in Sections 4 and 5.

3. Determination of antimicrobial activity of individual
compounds

To define the levels used in the experimental designs, a first
study was made on each compound separately. The growth
percentage G at 12 h was represented as a function of the
concentration and this graph was used to determine first visually
the 5% inhibitory concentration, denoted by IC5, which is the
concentration reducing the growth by 5% with respect to the
control. This visually obtained IC5 was then used as a reference
to determine the levels used in each design. For instance the
levels used in the first screening design were IC5/8 and IC5/4
(see Section 4.1).

As a particular case, graphs of G as a function of the con-
centration for 5 aromatic compounds on one side, 4 organic
acids on the other are shown in Figs 1,a and 2,a. The curves in
Fig. 1,a seem to have similar shapes, up to a change of scale on
the concentration prompting a search for suitable changes of
scale to make the inhibition curves for the aromatic compounds
coincide as much as possible. The following procedure was
used to determine these changes of scale.

First for each compound, the curve giving the growth per-
centage as a function of the concentration was smoothed by
local polynomial approximation (Fan and Gijbels, 1996), as
nd e: eugenol, c: carvacrol, g: geraniol, t: thymol, a: citral.



Fig. 2. Growth percentage G at 12 h for each acidic compound a: acetic, c: citric, l: lactic, p: pyropolyphosphoric.
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summarised in Section 3.1. The smoothed curve was then used
to estimate the inhibitory concentrations at different levels (IC5,
IC20, IC50, IC80) and the scales were then chosen so as to
make these inhibitory concentrations coincide as much as
possible as described in Section 3.2. The equivalences thus
found between aromatic compounds (given in Section 3.3)
suggest introduction, as a predictive variable in the model, of
their total after the changes of scale.

The strong analogy between the curves in Fig. 2 similarly
leads to the introduction of a total organic acid concentration,
after suitable changes of scale. Section 3.3 explicitly gives these
two new global explaining variables, the total aromatic and the
total acid concentrations, the use of which then allowed
development of much simpler models.

3.1. Detail of the smoothing

The local polynomial fitting (Fan and Gijbels, 1996) leads to
a smoothed curve such as the one on the left of Fig. 3. If (xi, yi)
are the pairs of observations, where x stands for the
concentration and y for the growth percentage, the adjusted
value at x is obtained by a weighted polynomial regression of
Fig. 3. 5%, 20%, 50%, 80% Inhibitory Concentrations of the Growth percentage at 12
the main compounds.
the yi on the xi. The weights decrease with the distance between
xi and x. They are of the form K((xi−x) /h) where K, the kernel
function, is maximum at xi−x=0 and decreases symmetrically
as the argument increases in absolute value. So for each x, the
method finds a polynomial Px(z) locally adjusting the observed
points and the value Px(x) of this polynomial at x is precisely
the smooth ordinate.

A thorough discussion on the choice of the kernel function
K, of the parameter h, of the degree of the polynomial
regression can be found in Fan and Gijbels (1996). In our case,
the kernel was chosen as Gaussian, and the choice of the degree
and of h was made so that the smoothed curve nearly goes
through the few observed points. The degree 2 together with h
equals to 1/8 of the concentration which completely inhibits the
growth that was found adequate for that purpose. As an
example, let us consider the case of eugenol for which the tested
concentrations and corresponding growth percentages are given
in Table 2. In that case, h is taken as equal to 0.4=3.2 /8 and
thus the weight associated to the point of the abscissa xi (where
xi takes the values 0, 0.4, 0.8, 1.6, 2.4, 3.2) is: exp −0.5[(xi−x) /
0.4]2. For instance if x=1, the corresponding weights are 0.044,
0.325, 0.882, 0.325, 0.002, 0. The local adjustment mainly takes
h. left: smoothed curve and ICs in the case of eugenol, right: table of the ICs for



Table 2
Growth inhibition by eugenol

Concentrations (mM) 0 0.4 0.8 1.6 2.4 3.2
Growth percentage 100 94.5 87.5 60.5 40.7 0
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into account the three points of coordinates 0.4, 0.8, 1.6 and
since it is a polynomial of degree 2 which is adjusted, it nearly
goes through these three points. This explains why, with such
parameters, the smoothed curve nearly goes through the points.

3.2. Changes of scale

A simple dichotomic process was then used to find on the
smooth curve the concentrations IC5, IC20, IC50, IC80 leading
to the desired growth inhibition. As an example, we give on the
left of Fig. 3 the fitted curve for the eugenol, with the corres-
ponding ICs reported in the abscissa. On the right, we give the
ICs thus found for the more important compounds.

Change of scale coefficients δwere determined so as to make
the ICs in the new scale as near as possible, in the sense of
minimizing the sum of square differences, to the corresponding
ones for the reference compound, thymol for aromatics, acetic
acid for acids. In this way, for example, 1 mM eugenol was
found to be equivalent to δ=0.35 mM thymol. Multiplying by
this coefficient the eugenol ICs 0.4, 1.1, 2.1, 2.9, we find
equivalent thymol concentrations 0.14, 0.385, 0.735, 1.015
which are similar to the corresponding ICs 0.35, 0.47, 0.75, 0.93
obtained for thymol. Indeed, δ is the coefficient minimizing the
sum of squares

S ¼ ð0:35−d 0:4Þ2 þ ð0:47−d 1:1Þ2

þ ð0:75−d 2:1Þ2 þ ð0:93−d 2:9Þ2:
A similar procedure was applied for acidic compounds.
Initially, we tried to find equivalence in the same way for all

the compounds found active in the first screening design. They
were thus all equivalenced to an acetic acid concentration with
the hope that the total concentration of the compounds in this
common unit would be a good predictor of the inhibition. But
that global equivalencing failed, as well as less global ones
trying to assimilate aromatics and acids, or acids and salts.
Similarly we found that the salts cannot be all efficiently
equivalenced, but that sodium acetate and potassium acetate,
which are quite active and have very similar growth percentage
curves, can be equivalenced.

3.3. Equivalence between compounds

The equivalences with thymol concentrations found by the
method just described are

1 mM carvacrol∼1.01 mM thymol, 1 mM geraniol∼0.43 mM thymol,
1 mM citral∼0.27 mM thymol, 1 mM eugenol∼0.35 mM thymol.

The transformation of the Fig. 1,a curves after the change of
scale, that is when all concentrations are expressed in equivalent
mM of thymol, is shown in Fig. 1,b.
As already indicated, the strong similarity between the
aromatic compounds suggests introduction of their total after
the scale change as a predictive variable for the inhibition in the
presence of several compounds. If thymol, carvacrol, etc denote
the concentrations in mM, this total denoted by AR, is thus
defined as

AR ¼ thymolþ 1:01 carvacrolþ 0:43 geraniol

þ 0:27 citralþ 0:35 eugenol:

A similar approach works for organic acids. Again the
inhibition curves are very similar after all the concentrations
have been transformed in the same unit equivalent acetic mM
(Fig. 2,b). This leads to introduce the total

AC ¼ aceticþ 1:77 citricþ 0:68 lacticþ 2:25 aphos

as a predictive variable.

4. Experimental designs

4.1. The first screening design of resolution 4

It was decided to study the 20 compounds in 64 wells, each at
two levels which after a first trial were established as IC5/8 and
IC5/4 to give, when the compounds are combined together, results
varying between 0 and 100% of growth percentageG at 12 h (IC5
was in that case determined as explained in the beginning of
Section 3). It is well known that it is possible to find in this context
a resolution 4 design, authorizing the optimal unbiased estimation
of all main effects even when there are two-factor interactions in
the model. Such designs are known to be far more robust than
resolution 3 designs, currently known as Plackett and Burman
designs, which are deduced from Hadamard matrices (Plackett
and Burman, 1946; Diamond, 1981).

To choose an adequate fraction, it would have been useful to
get all resolution 4 regular 220–14 possible fractions, and to
compare their properties in term of aliasing of the two-factor
interactions. However even with the algorithm of Draper and
Mitchell (1967), described in some details by Kobilinsky
(1997), this cannot be achieved in a reasonable time. So the
investigation was limited to an assortment of such resolution 4
designs, obtained by the software PLANOR (Kobilinsky, 1994;
Kobilinsky, 1997) which makes possible backtrack searches of
regular fractions in a random order, and, thus, to find several
solutions.

However the direct search was very long and stopped after
obtaining the first solution. It was then decided to look for reso-
lution 3 regular fractions, and to double them by their opposite to
get the searched resolution 4 fractions (Kobilinsky, 1997; Mont-
gomery, 1997; Ankenman, 1999). Four solutions were thus
derived from four different resolution 3 fractions 220–15 and four
others from resolution 3 fractions 219–14 to which was added a
supplementary factor equal to 1 on the first half and −1 on the
opposite part.

In each of the 9 fractions thus obtained, there are 31 groups
of aliased two-factor interactions. Recall that in each group,
only one linear combination of the two-factor interactions is
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estimable. This function is the associated canonical estimable
function, abbreviated CEF (Kobilinsky and Monod, 1995).

Since the factors were a priori considered as equally
important, it was decided to select a fraction in which the
groups of aliased effects are approximately of the same size.
One avoids in this way too big groups that make the analysis
more difficult if the associated CEFs are significantly different
from 0. Table 3 gives, for three of the compared fractions, the
number of groups of aliased two-factor interactions (2fi) of each
size. The one selected is the third where 24 of the 31 groups
include 6 two-factor interactions. The corresponding effects
deduced from the results of the design are reported just below,
sorted by order of decreasing absolute values. They are
normalized as explained in Appendix A (see also Kobilinsky,
1997) and may thus be compared.

Moreover, since the fraction is regular, they all have the same
standard deviation so that the 95% (or 99%, or 99.9%) confidence
intervals all have the same width, the half of which is given at the
right top of Table 3. By adding and subtracting these half widths,
the desired confidence interval is found and it is thus immediately
seenwhich effects are significant at the 5% (or 1%, or 0.1%) level.
For instance the effect “asod” (sodium acetate) has a 99.9%
confidence interval −2.49±2.24, that is [−4.73, −0.25], which
does not includes 0. Thus it is significantly different from 0 at the
0.1% level, while “geran”which has a 99.9% confidence interval
−1.87±2.24 and a 99% confidence interval −1.87±1.57 is only
significantly different from 0 at the 1% significance level. Effects
smaller in absolute value than 1.11 are not significantly different
from 0 at the 5% level. Only the first of them “acetic.a-terp+···” is
reported in Table 3 to show the limit between the effects which are
significantly different from 0 at the 5% level and those which are
not.
Table 3
Selection of the screening design and associated results

Comparison of fractions

Number of aliased 2fi 4 5 6
Fraction 1 Number of groups 16 0 0
Fraction 2 Number of groups 5 11 0
Fraction 3 Number of groups 0 2 24
…

Effects and CEFs sorted by order of decreasing absolute values

general mean 55.43 shmp
citric −5.54 lacso
aphos −5.09 citral
lactic −4.3 thymol
acetic −4 asod

acetic · citric+benzoic ·menth+apot ·cinnam+lacso · citral+nitsod ·a-terp+aphos ·ge
a-terp
lactic ·paba+benzoic · aphos+asod· thymol+ lacso ·eug+shmp·a-terp+carvac · citral
acetic · aphos+citric ·geran+asod ·a-terp+apot ·carvac+shmp· thymol+eug ·cinnam
acetic · apot+citric ·cinnam+lactic · thymol+benzoic · citral+paba ·asod+ lacso ·men
eug
benzoic
acetic · a-terp+citric ·nitsod+ lactic ·citral+benzoic · thymol+paba·carvac+asod ·aph
It is to be noted that the sign of an effect depends on the way
the levels are coded in the analysis of variance. In that case the
low level IC5/8 was systematically coded −1, while the high
level IC 5/4 was coded 1. A main effect in Table 3 has, therefore,
to be added if the corresponding compound is at its high level,
subtracted otherwise. All the main effects except stpp (sodium
tripolyphosphate) have a negative effect. Adding more of the
corresponding compound therefore increases the inhibition (it
adds a negative effect hence it lowers the growth percentage at
12 h). The 1% significant positive effect of stppmay indicate that
this compound, which was found to be inhibiting when alone,
can on the contrary lower the global inhibition in the presence of
several other inhibiting compounds.

To evaluate the variation between microplates, the 64 wells
were distributed among two microplates, with 32 wells in each.
The division was selected so that the corresponding block effect
(denoted by Bl in Table 3) can be estimated in the model
including all two-factors interactions.

The analysis of variance of such a design is straightforward.
Once the constant, the 20main effects, the block effect and finally
the 31CEFs are estimated, there remains 11=64− (1+20+1+31)
degrees of freedom to estimate the residual variance. Note that the
degrees of freedom used to compute the residual variance corres-
pond in that case to interactions of strictlymore than two factors. It
is expected that even if some of them are not negligible, the
corresponding main effects are quite bigger and therefore appear
as significant when compared to this residual variance.

The results in Table 3 show no evidence of any strong two-
factor interaction. The more important main effects are those of
the four organic acids, particularly those of the citric and
aphosphoric acids. Two salts, i.e. shmp (sodium hexametapho-
sphate) and sodium lactate (lacso), come after and then two
Half width of
confidence interval

7 8 9 10 95%: ±1.11
0 12 0 3 99%: ±1.57
8 4 3 0 99.9%: ±2.24
4 1 0 0

−3.63 paba −2.24
−3.39 stpp 1.98
−3.13 geran −1.87
−2.73 Bl −1.8
−2.49 apot −1.62

carvac −1.6
ran+eug ·carvac −1.54

−1.49
+geran ·menth −1.4

−1.36
th+aphos · carvac+eug·geran −1.25

−1.22
−1.15

os −1.01
…



Fig. 4. Is hurdle technology a right concept? (Céline)

Fig. 5. Is hurdle technology a right concept? (Céline)
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aromatic compounds, i.e. citral and thymol, while sodium
acetate (asod) follows.

4.2. The designs of resolution 5 and more

These results prompted us to make a second experimental
design including the four organic acids, two aromatic
compounds, citral and thymol, and shmp and sodium acetate
(abbreviated asod). The design chosen was a classical regular
28–2 of resolution 5. This design gives unbiased optimal
estimation of the main effects if it is assumed that there is no
interaction between 4 or more factors and of the two-factor
interactions if the model does not include interactions between 3
or more factors. Note that the mentioned property for main
effects is valid even if there are three-factor interactions in the
model making this design very robust.

The two levels were selected as IC5/6 and IC5/3, except for
citral and thymol where the low level was chosen as equal to 0
in order to get mixtures including only acids and salts.

The results not shown here confirm the results previously
found, and show the existence of some two-factor interactions
smaller than main effects, mainly for pairs of acidic compounds.
In fact, the mean inhibition obtained from the data where two
such acidic compounds are at their high levels is greater than
what would be predicted by simply adding the general mean and
the main effects of these two acidic compounds.

However this result, well in accordance with the hurdle
theory (Figs. 4 and 5), is not surprising. Fig. 2 clearly shows that
the inhibition does not vary linearly with the concentration of an
acidic compound. There is a threshold beyond which the
inhibition strongly increases. Hence doubling an initial low
concentration, for instance the IC5, gives an inhibition far more
important than the inhibition 10%=5%+5% that would be
explained by a linear model. If instead of putting two IC5 of a
unique acidic compound, one adds two different acidic
compounds, each at the IC5 level, it is therefore not surprising
to get an inhibition stronger than the 10% inhibition that would
result from an additive model.

This suggests introducing into the model for predicting the
growth percentage at 12 h the two totals AR and AC defined in
Section 3.3 (AR only involves here the two compounds citral
and thymol). Recall that these totals are made only after all the
units had been transformed to equivalent thymol or acetic acid
concentrations by the method described in Section 3.2. A
polynomial of degree 2 in these two totals, completed by the
concentrations in sodium acetate and shmp gives with only
8 parameters in the model an adjustment as good as the ANOVA
model including all main effects and two-factor interactions
between the 8 compounds, that is 37 parameters.

Two other designs were then performed. A third one, a
complete 25 factorial design replicated twice on two separate
bioscreen plates, was done to study more specifically the
aromatic compounds, whose efficiency clearly appeared in the
first two designs and which are of great interest for the industry.
Then, a fourth design was used which mixed the four acidic
compounds with the three most efficient aromatic compounds.
This latter one was a 27–1 of resolution 7 thus allowing one to



Table 4
Models of growth percentage G as a function of aromatic compound
concentrations

Model Nb.par Res df σ

1 (Eug+carvac+geran+thymol+citral)2 21 83 10.4
2 AR2 3 101 11.4
3 AR2+ thymol · carvac+citral2 8 96 10.4
4 Gompertz (ln(AR)) 2 102 12.4
5 Truncated Schnute (ln(AR)) 3 101 11.2

The adjustment is made on the points of the two successive designs 3 for which
AR≤1 (104 points).
Models 2 and 3 include all the subterms of those appearing, i.e. the constant and
linear term AR and also the main effects thymol, carvacrol, citral in model 3.
Nb.par.: number of parameters in the model.
Res df: residual degrees of freedom=nb. of data points−nb.par.
σ: residual standard deviation.
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study all three-factor interactions in a model without four-factor
ones. In fact, the third design was performed twice. In the first
attempt, the high level was IC5 and the low level IC5/2. The
inhibition was judged globally too high and so the design was
used a second time with the low level IC5/3 instead of IC5/2.
Similarly the fourth one was made twice, with a low level of 0, a
high level of IC5/3 the first time, IC5/2 the second time.

As in the second design, the totals AR in equivalent thymol
mM and AC in equivalent acetic acid mM were computed and
introduced in the analysis of variance of the third and fourth
designs.

5. Statistical analysis and models

5.1. Polynomial factorial effects and orthonormal polynomials

In all the analysis with a polynomial model, orthonormal
polynomials were used instead of monomials (Appendix B). The
corresponding coefficients are the classical factorial polynomial
effects: linear (lin), quadratic (quad), cubic (cub), lin · lin,
lin ·quad, etc.… They have a meaning that makes the analysis
easier, and their estimates are usually not too correlated
contrarily to the coefficients of the monomials in a classical
polynomial regression. It is important to note that these ortho-
normal polynomials, and so the corresponding polynomial ef-
fects, are defined through a reference measure and not through
the particular set of data point analysed (see Appendix B). This
makes possible a comparison with the results of other experi-
ments. Note that the same approach through a reference measure
also provides efficient tools for the comparison of different
designs (Goos et al., 2005). Moreover, when there are several
factors, the reference measure is a product measure and, there-
fore, the definition of the polynomial effects does not depend on
the order of introduction of the factors in an orthogonalisation
process.

These orthonormal polynomials, which have long been used
to simplify the computations in polynomial regression, were
initially defined and tabulated in Fisher and Yates (1957) and
Pearson and Hartley (1976). Although their interest for
calculation has now disappeared, their use is still highly
recommended in the general context of polynomial regression
to obtain meaningful parameters whose estimates are the least
correlated possible (Kobilinsky, 1988; Cliquet et al., 1994). As
indicated in Appendix B, they are normalized so as to make their
coefficients, that is the factorial polynomial effects, comparable.

5.2. Inhibition by aromatic compounds alone

The data coming from the two successive version of design 3
(with respective low levels IC5/2 and IC5/3) were merged
together with the data giving the inhibition for pure aromatic
compounds. Table 4 shows the residual standard deviation for
some models adjusted by ordinary least squares on these data
without the points for which ARN1 which almost all lead to no
observable growth at 12 h.

Model 1 is a polynomial of degree 2 in the 5 compound
concentrations. This model has 21 parameters: the constant, 5
linear terms, 5 square terms and finally 10 products. With the
only 3 parameters of the polynomial of degree 2 in AR (model
2), a slightly greater residual standard deviation is obtained. But
by adding to these 3 parameters 5 other parameters (linear
effects of thymol, carvacrol, citral, quadratic effect of citral and
product thymol · carvacrol) one gets the same residual standard
deviation with only 8 parameters. Finally, as done in Lambert
and Pearson (2000), one can fit the non-linear model GðlnðARÞÞ
where G is the classical sigmoidal function of Gompertz (model
4), or similarly the function LðlnðARÞÞ where L is the classical
sigmoidal logistic function. However these two non-linear
differentiable functions do not fit very well especially at values
of AR near 1 where the growth becomes 0 (see Fig. 6). The
function SðlnðARÞÞ where S is the Schnute function does not
either fit properly unless it is modified to be exactly 0 after it
comes down to 0. The functions GðtÞ; LðtÞ; SðtÞ are often used
to described a bacterial growth as a function of time (Zwietering
et al., 1990). The predictions made by models 2, 4 and 5 using
only AR as predictor are displayed in Fig. 6.

The significant reduction of the residual standard deviation
obtained when adding some terms in thymol, carvacrol and
citral (model 3) shows that the aromatic compounds cannot be
considered as strictly equivalent after rescaling. But from the
practical point of view, it is sufficient to consider that there is no
more growth as soon as AR reaches about 1 mM of equivalent
thymol, and to approximate the growth percentage below
AR=1 by one of models 2 or 5, functions only of AR. Model 2
is inadequate for low level of AR, but this part of the curve is
uninteresting for practical purposes. Of course, a local
polynomial fitting as described in Fan and Gijbels (1996)
could be used, but it does not lead to a meaningful formula.

A supplementary adjustment was made where the change of
scale parameters given in Section 3.3 could also vary. But this
adjustment did not consequently modify these scale parameters
nor the quality of the global adjustment and is therefore not
shown here.

5.3. Modeling the global inhibition

If the points of the different experimental designs are
graphed with AC (the total acidic concentration) as the abscissa



Fig. 6. Three adjustments of the growth percentage at 12 h as a function of AR.
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and AR (the total aromatic concentration) as the ordinate, it
clearly appears that only in design 3 where there are no acidic
compounds, the total aromatic concentration exceeds 0.5 in
equivalent thymol mM (Fig. 7).

It is, therefore, natural after the separate adjustment
previously made for aromatic compounds, to make a global
adjustment with all experimental points, including points with
pure compounds, such that AR≤0.5. This adjustment was first
made by fitting a polynomial. As seen in the case of aromatic
compounds when AC=0 (Section 5.2) this choice can be locally
inadequate, but the adjustment is very easily handled even when
there are many factors involved (Kobilinsky, 1988; Cliquet
et al., 1994; Kobilinsky, 1997) and the procedure allows one to
quickly find the main features of the data.

To avoid fitting the response in too outlying points, the
points with pure compounds were added only if the concentra-
tion of this compound was of the same order as in the designs.
Fig. 7. Experimental points in the graph of AC versus AR. The symbol used for
the representation indicates the number of the design: 1, 2, 3 and c for designs
3.1 and 3.2, 4 and d for designs 4.1 and 4.2.
Moreover, the points leading to no growth at 12 h (which
generally correspond to values of AC greater 34, or to
combination of values AC≥28 and AR≥0.3) were omitted
too. Finally 273 points remained for the adjustment.

In the symbolic form admitted by the program, the model
initially fitted on this data was:

AC4d AR3 þ AS2 þ ASd ðAC þ ARÞ þ P þ Q d Q ð2Þ

with

Q: acetic+citric+ lactic+carvac+geran+ thymol,
P: paba+ asod+ lacso+nitsod+ shmp+ stpp+ cinnam+

a-ter+menth.

It included all the monomials ACi ARj of degree i≤4 and
j≤3. Then AS, total of sodium and potassium acetate made
after equivalencing these two compounds (AS=asod+0.94
apot) and also its square AS2 and the products AS·AC,
AS·AR. Finally all the main effects appearing in P, Q as well as
the two-factor interactions between the terms in Q (three
organic acids and three aromatic compounds).

This initial model 2 has 60 parameters and was introduced as
a tool to screen the factorial effects. Table 5 gives on its left the
more significant terms in the analysis of variance with this
model. The more important are lin AC, lin AR, quad AC, lin
AS. But some salts shmp, lacso, paba, stpp and some
complementary terms involving acids of aromatic compounds
also have a non-negligible impact.

For stpp the estimated effect 3.2 on G is, as already noted,
opposite to what is normally expected. Recall that, as explained
in the end of Section 4.1, this effect has to be added if stpp is at
its high level, subtracted otherwise. This salt stpp could have a
tendency to limit the inhibition created by others. Terms
involving isolated acid or aromatic compounds, like acetic,
lactic, quad carvac, lactic · thymol also allow a better adjustment
showing that though the order of magnitude of the growth
percentage G essentially depends on them through the totals AC
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and AR, the way these totals are obtained also has a non-
negligible impact.

The residual standard deviation with the 60 parameters of
model 2 is 4.778. The submodel keeping all polynomial terms
significant at the 5% level and the subterms of them (for example
acetic, thymol since it includes acetic · thymol) has 27 parameters
and a slightly bigger residual standard deviation of 5.383 with
246=273−27 degrees of freedom. Table 5 gives it on the next to
last column on its right. If only 1% significant terms are kept, the
residual standard deviation increases to 6.993 though there are
still 22 parameters in the model. If only 0.1% significant terms are
Table 5
ANOVA of model 2 and submodels

F(1, 213) P (%) S Effect on G +/− (

Res. std 4.778
Res. d.f. 213
Mean 45.5 4.6
AC 479.9 0.0 ⁎⁎⁎ −29.4 2.6
AR 85.9 0.0 ⁎⁎⁎ −11.2 2.4
AC2 83.5 0.0 ⁎⁎⁎ −10.5 2.3
AS 46.4 0.0 ⁎⁎⁎ −9.3 2.7
lacso 32.1 0.0 ⁎⁎⁎ −5.5 1.9
acetic 8.0 0.5 ⁎⁎ 4.6 3.2
shmp 36.3 0.0 ⁎⁎⁎ −3.9 1.3
lactic 6.6 1.1 ⁎ 3.8 2.9
paba 13.8 0.0 ⁎⁎⁎ −3.6 1.9
AC2 ·AR 8.2 0.5 ⁎⁎ 3.5 2.4
carvac2 20.0 0.0 ⁎⁎⁎ −3.3 1.4
stpp 10.7 0.1 ⁎⁎ 3.2 1.9
citric 4.3 3.8 ⁎ −3 2.8
carvac 3.6 5.8 −3 3.1
AC2 ·AR2 4.4 3.7 ⁎ 2.4 2.3
AR·AS 9.0 0.3 ⁎⁎ −2 1.3
AC·AR 2.8 9.8 −1.9 2.3
AC·AR2 5.0 2.7 ⁎ 1.9 1.6
AC·AS 4.0 4.6 ⁎ −1.9 1.8
AR2 4.2 4.3 ⁎ −1.8 1.8
AC·AR3 10.0 0.2 ⁎⁎ 1 0.6
lactic · thymol 9.9 0.2 ⁎⁎ 0.9 0.6
AC3 4.6 3.4 ⁎ 0.8 0.7
thymol 0.2 62.9 0.8 3.2
lactic · carvac 7.3 0.8 ⁎⁎ 0.7 0.5
AR3 0.1 79.9 −0.1 0.7

acetic2 4.9 2.8 ⁎ 1.4 1.2
a-ter 6.0 1.5 ⁎ −2.4 1.9

AC4 1.8 17.6 0.2 0.2
…

The points of design 3 for aromatic compounds such that ARN0.5 were excluded fr
were also excluded because they lead to no growth at 12 h. Points with pure compou
designs. Finally 273 points remained for the adjustment.
We use AC, AC2,… to denote the linear, quadratic,… polynomial effects. Thus AC
polynomial effects.
The 27 first terms are those significant at the 5% level plus those included in them or
non-significant if the other last non-significant terms are pooled within the error and
F(n1, n2): Fischer–Snedecor statistic with n1, n2 degrees of freedom.
P (%): probability to exceed the F value, when there is no effect.
S: associated significance (⁎: b5%, ⁎⁎: b1%, ⁎⁎⁎: b0.1%).
G: estimate of the effect on G, the growth percentage.
+/−, 95% (99, 99.9): quantity to add or subtract to get the limit of the 95% (resp. 99%, 9
that is the interval [0.3, 6.7] contains this polynomial effect with probability 99%.
Model 95%: coefficients of the orthonormal polynomials in the model obtained by
kept, except paba which becomes non-significant in such a
reduced model, the residual standard deviation increases to 9.587.
The 9 parameters of this latter model are also given for
information on the right of Table 5 but it is clear that keeping
only them drastically increases the residual variance.

Appendix B gives the general form of orthonormal poly-
nomials when the reference measure used to define orthogonality
is symmetric. But here since the histograms of the different factors
on the considered 273 points were not symmetric at all, it was
decided to base the reference measures on them. Table 6 gives
these reference measures and the corresponding orthonormal
95%) +/− (99%) +/− (99.9) Model 95% Model 99.9%

5.383 9.587
246 264

6 7.7 47.98 47.82
3.5 4.5 −29.54 −23.59
3.1 4 −13.00 −6.42
3 3.8 −7.52 −7.57
3.5 4.5 −10.25 −6.20
2.5 3.2 −5.08 −6.32
4.2 5.4 2.13
1.7 2.2 −4.47 −6.61
3.9 5 2.28
2.5 3.2 −3.20
3.2 4.1 0.93
1.9 2.4 −2.22 −3.88
2.5 3.3 3.60
3.8 4.8 −2.03
4.1 5.2 −0.57 −1.15
3 3.8 1.21
1.7 2.2 −2.79
3 3.8 −3.24
2.2 2.8 0.76
2.4 3.1 −2.17
2.3 3 −2.47
0.8 1 0.6
0.7 0.9 0.89
1 1.3 2.04
4.3 5.5 1.36
0.7 0.9 0.62
1 1.2 0.14

1.6 2.1
2.5 3.2

0.3 0.4

om this analysis. The points such that either ACN34, or AC≥28 and AR≥0.3
nds were added if the compound concentration was of the same order as in the

2 ·AR is quad AC lin AR. See Appendix B for the precise definition of such

of smaller degree, for instance AR3, thymol. The terms acetic2 and a-ter become
they were not included in the model with 5% significant terms.

9.9%) confidence interval. For instance at the 99% level quadAC2AR=3.5±3.2,

selecting terms significant at the 5% level.
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polynomials. Using them and their coefficient in Table 5, it is easy
to get the corresponding prediction of the growth percentage. For
instance, the predicted growth percentage with the 9 parameters
model given on the right of Table 5 would be:

Ĝ ¼ 47:82−23:59½0:12085ðAC−16:833Þ�
−6:42½7:7339ðAR−0:2125Þ�
−7:57½−0:84895þ 0:01194ðAC−16:833Þ
þ 0:01240ðAC−16:833Þ2�−6:20½0:0866ðAS−10Þ�
−6:32½0:05497ðlacso−22:28Þ�−6:61½0:29345ðshmp−5:3986Þ�
−1:15� 27:574ðcarvac−0:030625Þ
−3:88½−1:3536−28:0860ðcarvac−0:030625Þ
þ 1029:1570ðcarvac−0:030625Þ2�:

Such polynomial approximations have however the draw-
back to lead to abnormal extrapolations. To avoid these
abnormalities, a non-linear model substituting a product
SðlnðACÞÞSðlnðARÞÞ between two Schnute functions to the
monomials in AC and AR and introducing only the major other
terms with salts was also fitted. The maxima of the Schnute
functions were taken as equal to 100% and another parameter
was imposed upon the function of AR so that it decreases to 0
when AR=1. This non-linear model leads to a residual standard
deviation of 8 with 11 parameters.

The adjusted polynomial function f depends on too many
factors to be represented in a two-dimensional graph. But as AC
and AR are the more important of them and very weakly interact
with the other factors, it is useful to represent G as a function of
AC and AR for selected fixed values of other factors in the
polynomial function. Fig. 8 gives some two-dimensional such
representations. To add experimental points to such a graph, it is
necessary to correct the observed growth percentage G. Let x0
Table 6
Orthonormal polynomials and reference measures used to define them

Orthonormal polynomials

lin acetic: 0.2767 (acetic−4.2857)
lin citric: 0.6287 (citric−2.2917)
lin lactic: 0.20949 (lactic−6.875)
lin paba: 4.899 ( paba−0.25)
lin lacso: 0.05497 (lacso−22.28)
lin shmp: 0.29345 (shmp−5.3986)
quad carvac: −1.3536− 28.0860 (carvac−0.030625)+1029.1570 (carvac−0.03062
quad AC: −0.84895+0.01194 (AC−16.833)+0.0124 (AC−16.833)2

cub AC: 0.07190−0.38368 (AC−16.833)+0.00120 (AC−16.833)2+0.00234 (AC−
quad AR: −1.2082−2.2795 (AR−0.2125)+72.2682 (AR−0.2125)2

cub AR: −0.08076−30.87453 (AR−0.2125)−29.56758 (AR−0.2125)2+1090.548

Reference measures

AC 3 12 16 19
AR 0.05 0.15 0.25 0.
AS 0 0 0 10
acetic 0 0 2 4
carvac 0 0 0 0

Supports of the discrete measures used to define the orthogonal polynomials. The sa
weight (for example 0 for carvac). For the other factors, the support was selected as th
of these lists by the corresponding polynomials (1, lin, quad, cub) are orthonormal.
be the selected fixed vector of values for the factors other than
AC and AR, and let x be the same vector of values for the
experimental point considered. Then G is given by:

G ¼ f ðAC;AR; xÞ þ e:

The corrected value

Gc ¼ f ðAC;AR; x0Þ þ e ¼ G−f ðAC;AR; xÞ þ f ðAC;AR; x0Þ
ð3Þ

is obtained by adding to the observed growth percentage G the
quantity

f ðAC;AR; x0Þ−f ðAC;AR; xÞ;
which is immediately deduced from the estimated function f.
The points with these corrected G values are represented on
Fig. 8.

The correction is made so as to bring back the observed
values to those which would have been obtained with the
conditions indicated below the graph (AS=0, paba=0,…,
thymol=0.07 mM). Graphs 2 and 3 show the variation of G
as a function of AC for AR lying in a narrow range of values.
Since AR was computed after the designs were achieved, it is
not possible to keep it strictly constant while varying AC, but
the restricted range of values selected on each graph insures that
the variability around the represented curve is not too inflated.
The same is true in graphs 5 and 6 where the abscissa is AR and
where AC is restricted to a narrow range of values.
5.3.1. About the synergy between compounds
Synergy is generally reported when the combination of two

components is more effective than each compound alone or
when the observed inhibition of the combination is higher than
lin stpp: 0.90055 (stpp−1.36)
lin carvac: 27.574 (carvac−0.030625)
lin thymol: 14.643 (thymol−0.096)
lin AC: 0.12085 (AC−16.833)
lin AR: 7.7339 (AR−0.2125)
lin AS: 0.0866 (AS−10)

5)2

16.833)3

97 (AR−0.2125)3

21 30
4

20 30
6 8 10
0.25 0.05 0.07 0.1

me weight is given to each value, but some values are repeated to increase their
e list of taken values. It is easy to check that the vectors of values taken from one



Fig. 8. Some graphs illustrating the global adjustment of the growth percentage G. Curves. 0: AR=0.025, 1: AR=0.25, 2: AR=0.35, 3: AR=0.45. The points in
graphs 2, 3, 5, 6 are represented with the corrected growth percentageGc defined by Eq. (3). The aim of this correction is to bring all data to the same conditions, except
for AC and AR. The common conditions are defined by: AS=0, paba=0, lacso=0, shmp=0, stpp=0, acetic=3.5 mM, citric=2 mM, lactic=5 mM,
carvac=0.025 mM, thymol=0.07 mM.

105A. Kobilinsky et al. / International Journal of Food Microbiology 115 (2007) 95–109
the one predicted by adding the inhibition created by the
different compounds alone (Lachowicz et al., 1998; Tassou
et al., 1995; Periago et al., 2002). These definitions are generally
based on the hypothesis that the inhibitory effect of each
compound varies linearly with concentration when its acts alone.

As explained in Section 4.2, this latter hypothesis is wrong
here and this clearly explains why combining several organic
acids, or several aromatic compounds, leads to an apparent
synergy. But this is not a real synergy if the reference is the
action of each isolated inhibitor.

Appendix A. Normalized factorial effects

A good way to make all factorial effects comparable is to
normalize them. We explain below how this is done in a 22

factorial design studying two factors A, B at two levels
numbered −1 and 1 each. We denote the levels by the same
letters and let τ (A, B) be the expected mean of the observation
for the treatment A, B. The general mean denoted by e(1), the
main effects of factor A, B denoted by e(A), e(B) and the
interaction denoted by e(AB) are then defined by:

eð1Þ ¼ ½sð1; 1Þ þ sð1;−1Þ þ sð−1; 1Þ þ sð−1;−1Þ�=4
eðAÞ ¼ ½sð1; 1Þ þ sð1;−1Þ−sð−1; 1Þ−sð−1;−1Þ�=4
eðBÞ ¼ ½sð1; 1Þ−sð1;−1Þ þ sð−1; 1Þ−sð−1;−1Þ�=4
eðABÞ ¼ ½sð1; 1Þ−sð1;−1Þ−sð−1; 1Þ þ sð−1;−1Þ�=4:

ð4Þ

Inverting these relations (4) gives

sð1; 1Þ ¼ eð1Þ þ eðAÞ þ eðBÞ þ eðABÞ
sð1;−1Þ ¼ eð1Þ þ eðAÞ−eðBÞ−eðABÞ
sð−1; 1Þ ¼ eð1Þ−eðAÞ þ eðBÞ−eðABÞ
sð−1;−1Þ ¼ eð1Þ−eðAÞ−eðBÞ þ eðABÞ:

ð5Þ
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So with this definition (4) the expected mean is got from the
general mean e(1) by adding or subtracting the main effects e(A)
and e(B)and their interaction e(AB) according to the levels A, B
and their product AB. The preceding equalities can be summed
up by the following equality

sðA;BÞ ¼ eð1Þ þ AeðAÞ þ BeðBÞ þ ABeðABÞ:
With this definition a main effect such as e(A) is the half

difference between the means at the level 1 and the level −1.
This differs from the usually adopted definition where the main
effect is twice the value above, that is the full difference
between these two means. Similarly the division by 4 is often
omitted in the definition of the interaction which is then 4 times
the value above. That is the general mean and factorial effects
are often defined by

eð1Þ ¼ ½sð1; 1Þ þ sð1;−1Þ þ sð−1; 1Þ þ sð−1;−1Þ�=4
e VðAÞ ¼ ½sð1; 1Þ þ sð1;−1Þ−sð−1; 1Þ−sð−1;−1Þ�=2
e VðBÞ ¼ ½sð1; 1Þ−sð1;−1Þ þ sð−1; 1Þ−sð−1;−1Þ�=2
e VðABÞ ¼ ½sð1; 1Þ−sð1;−1Þ−sð−1; 1Þ þ sð−1;−1Þ�

ð6Þ

which is inverted in

sð1; 1Þ ¼ eð1Þ þ e VðAÞ=2þ e VðBÞ=2þ e VðABÞ=4
sð1;−1Þ ¼ eð1Þ þ e VðAÞ=2−e VðBÞ=2−e VðABÞ=4
sð−1; 1Þ ¼ eð1Þ−e VðAÞ=2þ e VðBÞ=2−e VðABÞ=4
sð−1;−1Þ ¼ eð1Þ−e VðAÞ=2−e VðBÞ=2þ e VðABÞ=4:

ð7Þ

The dispersion of the expected means τ (A, B) can be
measured by the variance:

varðsÞ ¼
X
A;B

ðsðA;BÞ−eð1ÞÞ2=4

which with the factorial effects defined in Eq. (4) takes the form

varðsÞ ¼ eðAÞ2 þ eðBÞ2 þ eðABÞ2:
Thus all these factorial effects contribute in the same way to this
dispersion. They can therefore be directly compared to each
other, which is not the case with the alternative definition (6)
which leads to

varðsÞ ¼ 1
4

e VðAÞ2 þ e VðBÞ2 þ 1
4
e VðABÞ2

� �

and in which, if e′(AB)=e′(A), the contribution of e′(AB) is
much smaller than that of e′(A).

This normalization is similar to what is often done in linear
regression. The explicative variables are reduced so as to have the
same standard deviation, which makes the regression coefficients
comparable. In Eq. (5), the vectors of coefficients (1 1 −1 −1) of
e(A), (1 −1 1 −1) of e(B), (1 −1 −1 1) of e(AB) have the same
standard deviation 1 while in Eq. (7) their standard deviations are
respectively 1/2, 1/2 and 1/4. That is if e′(AB)=e′(A), the
variability induced by e′(AB) on the response is in standard
deviation twice smaller. So e(AB) and e(A) can be directly
compared which is not the case of e′(AB) and e′(A).
Appendix B. Polynomial effects

When fitting polynomials, it is highly recommended to
introduce orthogonal polynomials instead of monomials. We
explain why in the case of one explicative quantitative variable
x, then tell how to proceed in the case of several explicative
quantitative variables.

Assume the observed response y has expectation f (x), that is,
it follows the model

y ¼ f ðxÞ þ e; EðeÞ ¼ 0 ð8Þ

and that we approximate f (x) by a polynomial P(x) of degree 3
in x:

f ðxÞcPðxÞ ¼ a0 þ a1xþ a2x
2 þ a3x

3: ð9Þ

The successive derivatives of P are P′(x)=α1+2α2x+3α3x
2,

P(2)(x) =2α2+6α3x, P(3)(x) =6α3. So α0=P(0), α1=P′(0),
α2=P

(2)(0) / 2 and finally α3=P
(3)(x) / 6 for any value of x.

While α3 gives therefore a global indication on the behaviour
of P, the three first parameters α0, α1, α2 cannot be given any
meaning if the origin is selected arbitrarily as they depend from
the behaviour of P at a value of 0 which can be far away from
the experimented values of x. Moreover their estimates may be
strongly correlated and very imprecise. Assume for instance the
values of interest for x are in the interval [30, 33] and that the
experimented design is equireplicated on each of the four
equispaced values 30, 31, 32, 33. Then the correlations between
the estimates α̂1, α̂2, α̂3 are greater than 0.999 and a very slight
variation of the observations can generate a very big change in
them.

Things become better if x is centered. Letm be a mean value of
x, for instance m=31.5 in the example. The expression of P(x) as
a function of x−m is

PðxÞ ¼ a0 Vþ a1 Vðx−mÞ þ a2 Vðx−mÞ2 þ a3 Vðx−mÞ3 ð10Þ

where

a0 V¼ a0 þ a1mþ a2m
2 þ a3m

3;

a1 V¼ a1 þ 2a2mþ 3a3m
2;

a2 V¼ a2 þ 3a3m;

a3 V¼ a3:

8>>>>>>>><
>>>>>>>>:

The coefficient α2′=α2+3α3m of the term (x−m)2 is one half of
the mean value of the second order derivativeP(2)(x)=2α2+6α3x,
hence it gives, as α3′=α3 as a global indication on the behaviour of
P, that is the mean curvature.

But α0′, α1′ are the value of P(x) and P′(x) at the particular
point m. They are not necessarily representative of the global
behaviour of P. It is more meaningful to consider instead the
constant β0 best approximating P(x) and β1 slope of the best
fitting straight line. To get homogeneous notations, we then let
β2=α2′, β3=α3.



Fig. 9. Definition of polynomial effects when the fitting quality is measured by Eq. (11). Up to normalization, each one is the coefficient of the higher degree of the best
fitting curve to each it is connected. The best fitting constant (horizontal line) and straight line are on the left, the best fitting quadric and cubic curve on the right. So the
mean effect e(1) is the ordinate of the horizontal line, e(lin x) the slope of the straight line, e(quad x) the curvature of the quadratic curve, and finally e(cub x) the
coefficient of the term in x3 in the cubic curve. The quality of the fit is in that case measured by Eq. (11), the sum of the squares of the vertical distances at the four
abscissa 30, 31, 32, 33 which for the straight line is the length of the reported vertical segments.
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To define the best fitting constant, or straight line, or
polynomial of any order, a measure of the quality of an
approximation is needed. The measure used here is the L2(μ)
distance associated with the scalar product 〈Q, P〉= ∫QPdμ. It
takes the form

dðQ;PÞ ¼ 1
4

½Qð30Þ−Pð30Þ2� þ ½Qð31Þ−Pð31Þ�2
�

þ½Qð32Þ−Pð32Þ�2 þ ½Qð33Þ−Pð33Þ�Þ2 ð11Þ

if the measure μ gives a weight of 1/4 to each of the four points
30, 31, 32, 33 studied, that is if the associated scalar product is

hP;Qi ¼ 1
4
½Pð30ÞQð30Þ þ Pð31ÞQð31Þ þ Pð32ÞQð32Þ

þ Pð33ÞQð33Þ�: ð12Þ

It takes the form

dðP;QÞ ¼ 1
3

Z 33

30
½PðxÞ−QðxÞ�2dx ð13Þ

if μ is the uniform measure of density 1/3 on the interval
[30, 33] and the associated scalar product therefore

hP;Qi ¼ 1
3

Z 33

30
PðxÞQðxÞdx: ð14Þ

Note that β2 can be shown to be the coefficient of the term of
degree 2 in the parabol best fitting P(x), so that β0, β1, β2, β3 are
the coefficients of the terms of highest degree in the
polynomials P0(x), P1(x), P2(x), P3(x) of respective degrees 0,
1, 2, 3 best fitting P(x) (hence f(x) too if P(x) is the best
approximation of f with the same distance).

Fig. 9 illustrates these best fitting constant, straight line,
parabol and cubic giving the polynomial effects up to the
normalization coefficient, in the case of distance (11).

These best approximations of P by polynomials of degrees 0,
1, 2, 3 are easily taken from the associated orthogonal
polynomials O0, O1, O2, O3 of degrees 0, 1, 2, 3 in x. The
parameters β0, β1, β2, β3 are those appearing when P(x) is
expressed as a function of these polynomials

PðxÞ ¼ b0O0ðxÞ þ b1O1ðxÞ þ b2O2ðxÞ þ b3O3ðxÞ:

They are

b0 ¼ hP;O0i=hO0;O0i; b1 ¼ hP;O1i=hO1;O1i;
b2 ¼ hP;O2i=hO2;O2i; b3 ¼ hP;O3i=hO3;O3i:

In this little example the reference measure is symmetric around
the central point m=31.5. If mk denotes the central moment of
order k, the orthogonal polynomials take then the following
form

O0ðxÞ ¼ 1; O1ðxÞ ¼ x−m; O2ðxÞ ¼ ðx−mÞ2−m2

m0
;

O3ðxÞ ¼ ðx−mÞ3−m4

m2
ðx−mÞ: ð15Þ
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With the measure μ giving a weight 1/4 to each of the four
points 30, 31, 32, 33, the central moment mk is

mk ¼ 1

4

X
x

ðx−mÞk ¼ ½ð30−mÞk þ ð31−mÞk þ ð32−mÞk

þ ð33−mÞk �=4 ð16Þ

hence m0=1, m2=1.25, m4=2.5625, m6=5.703125 and so

O0ðxÞ ¼1; O1ðxÞ ¼ x−31:5; O2ðxÞ ¼ ðx−31:5Þ2−1:25;
O3ðxÞ ¼ ðx−31:5Þ3−2:05ðx−31:5Þ:
In the analysis of Section 5.3, the reference measures are

chosen to follow more or less the empirical distributions
obtained from the 273 points. As a consequence, they are not
symmetric and the orthogonal polynomials are found numer-
ically. The interest of such a choice is to lead to effects with
more precise estimates. Table 6 gives these reference measure
and associated orthonormal polynomials for 5 factors. For the
other factors, the reference measure was selected as the one
giving the same weight to each of the values taken by the factor.
For instance, since citric takes the values 0, 1.25, 1.67, 2.5, 3.33,
5, it is the measure giving a weight of 1 to each of these 6 values
which was selected as a reference measure.

B.1. More on the reparameterisation through orthogonal
polynomials

The new parameters β0, β1, β2, β3 have a clear definition.
Moreover they have uncorrelated estimates at least in the case
where the actual design coincides with the reference measure,
for instance in the example just considered where the distance is
defined by Eq. (11) if each of the points x=30, 31, 32, 33 is
equireplicated.

To allow a direct comparison between the parameters as in
Appendix A, it is judicious to normalize these orthogonal
polynomials. The orthogonal polynomials O0, O1, O2, O3 are
then replaced by the orthonormal polynomials

R0 ¼O0=jjO0jj; R1 ¼ O1=jjO1jj; R2 ¼ O2=jjO2jj;
R3 ¼ O3=jjO3jj:

If the reference measure is symmetric as in the example it is easy
to check that the denominators are

jjO0jj ¼1; jjO1jj ¼ ffiffiffiffiffiffi
m2

p
; jjO2jj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4−

m2m2

m0
;

r

jjO3jj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m6−

m4m4

m2

r

and so with the measure μ giving the same weight of 1/4 to each
of the four points 30, 31, 32, 33, jjO0jj ¼ 1; jjO1jj ¼ffiffiffiffiffiffiffiffiffiffi
1:25;

p jjO2jj ¼ 1; jjO3jj ¼
ffiffiffiffiffiffiffiffiffi
0:45

p
. The expression as a

function of these orthonormal polynomials is

PðxÞ ¼ g0R0ðxÞ þ g1R1ðxÞ þ g2R2ðxÞ þ g3R3ðxÞ
and the normalized parameters are obtained from P by the
equalities

g0 ¼ hP;R0i; g1 ¼ hP;R1i; g2 ¼ hP;R2i; g3 ¼ hP;R3i:

The parameter γ0= ||O0||β0 is called the general mean and
γ1= ||O1||β1, γ2= ||O2||β2, γ3= ||O3||β3, are respectively called
the linear, quadratic and cubic effects of x. We use the
abbreviations lin x, quad x, cub x for the last three ones. So
up to the normalization coefficients, lin x is the slope of the
better approximation of P(x) by a straight line, quad x the
coefficient of the term of degree 2 (curvature) in the best
approximation by a quadratic curve, cub x the coefficient of
the term of degree 3 in the best approximation by a cubic
curve.

In many cases, it is more convenient to use lin x, quad x, cub
x to denote the orthonormal polynomials R1(x), R2(x), R3(x) and
then e(lin x), e(quad x), e(cub x) to denote the corresponding
effects (Cliquet et al., 1994). This last notation is more in
agreement with the one used for factorial effects in Appendix A
and we use it in Fig. 9.

The extension to polynomial in several factors x1, x2,… is
easy as the orthogonal (resp. orthonormal) polynomials are
the products of those in one factor. For instance the
orthonormal polynomial of degree 1 in x1, 2 in x2 is the
product R1(x1)R2(x2). It is known as the tensor product
R1⊗R2. The coefficient of this polynomial is denoted lin x1
quad x2, or e(lin x1 quad x2) in the alternative notation. The
orthogonality of such polynomials is with respect to the
product measures, hence the estimated parameters are
uncorrelated at least in the reference design associated with
this product measure.

For instance, with two factors x1 and x2 and a design equire-
plicating each of the 8 points of the grid defined by x1=30, 31,
32, 33, x2=6, 7, the orthogonal polynomials of degree less than
2 in x1, 1 in x2 are

O10 � O20; O11 � O20; O12 � O20; O10 � O21;

O11 � O21; O12 � O21;

where O10, O11, O12 are the orthogonal polynomials in x1
defined as O0, O1, O2 in Eq. (15), distance 11, by

O10ðxÞ ¼ 1; O11ðxÞ ¼ x−31:5; O12ðxÞ ¼ ðx−31:5Þ2−1:25

and O20, O21 the orthogonal polynomials in x2 defined in that
case by

O20ðxÞ ¼ 1; O21ðxÞ ¼ x−6:5:

The orthonormal polynomials are defined in the same way

R10 � R20; R11 � R20; R12 � R20; R10 � R21; R11 � R21;

R12 � R21:

Note that the orthonormal polynomials and hence the
polynomial effects are defined through a reference measure,
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which in the case of several factors is the product between the
measures associated with each factor. It follows that the
orthogonal polynomial in several factors is the product of
those associated with each factor and that one does not have to
worry about the order of introduction of the factors in defining
these orthogonal polynomials. Moreover, these polynomials are
not dependant on the particular set of data processed and thus
allow comparison between different sets of data.
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