D. I. Andersson and B. R. Levin, The biological cost of antibiotic resistance, Current Opinion in Microbiology, vol.2, pp.489-93, 1999.

S. Asser-kaiser, E. Fritsch, K. Undorf-spahn, J. Kienzle, K. E. Eberle et al., Rapid emergence of baculovirus resistance in codling moth due to dominant, sex-linked inheritance, Science, vol.317, pp.1916-1924, 2007.

G. A. Bardas, C. K. Myresiotis, and G. S. Karaoglanidis, Stability and fitness of anilinopyrimidine-resistant strains of Botrytis cinerea, Phytopathology, vol.98, pp.443-50, 2008.

R. E. Beever and P. L. Weeds, Taxonomy and genetic variation of Botrytis and Botryotinia, Botrytis: biology, pathology and control, pp.29-52, 2004.

M. Biava, G. C. Porretta, G. Poce, S. Supino, and G. Sleiter, New pyrroles with potential antimycobacterial, antifungal and selective COX-2 inhibiting activities. Synthetic methodologies, Current Organic Chemistry, vol.11, pp.1092-112, 2007.

L. Chernin, A. Brandis, Z. Ismailov, and C. I. , Pyrrolnitrin production by an Enterobacter agglomerans strain with a broad spectrum of antagonistic activity towards fungal and bacterial phytopathogens, Current Microbiology, vol.32, pp.208-220, 1996.

D. Vleesschauwer, D. Hofte, and M. , Using Serratia plymuthica to control fungal pathogens of plants. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 2, vol.12, p.pp, 2007.

V. Decognet, M. Bardin, Y. Trottin-caudal, and P. C. Nicot, Rapid change in the genetic diversity of Botrytis cinerea populations after the introduction of strains in a tomato glasshouse, Phytopathology, vol.99, pp.185-93, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02664531

B. Duffy, A. Schouten, and J. M. Raaijmakers, Pathogen self-defense: mechanisms to counteract microbial antagonism, Annual Review of Phytopathology, vol.41, pp.501-539, 2003.

N. El-banna and G. Winkelmann, Pyrrolnitrin from Burkholderia cepacia: antibiotic activity against fungi and novel activities against streptomycetes, Journal of Applied Microbiology, vol.85, pp.69-78, 1998.

Y. Elad and A. Stewart, Microbial control of Botrytis spp, Botrytis: biology, pathology and control, pp.223-264, 2004.

P. Elmer and T. Reglinski, Biosuppression of Botrytis cinerea in grapes, Plant Pathology, vol.55, pp.155-77, 2006.

T. Giraud, C. Levis, D. Fortini, P. Leroux, and Y. Brygoo, RFLP markers show genetic recombination in Botryotinia fuckeliana (Botrytis cinerea) and transposable elements reveal two sympatric species, Molecular Biology and Evolution, vol.14, pp.1177-85, 1997.
URL : https://hal.archives-ouvertes.fr/hal-02694821

P. E. Hammer, K. B. Evensen, and W. J. Janisiewicz, Postharvest control of Botrytis cinerea on cut flowers with pyrrolnitrin, Plant Disease, vol.77, pp.283-289, 1993.

R. D. Holt and M. E. Hochberg, When is biological control evolutionarily stable (or is it, Ecology, vol.78, pp.1673-83, 1997.

W. J. Janisiewicz and J. Roitman, Biological control of blue mold and grey mold on apple and pear with Pseudomonas cepacia, Phytopathology, vol.78, pp.1697-700, 1988.

W. R. Jarvis, Epidemiology, The Biology of Botrytis, pp.219-50, 1980.

S. Karchani-balma, A. Gautier, A. Raies, and E. Fournier, Geography, plants, and growing systems shape the genetic structure of Tunisian Botrytis cinerea populations, Phytopathology, vol.98, pp.1271-1280, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02666903

W. Koeller and M. H. Wilcox, Evidence for the predisposition of fungicide-resistant isolates of Venturia inaequalis to a preferential selection for resistance to other fungicides, Phytopathology, vol.91, pp.776-81, 2001.

A. R. Kraaijeveld and H. Godfray, Trade-off between parasitoid resistance and larval competitive ability in Drosophila melanogaster, Nature, vol.389, pp.278-80, 1997.

P. Leroux, Chemical control of Botrytis and its resistance to chemical fungicides, Botrytis: Biology, Pathology and Control, pp.195-222, 2004.

P. Leroux, F. Chapeland, D. Desbrosses, and M. Gredt, Patterns of cross-resistance to fungicides in Botryotinia fuckeliana (Botrytis cinerea) isolates from French vineyards, Crop Protection, vol.18, pp.687-97, 1999.

P. Leroux, R. Fritz, D. Debieu, C. Albertini, C. Lanen et al., Mechanisms of resistance to fungicides in field strains of Botrytis cinerea, Pest Management Science, vol.58, pp.876-88, 2002.

J. J. Levenfors, R. Hedman, C. Thaning, B. Gerhardson, and C. J. Welch, Broad-spectrum antifungal metabolites produced by the soil bacterium Serratia plymuthica A 153, Soil Biology & Biochemistry, vol.36, pp.677-85, 2004.

H. Li and C. Leifert, Development of resistance in Botryotinia fuckeliana (de Barry) Whetzel against the biological control agent Bacillus subtilis CL27, Zeitschrift fur Pflanzenkrankheiten und Pflanzenschutz, vol.101, pp.414-422, 1994.

C. X. Luo and G. Schnabel, Adaptation to fungicides in Monilinia fructicola isolates with different fungicide resistance phenotypes, Phytopathology, vol.98, pp.230-238, 2008.

S. Mazurier, T. Corberand, P. Lemanceau, and J. M. Raaijmakers, Phenazine antibiotics produced by fluorescent pseudomonads contribute to natural soil suppressiveness to Fusarium wilt, The ISME Journal, vol.3, pp.977-991, 2009.
URL : https://hal.archives-ouvertes.fr/hal-02666329

C. Moyano, V. Gomez, and P. Melgarejo, Resistance to pyrimathanil and other fungicides in Botrytis cinerea populations collected on vegetable crops in spain, Journal of Phytopathology, vol.152, pp.484-90, 2004.

S. M. Rosenberg, Evolving responsability: adaptative mutation, Nature Reviews Genetics, vol.2, pp.504-519, 2001.

H. Schoonbeek, J. M. Raaijmakers, and W. Mad, RF= resistance factor calculated by dividing the EC 50 value of each of the generations tested by the EC 50 value of the sensitive parent of the considered isolate (G0). For each isolate, Molecular Plant-Microbe Interactions, vol.15, pp.1165-72, 2002.

, Growth inhibition = [1-(radius of mycelial growth on control plates in mm / radius of mycelial growth in