R. R. Finkelstein, S. S. Gampala, and C. D. Rock, Abscisic acid signaling in seeds and seedlings, Plant Cell, vol.14, pp.15-45, 2002.

J. Ton, V. Flors, and B. Mauch-mani, The multifaceted role of ABA in disease resistance, Trends Plant Sci, vol.14, pp.310-317, 2009.

A. Wasilewska, F. Vlad, C. Sirichandra, Y. Redko, and F. Jammes, An update on abscisic acid signaling in plants and more, Molecular Plant, vol.1, pp.198-217, 2008.

K. Yamaguchi-shinozaki and K. Shinozaki, Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses, Annu Rev Plant Biol, vol.57, pp.781-803, 2006.

T. H. Kim, M. Böhmer, H. Hu, N. Nishimura, and J. I. Schroeder, Guard cell signal transduction network: advances in understanding abscisic acid, CO2, and Ca2+ signaling, Annu Rev Plant Biol, vol.61, pp.561-591, 2010.

M. Hundertmark and D. K. Hincha, LEA (late embryogenesis abundant) proteins and their encoding genes in Arabidopsis thaliana, BMC Genomics, vol.9, p.118, 2008.

K. Urano, K. Maruyama, Y. Ogata, Y. Morishita, and M. Takeda, Characterization of the ABA-regulated global responses to dehydration in Arabidopsis by metabolomics, Plant J, vol.57, pp.1065-1078, 2009.

S. R. Cutler, P. L. Rodriguez, R. R. Finkelstein, and S. R. Abrams, Abscisic acid: emergence of a core signaling network, Annu Rev Plant Biol, vol.61, pp.651-679, 2010.

J. Leung, M. Bouvier-durand, P. C. Morris, D. Guerrier, and F. Chefdor, Arabidopsis ABA response gene ABI1: features of a calcium-modulated protein phosphatase, Science, vol.264, pp.1448-1452, 1994.

K. Meyer, M. P. Leube, and E. Grill, A protein phosphatase 2C involved in ABA signal transduction in Arabidopsis thaliana, Science, vol.264, pp.1452-1455, 1994.

F. Gosti, N. Beaudoin, C. Serizet, A. A. Webb, and N. Vartanian, ABI1 protein phosphatase 2C is a negative regulator of abscisic acid signaling, Plant Cell, vol.11, pp.1897-1910, 1999.
URL : https://hal.archives-ouvertes.fr/hal-02446986

N. Leonhardt, J. M. Kwak, N. Robert, D. Waner, and G. Leonhardt, Microarray expression analyses of Arabidopsis guard cells and isolation of a recessive abscisic acid hypersensitive protein phosphatase 2C mutant, Plant Cell, vol.16, pp.596-615, 2004.

S. Merlot, F. Gosti, D. Guerrier, A. Vavasseur, and J. Giraudat, The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway, Plant J, vol.25, pp.295-303, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00154077

S. Rubio, A. Rodrigues, A. Saez, M. B. Dizon, and A. Galle, Triple loss of function of protein phosphatases type 2C leads to partial constitutive response to endogenous abscisic acid, Plant Physiol, vol.150, pp.1345-1355, 2009.

A. Saez, N. Apostolova, M. Gonzalez-guzman, M. P. Gonzalez-garcia, and C. Nicolas, Gain-of-function and loss-of-function phenotypes of the protein phosphatase 2C HAB1 reveal its role as a negative regulator of abscisic acid signalling, Plant J, vol.37, pp.354-369, 2004.

J. Li, X. Q. Wang, M. B. Watson, and S. M. Assmann, Regulation of abscisic acidinduced stomatal closure and anion channels by guard cell AAPK kinase, Science, vol.287, pp.300-303, 2000.

A. C. Mustilli, S. Merlot, A. Vavasseur, F. Fenzi, and J. Giraudat, Arabidopsis OST1 protein kinase mediates the regulation of stomatal aperture by abscisic acid and acts upstream of reactive oxygen species production, Plant Cell, vol.14, pp.3089-3099, 2002.
URL : https://hal.archives-ouvertes.fr/hal-00145524

R. Yoshida, T. Hobo, K. Ichimura, T. Mizoguchi, and F. Takahashi, ABAactivated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis, Plant Cell Physiol, vol.43, pp.1473-1483, 2002.

M. Boudsocq, H. Barbier-brygoo, and C. Lauriere, Identification of nine sucrose nonfermenting 1-related protein kinases 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana, J Biol Chem, vol.279, pp.41758-41766, 2004.
URL : https://hal.archives-ouvertes.fr/hal-00122336

H. Fujii, P. E. Verslues, and J. K. Zhu, Identification of two protein kinases required for abscisic acid regulation of seed germination, root growth, and gene expression in Arabidopsis, Plant Cell, vol.19, pp.485-494, 2007.

Y. Ma, I. Szostkiewicz, A. Korte, D. Moes, and Y. Yang, Regulators of PP2C phosphatase activity function as abscisic acid sensors, Science, vol.324, pp.1064-1068, 2009.

K. Melcher, L. M. Ng, X. E. Zhou, F. F. Soon, and Y. Xu, A gate-latch-lock mechanism for hormone signalling by abscisic acid receptors, Nature, vol.462, pp.602-608, 2009.

K. Miyazono, T. Miyakawa, Y. Sawano, K. Kubota, and H. J. Kang, Structural basis of abscisic acid signalling, Nature, vol.462, pp.609-614, 2009.

S. Y. Park, P. Fung, N. Nishimura, D. R. Jensen, and H. Fujii, Abscisic acid inhibits type 2C protein phosphatases via the PYR/PYL family of START proteins, Science, vol.324, pp.1068-1071, 2009.

P. Yin, H. Fan, Q. Hao, X. Yuan, and D. Wu, Structural insights into the mechanism of abscisic acid signaling by PYL proteins, Nat Struct Mol Biol, vol.16, pp.1230-1236, 2009.

H. Fujii, V. Chinnusamy, A. Rodrigues, S. Rubio, and R. Antoni, In vitro reconstitution of an abscisic acid signalling pathway, Nature, vol.462, pp.660-664, 2009.

T. Umezawa, N. Sugiyama, M. Mizoguchi, S. Hayashi, and F. Myouga, Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis, Proc Natl Acad Sci U S A, vol.106, pp.17588-17593, 2009.

F. Vlad, S. Rubio, A. Rodrigues, C. Sirichandra, and C. Belin, Protein phosphatases 2C regulate the activation of the Snf1-related kinase OST1 by abscisic acid in Arabidopsis, Plant Cell, vol.21, pp.3170-3184, 2009.

N. Nishimura, A. Sarkeshik, K. Nito, S. Y. Park, and A. Wang, PYR/PYL/RCAR family members are major in-vivo ABI1 protein phosphatase 2C-interacting proteins in Arabidopsis, Plant J, vol.61, pp.290-299

H. Fujii and J. K. Zhu, Arabidopsis mutant deficient in 3 abscisic acid-activated protein kinases reveals critical roles in growth, reproduction, and stress, Proc Natl Acad Sci U S A, vol.106, pp.8380-8385, 2009.

Y. Fujita, K. Nakashima, T. Yoshida, T. Katagiri, and S. Kidokoro, Three SnRK2 protein kinases are the main positive regulators of abscisic acid signaling in response to water stress in Arabidopsis, Plant Cell Physiol, vol.50, pp.2123-2132, 2009.

K. Nakashima, Y. Fujita, N. Kanamori, T. Katagiri, and T. Umezawa, Three Arabidopsis SnRK2 Protein Kinases, SRK2D/SnRK2.2, SRK2E/ SnRK2.6/OST1 and SRK2I/SnRK2.3 Involved in ABA-Signaling are Essential for the Control of Seed Development and Dormancy, Plant Cell Physiol, vol.50, pp.1345-1363, 2009.

R. R. Johnson, R. L. Wagner, S. D. Verhey, and M. K. Walker-simmons, The abscisic acid-responsive kinase PKABA1 interacts with a seed-specific abscisic acid response element-binding factor, TaABF, and phosphorylates TaABF peptide sequences, Plant Physiol, vol.130, pp.837-846, 2002.

T. Furihata, K. Maruyama, Y. Fujita, T. Umezawa, and R. Yoshida, Abscisic acid-dependent multisite phosphorylation regulates the activity of a transcription activator AREB1, Proc Natl Acad Sci U S A, vol.103, pp.1988-1993, 2006.

Y. Kobayashi, M. Murata, H. Minami, S. Yamamoto, and Y. Kagaya, Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response elementbinding factors, Plant J, vol.44, pp.939-949, 2005.

T. Yoshida, Y. Fujita, H. Sayama, S. Kidokoro, and K. Maruyama, AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation, Plant J, vol.61, pp.672-685, 2010.

D. Geiger, S. Scherzer, P. Mumm, A. Stange, and I. Marten, Activity of guard cell anion channel SLAC1 is controlled by drought-stress signaling kinasephosphatase pair, Proc Natl Acad Sci U S A, vol.106, pp.21425-21430, 2009.

S. C. Lee, W. Lan, B. B. Buchanan, and S. Luan, A protein kinase-phosphatase pair interacts with an ion channel to regulate ABA signaling in plant guard cells, Proc Natl Acad Sci U S A, vol.106, pp.21419-21424, 2009.

A. Sato, Y. Sato, Y. Fukao, M. Fujiwara, and T. Umezawa, Threonine at position 306 of the KAT1 potassium channel is essential for channel activity and is a target site for ABA-activated SnRK2/OST1/SnRK2.6 protein kinase, Biochem J, vol.424, pp.439-448, 2009.

C. Sirichandra, D. Gu, H. C. Hu, M. Davanture, and S. Lee, Phosphorylation of the Arabidopsis AtrbohF NADPH oxidase by OST1 protein kinase, FEBS Lett, vol.583, pp.2982-2986, 2009.

T. Vahisalu, I. Puzorjova, M. Brosche, E. Valk, and M. Lepiku, Ozonetriggered rapid stomatal response involves production of reactive oxygen species and is controlled by SLAC1 and OST1, Plant J, vol.62, pp.442-453, 2010.

J. M. Kwak, I. C. Mori, Z. M. Pei, N. Leonhardt, and M. A. Torres, NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis, EMBO J, vol.22, pp.2623-2633, 2003.

J. M. Kwak, Y. Murata, V. M. Baizabal-aguirre, J. Merrill, and M. Wang, Dominant negative guard cell K+ channel mutants reduce inward-rectifying K+ currents and light-induced stomatal opening in arabidopsis, Plant Physiol, vol.127, pp.473-485, 2001.

J. Negi, O. Matsuda, T. Nagasawa, Y. Oba, and H. Takahashi, CO2 regulator SLAC1 and its homologues are essential for anion homeostasis in plant cells, Nature, vol.452, pp.483-486, 2008.

S. Saji, S. Bathula, A. Kubo, M. Tamaoki, and M. Kanna, Disruption of a gene encoding C4-dicarboxylate transporter-like protein increases ozone sensitivity through deregulation of the stomatal response in Arabidopsis thaliana, Plant Cell Physiol, vol.49, pp.2-10, 2008.

T. Vahisalu, H. Kollist, Y. F. Wang, N. Nishimura, and W. Y. Chan, SLAC1 is required for plant guard cell S-type anion channel function in stomatal signalling, Nature, vol.452, pp.487-491, 2008.

J. E. Hutti, E. T. Jarrell, J. D. Chang, D. W. Abbott, and P. Storz, A rapid method for determining protein kinase phosphorylation specificity, Nat Methods, vol.1, pp.27-29, 2004.

F. Vlad, B. E. Turk, P. Peynot, J. Leung, and S. Merlot, A versatile strategy to define the phosphorylation preferences of plant protein kinases and screen for putative substrates, Plant J, vol.55, pp.104-117, 2008.

Y. Yang, A. Costa, N. Leonhardt, R. S. Siegel, and J. I. Schroeder, Isolation of a strong Arabidopsis guard cell promoter and its potential as a research tool, Plant Methods, vol.4, p.6, 2008.

B. Coblitz, M. Wu, S. Shikano, and M. Li, C-terminal binding: an expanded repertoire and function of 14-3-3 proteins, FEBS Lett, vol.580, pp.1531-1535, 2006.

P. J. Schoonheim, H. Veiga, P. Dda, C. Friso, G. Van-wijk et al., A comprehensive analysis of the 14-3-3 interactome in barley leaves using a complementary proteomics and two-hybrid approach, Plant Physiol, vol.143, pp.670-683, 2007.

H. Doppler, P. Storz, J. Li, M. J. Comb, and A. Toker, A phosphorylation statespecific antibody recognizes Hsp27, a novel substrate of protein kinase D, J Biol Chem, vol.280, pp.15013-15019, 2005.

P. J. Schoonheim, M. P. Sinnige, J. A. Casaretto, H. Veiga, and T. D. Bunney, 14-3-3 adaptor proteins are intermediates in ABA signal transduction during barley seed germination, Plant J, vol.49, pp.289-301, 2007.

J. Zhang, R. E. Campbell, A. Y. Ting, and R. Y. Tsien, Creating new fluorescent probes for cell biology, Nat Rev Mol Cell Biol, vol.3, pp.906-918, 2002.

Y. Kagaya, T. Hobo, M. Murata, A. Ban, and T. Hattori, Abscisic acid-induced transcription is mediated by phosphorylation of an abscisic acid response element binding factor, TRAB1. Plant Cell, vol.14, pp.3177-3189, 2002.

L. Lopez-molina, S. Mongrand, and N. H. Chua, A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis, Proc Natl Acad Sci U S A, vol.98, pp.4782-4787, 2001.

L. Lopez-molina, S. Mongrand, D. T. Mclachlin, B. T. Chait, and N. H. Chua, ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination, Plant J, vol.32, pp.317-328, 2002.

Y. Chen, W. Hoehenwarter, and W. Weckwerth, Comparative analysis of phytohormone-responsive phosphoproteins in Arabidopsis thaliana using TiO2-phosphopeptide enrichment and mass accuracy precursor alignment, Plant J, vol.63, pp.1-17, 2010.

K. G. Kline, G. A. Barrett-wilt, and M. R. Sussman, In planta changes in protein phosphorylation induced by the plant hormone abscisic acid, Proc Natl Acad Sci U S A, vol.107, pp.15986-15991, 2010.

H. I. Choi, H. J. Park, J. H. Park, S. Kim, and M. Y. Im, Arabidopsis calciumdependent protein kinase AtCPK32 interacts with ABF4, a transcriptional regulator of abscisic acid-responsive gene expression, and modulates its activity, Plant Physiol, vol.139, pp.1750-1761, 2005.

S. Y. Zhu, X. C. Yu, X. J. Wang, R. Zhao, and Y. Li, Two calcium-dependent protein kinases, CPK4 and CPK11, regulate abscisic acid signal transduction in Arabidopsis, Plant Cell, vol.19, pp.3019-3036, 2007.

S. L. Stone, L. A. Williams, L. M. Farmer, R. D. Vierstra, and J. Callis, KEEP ON GOING, a RING E3 ligase essential for Arabidopsis growth and development, is involved in abscisic acid signaling, Plant Cell, vol.18, pp.3415-3428, 2006.

M. E. Garcia, T. Lynch, J. Peeters, C. Snowden, and R. Finkelstein, A small plantspecific protein family of ABI five binding proteins (AFPs) regulates stress response in germinating Arabidopsis seeds and seedlings, Plant Mol Biol, vol.67, pp.643-658, 2008.

L. Lopez-molina, S. Mongrand, N. Kinoshita, and N. H. Chua, AFP is a novel negative regulator of ABA signaling that promotes ABI5 protein degradation, Genes Dev, vol.17, pp.410-418, 2003.

Y. Miao, D. Lv, P. Wang, X. C. Wang, and J. Chen, An Arabidopsis glutathione peroxidase functions as both a redox transducer and a scavenger in abscisic acid and drought stress responses, Plant Cell, vol.18, pp.2749-2766, 2006.

R. Shin, S. Alvarez, A. Y. Burch, J. M. Jez, and D. P. Schachtman, Phosphoproteomic identification of targets of the Arabidopsis sucrose nonfermenting-like kinase SnRK2.8 reveals a connection to metabolic processes, Proc Natl Acad Sci U S A, vol.104, pp.6460-6465, 2007.

J. Weekes, K. L. Ball, F. B. Caudwell, and D. G. Hardie, Specificity determinants for the AMP-activated protein kinase and its plant homologue analysed using synthetic peptides, FEBS Lett, vol.334, pp.335-339, 1993.

C. Belin, P. O. De-franco, C. Bourbousse, S. Chaignepain, and J. M. Schmitter, Identification of features regulating OST1 kinase activity and OST1 function in guard cells, Plant Physiol, vol.141, pp.1316-1327, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00119901

Y. Takahashi, T. Kinoshita, and K. Shimazaki, Protein phosphorylation and binding of a 14-3-3 protein in Vicia guard cells in response to ABA, Plant Cell Physiol, vol.48, pp.1182-1191, 2007.

S. Pandey, X. Q. Wang, S. A. Coursol, and S. M. Assmann, Preparation and applications of Arabidopsis thaliana guard cell protoplasts, New Phytologist, vol.153, pp.517-526, 2002.

K. W. Earley, J. R. Haag, O. Pontes, K. Opper, and T. Juehne, Gatewaycompatible vectors for plant functional genomics and proteomics, Plant J, vol.45, pp.616-629, 2006.

S. J. Clough and A. F. Bent, Floral dip: a simplified method for Agrobacteriummediated transformation of Arabidopsis thaliana, Plant J, vol.16, pp.735-743, 1998.

M. D. Curtis and U. Grossniklaus, A gateway cloning vector set for highthroughput functional analysis of genes in planta, Plant Physiol, vol.133, pp.462-469, 2003.

M. Wydro, E. Kozubek, and P. Lehmann, Optimization of transient Agrobacterium-mediated gene expression system in leaves of Nicotiana benthamiana, Acta Biochim Pol, vol.53, pp.289-298, 2006.

E. Kinoshita, E. Kinoshita-kikuta, K. Takiyama, and T. Koike, Phosphatebinding tag, a new tool to visualize phosphorylated proteins, Mol Cell Proteomics, vol.5, pp.749-757, 2006.

R. Finkelstein, S. S. Gampala, T. J. Lynch, T. L. Thomas, and C. D. Rock, Redundant and distinct functions of the ABA response loci ABA-INSENSITI-VE(ABI)5 and ABRE-BINDING FACTOR (ABF)3, Plant Mol Biol, vol.59, pp.253-267, 2005.