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Abstract
Background: Growing interest is turned to fat storage levels and allocation within body compartments, due to
their impact on human health and quality properties of farm animals. Energy intake and genetic background are
major determinants of fattening in most animals, including humans. Previous studies have evidenced that fat
deposition depends upon balance between various metabolic pathways. Using divergent selection, we obtained
rainbow trout with differences in fat allocation between visceral adipose tissue and muscle, and no change in
overall body fat content. Transcriptome and proteome analysis were applied to characterize the molecular
changes occurring between these two lines when fed a low or a high energy diet. We focused on the liver, center
of intermediary metabolism and the main site for lipogenesis in fish, as in humans and most avian species.

Results: The proteome and transcriptome analyses provided concordant results. The main changes induced by
the dietary treatment were observed in lipid metabolism. The level of transcripts and proteins involved in
intracellular lipid transport, fatty acid biosynthesis and anti-oxidant metabolism were lower with the lipid rich diet.
In addition, genes and proteins involved in amino-acid catabolism and proteolysis were also under expressed with
this diet. The major changes related to the selection effect were observed in levels of transcripts and proteins
involved in amino-acid catabolism and proteolysis that were higher in the fat muscle line than in the lean muscle
line.

Conclusion: The present study led to the identification of novel genes and proteins that responded to long term
feeding with a high energy/high fat diet. Although muscle was the direct target, the selection procedure applied
significantly affected hepatic metabolism, particularly protein and amino acid derivative metabolism. Interestingly,
the selection procedure and the dietary treatment used to increase muscle fat content exerted opposite effects
on the expression of the liver genes and proteins, with little interaction between the two factors. Some of the
molecules we identified could be used as markers to prevent excess muscle fat accumulation.
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Background
The levels of fat storage and allocation within body com-
partments have become the focus of critical interest dur-
ing the last few years, due to their impact on human
health [1] and meat quality of farm animals [2,3]. Dietary
manipulation and genetic selection constitute the two
ways to manage body fat content in farm animals. Energy
intake and genetic factors also have a major influence on
fattening in humans [4].

Storage of triglycerides in the different body compart-
ments depends on the availability of plasma lipids origi-
nating from either the diet or lipogenesis. In fish, human
and most avian species, lipogenesis mainly takes place in
the liver [5,6] and is negligible in muscle [7,8]. The liver
has a central role in metabolic homeostasis and in coordi-
nating body metabolism in response to dietary condi-
tions. An increase in dietary lipid generally leads to
modification of lipid metabolism in most animals, with
inhibition of lipogenic enzymes [9,6,10], and stimulation
of fatty acid oxidation [11], especially when the dietary
fatty acids are provided as polyunsaturated fatty-acids
(PUFAs) [12-14]. However, most of the studies investigat-
ing the hepatic metabolic changes induced by long term
feeding a high fat diet focused on lipid metabolism.

Body fat distribution is clearly a heritable trait [15]. In
farm animals, genetic selection has been used to manage
fat content of target body compartments [16,17], but it
generally leads to changes in whole body fat content. In
humans, studies comparing groups with different fat dis-
tribution patterns have highlighted differences in post-

prandial plasma metabolites [18-20], suggesting
differences in fat, glucose and protein metabolism. How-
ever, the physiological mechanisms responsible for these
differences have not been described to date.

Using divergent selection on muscle fat content in rain-
bow trout, we obtained animals that were characterized
by differences in fat allocation between visceral adipose
tissue and muscle, with no change in overall body fat con-
tent between lines. We then decided to characterize the
differences in metabolic changes occurring between these
two lines when fed a low or a high energy diet. We focused
on the liver, since this organ is the center of intermediary
metabolism and main site for lipogenesis in fish [5]. The
aims of the study were 1) to assess the overall changes in
gene and protein expression induced in the rainbow trout
liver by long term feeding of a high energy/high fat diet,
2) to identify the differences in gene and protein expres-
sion profiles induced in the liver as a consequence of the
selection for muscle fattening, and 3) to evaluate to what
extent the two factors used to modulate muscle fat content
may have interacted on the different metabolism-related
genes and proteins. This was achieved through two com-
plementary approaches at the transcriptomic and pro-
teomic levels, using microarray and bidimensional
electrophoresis.

Results
Growth, biometry and biochemical parameters (Table 1)
The higher energy content of the HE diet enhanced growth
rate (p = 10-4) of fish irrespective of the line. At the end of
the feeding trial, fish of the lean muscle line (L) showed

Table 1: Fish growth, morphological and biochemical parameters, and whole body and muscle lipid content

L line F line p-values

Diet LE HE LE HE Diet Line Line*Diet

Daily Growth index (% day-1)
2.57 ± 0.04 2.67 ± 0.05 2.37 ± 0.01 2.52 ± 0.03 p = 0.011 p = 0.043 p = 0.64

Final body weight (g)
73.0 ± 2.9 92.4 ± 2.9 57.8 ± 2.0 77.4 ± 2.5 p = 10-4 p = 10-4 p = 0.66

Whole body lipid content (% WW)
9.5 ± 0.2 15.3 ± 1.1 10.8 ± 0.5 15.2 ± 1.0 p = 10-4 p = 0.27 p = 0.16

HSI (%)
1.3 ± 0.2 1.2 ± 0.2 1.3 ± 0.2 1.3 ± 0.3 p = 0.14 p = 0.99 p = 0.33

VSI (%)
8.3 ± 0.8c 12.4 ± 1.3a 7.7 ± 0.9d 11.0 ± 1.9b p = 10-4 p = 10-4 p = 0.003

Muscle lipid content (% WW)
4.3 ± 0.8c 6.4 ± 1.2b 6.3 ± 1.2b 10.1 ± 2.3a p < 10-4 p < 10-4 p = 0.003

Plasma triglycerides (g/l)
5.52 ± 0.77 4.38 ± 1.31 5.74 ± 0.84 4.83 ± 1.31 p < 10-4 p = 0.03 p = 0.47

Plasma glucose (mg/l)
81.42 ± 6.68 80.90 ± 5.61 81.34 ± 6.16 81.01 ± 5.71 p = 0.61 p = 0.97 p = 0.91

% WW, percentage of wet weight. Values are expressed as means ± SD (n = 57 individuals in all groups, except for muscle lipid content, for which 
n = 30); HIS, hepato-somatic index; VSI, Viscero-somatic index; p-values are presented in italics when the differences are significant (p < 0.05, 
MANOVA 2 factors). Means with different superscript letters are significantly different (p < 0.05, ANOVA).
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higher whole body weight (p = 10-4) compared to those of
the fat muscle line (F). Whole body lipid content was
increased in fish fed the HE diet compared to those fed the
low energy diet (LE), and was similar for the two lines fed
the same diet. Muscle lipid content was higher in fish fed
the HE diet (p < 10-4) and in the F line (p < 10-4). Viscero-
somatic index (VSI), used as an indicator of fat deposition
as visceral adipose tissue, was increased in fish fed the HE
diet (p = 10-4) and in fish from the L line (p = 10-4).
Plasma triglyceride levels were higher in fish fed the LE
diet (p = 10-4) and in fish of the F line (p = 0.02). Glyc-
emia was not significantly different between diets (p =
0.61) or lines (p = 0.97) 24 hours after the meal.

Microarray data analysis
Hepatic transcripts differentially expressed between the dietary 
treatments
The results derived from ANOVA (p < 0.01) and SAM
(FDR < 0.15) analysis for global dietary effects (whatever
the lines) on hepatic gene expression are summarized in
Table 2. A comparison of the two lists of genes generated
by these two analytical methods [see additional file 1]
revealed that 106 genes were significant according to both
statistical analyses. With regard to the ontology of these
106 clones, 83 were attributed a biological function
(Table 2). Our study was focused more particularly on
genes involved in the metabolic process since it was the
largest category represented (44.6% of the transcripts that
had a biological function). Lipid metabolism was the met-
abolic pathway that contained the majority of the differ-

entially expressed transcripts (40.5%), with, in particular,
genes encoding for proteins involved in lipid transport
(acyl-CoA binding protein [ACBP], heart-type fatty acid-
binding protein [H-FABP]), fatty acid desaturation (delta-
6-desaturase [Δ6-FAD]) and cholesterol/steroid metabo-
lism (cholesteryl ester transfer protein [CETP]), down-reg-
ulated in trout from both lines fed the HE diet (Table 3).
There were two different transcripts corresponding to the
H-FABP protein (of ~800 bp and ~600 bp) that shared
88% of sequence similarity. Their deduced amino acid
sequences contained 94% similar residues, suggesting that
these two transcripts may be different isoforms of H-
FABP.

Several clones corresponding to enzymes involved in gen-
eration of precursor metabolites and energy (6-phos-
phogluconate dehydrogenase [6-PGD], pyruvate
carboxylase [PC] and subunits of the respiratory chain
complexes), amino acid metabolism (D-3-phosphoglyc-
erate dehydrogenase [3-PGDH], cystathionine γ-lyase
[CGL] and acetylcholinesterase precursor [AChE]) and
proteolysis were also found to be significantly reduced in
the livers of fish fed the HE diet compared to those fed the
LE diet.

Hepatic transcripts affected by the selection procedure
The results derived from ANOVA (p < 0.01) and SAM
(FDR < 0.15) analysis for global genetic selection effects
(whatever the diet) on hepatic gene expression are sum-
marized in Table 4. [For a complete list of genes identified

Table 2: Overview of transcripts in livers of rainbow trout significantly affected by the dietary treatment (HE vs LE diet)1

Statistical analysis ANOVA (p < 0.01) SAM FDR ≤ 0.15 ANOVA∩SAM

Total 165 111 106
HE > LE 37 8 8
HE < LE 128 103 98

Number of transcripts with known biological function 132 87 83
Biological function
Metabolism 52 (39.4%) 38 (43.7%) 37 (44.6%)

Lipid 19 (14.4%) 15 (17.2%) 15 (18.1%)
Energy 7 (5.3%) 5 (5.7%) 5 (6.0%)
Carbohydrate 1 (< 1%) 1 (1.1%) 1 (1.2%))
Amino acid and derivative 5 (3.8%) 3 (3.4%) 3 (3.6%)
Protein folding/synthesis/breakdown 11 (8.3%) 6 (6.9%) 6 (7.2%)
Xenobiotic and oxidant metabolism 5 (3.8%) 4 (4.6%) 4 (4.8%)
Purine and pyrimidine 4 (3%) 4 (4.6%) 3 (3.6%)

Transcription/translation 21 (15.9%) 13 (15.1%) 12 (14.5%)
Cell cycle 13 (9.8%) 6 (6.9%) 6 (7.2%)
Trafficking 9 (6.8%) 6 (6.9%) 6 (7.2%)
Signal transduction 8 (6.1%) 7 (8.0%) 7 (8.4%)
Extracellular matrix and structural components 6 (4.5%) 5 (5.7%) 5 (6%)
Immune and stress response 6 (4.5%) 5 (5.7%) 4 (4.8%)
Others 17 (12.9%) 7 (8.0%) 6 (7.2%)

1 According to ANOVA (p < 0.01), SAM analysis (FDR < 0.15) and both statistical methods
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as significantly different between the two lines according
to each statistical approach see Additional file 2]. Seventy
transcripts were found to be significant by both statistical
methods. Transcripts involved in metabolic pathways
accounted for 46% of the transcripts that had received a
biological function (Table 4). Only two of these tran-

scripts were involved in lipid metabolism (ceramide
kinase 1 and a nonspecific lipid-transfer protein) (Table
5). A greater proportion of differential transcripts encoded
for proteins involved in xenobiotic and oxidant metabo-
lism (22.2%), generation of precursors and energy (6-
PGDH, malate dehydrogenase [MDH], ubiquinol cyto-

Table 3: Metabolism-related hepatic transcripts exhibiting differential expression between the two dietary groups (HE vs LE)1

Biological function HE/LE ratio ANOVA SAM

GenBank Acc. N° Best-hit Swiss-Prot description L line F line P-value FDR cut off

Lipid metabolism (40.5%)
CA344881 Trifunctional enzyme subunit alpha, mitochondrial precursor -1.3 -1.4 < 5.10-4 0
BX885839 Acetyl-CoA acetyltransferase, cytosolic (ACAT2) -1.5 -2.1 < 10-3 0
BX861803 Phosphatidylinositol-glycan biosynthesis class F protein (PIG-F) -1.3 -1.2 0.003 0.1
BX080468 Ectonucleotide pyrophosphatase/phosphodiesterase 7 precursor -1.3 -1.1 0.004 0.15
Fatty acid desaturation (2.7%)
CA371783 putative delta-6 fatty acid desaturase (Δ6-FAD) -1.9 -2.0 0.005 0.05
Lipid transport (10.8%)
CU069821 Acetyl coenzyme A binding protein (ACBP) -2.1 -1.9 < 5.10-5 0
BX078901 Vitellogenin precursor (VTG) -1.2 -1.4 < 10-3 0.05
CU069693 Heart-type fatty acid binding protein (H-FABP) -1.4 -1.5 < 10-3 0
BX298066 Heart-type fatty acid binding protein (H-FABP) -1.6 -1.5 0.004 0.05
Cholesterol metabolism (16.2%)
BX875391 Probable ergosterol biosynthetic protein 28 (ERG28) -1.8 -2.3 < 5.10-6 0
CU069450 24-dehydrocholesterol reductase precursor (DHC24) -1.8 -2.7 < 5.10-4 0
CA344888 Retinol dehydrogenase 12 (RDH12) -1.2 -2.0 0.003 0.05
CA382526 Orphan nuclear receptor NR1D2 (Rev-erbβ) -1.2 -1.2 0.004 0.15
CA377380 C-4 methylsterol oxidase (ERG25) -1.2 1.5 0.006 0.1
CU069541 Cholesteryl ester transfer protein precursor (CETP) -1.4 -1.2 0.006 0.15
Generation of precursor metabolites and energy (13.5%)
BX084640 6-phosphogluconate dehydrogenase, decarboxylating (6-PGD) -1.4 -2.2 < 5.10-4 0
BX080843 Ubiquinol-cytochrome c reductase complex 9.5 kDa protein -1.4 -1.3 < 5.10-4 0
BX886412 ATP synthase subunit alpha, mitochondrial precursor (ATPA) -1.1 -1.4 0.001 0.1
CA377924 Vacuolar ATP synthase subunit δ (V-ATPase δ subunit) -1.2 -1.4 0.002 0.05
CU067427 Pyruvate carboxylase, mitochondrial precursor -1.2 -1.1 0.008 0.15
Carbohydrate metabolism (2.7%)
CA383037 Solute carrier family 2, facilitated glucose transporter member 11 -1.7 -1.6 < 10-4 0
Amino-acid derivative metabolism (8.1%)
CU068986 Acetylcholinesterase precursor (EC 3.1.1.7) (AChE) -1.7 -1.7 < 5.10-4 0
CU070780 D-3-phosphoglycerate dehydrogenase (3-PGDH) -1.4 -1.2 0.002 0.05
CU067302 Cystathionine gamma-lyase (CGL) -1.4 -1.0 0.008 0.15
Protein folding/synthesis/breakdown (16.2%)
CU072931 Tripeptidyl-peptidase 2 -1.3 -1.7 < 10-4 0
CA362332 Ubiquitin-conjugating enzyme E2 E1 (UB2E1) -1.3 -1.3 0.002 0.15
CU068585 STIP1 homology and U box-containing protein 1 -1.4 -1.5 0.003 0.05
BX307921 McKusick-Kaufman/Bardet-Biedl syndromes putative chaperonin -1.2 -1.4 0.005 0.15
CA342952 Proteasome subunit beta type 7 precursor (PSB7) -1.2 -1.1 0.01 0.15
CU066852 F-box/WD repeat protein 2 -1.4 -1.1 0.03 0.1
Xenobiotic and oxidant metabolism (10.8%)
CU070243 Peptide methionine sulfoxide reductase -1.3 -1.3 10-3 0.05
CU071592 Cytochrome P450 2J2 (Arachidonic acid epoxygenase) 1.9 2.2 0.003 0.1
BX081745 Matrix metalloproteinase-16 precursor 1.9 1.6 0.003 0.15
BX308633 Stress-activated protein kinase 3 (MK12) -1.2 -1.3 0.008 0.15
Purine metabolism (8.1%)
CU073027 Ectonucleoside triphosphate diphosphohydrolase 1 -1.3 -1.1 < 10-3 0.05
CA363765 Adenylate kinase isoenzyme 2, mitochondrial -1.3 -1.2 < 10-4 0.05
CA371563 Ribonucleoside-diphosphate reductase large subunit 2.6 3.9 0.001 0.05

1 According to both ANOVA (p < 0.01) and SAM (FDR < 0.15) analysis
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chrome c reductase), amino-acid metabolism (transcripts
encoding for two aspartate aminotransferases [GOT], a
betaine-homocysteine S-methyltransferase [BHMT] and a
4-aminobutyrate aminotransferase) and proteolysis (pro-
teasome and protein ubiquitinylation components). All
were expressed at higher levels in the F line than in the L
line (Table 5).

Hepatic transcripts involved in a line per diet interaction
Twenty-six transcripts for which the effects of the diet were
dependent on genotype were detected by the two-way
ANOVA. Two of these encoded for proteins involved in
immune function, eight in cellular processes, and one in
trafficking, four encoded for transcription factors, and ten
were involved in metabolic pathways. The latter are repre-
sented in figure 1. It is of note that six of the ten significant
interactions that concerned metabolic genes occurred in
the F-LE group: transcript levels of four genes involved in
lipid metabolism and energy production (glucose 6-phos-
phate dehydrogenase [g6pd], endothelial lipase [lipg],
NADH dehydrogenase [ubiquinone] iron-sulfur protein 8
(ndus8), and cytochrome b-c1 complex subunit [uqcrfs1])
were increased in the F-LE group, whereas the expression
of long-chain acyl-CoA synthetase 5 [acsl5], involved in
the activation of long chain fatty acids, and ubiquitin car-
boxyl-terminal hydrolase [usp5], involved in proteolysis,
were concomitantly decreased.

Confirmation of microarray data by real time RT-PCR
Changes in gene expression demonstrated by microarray
analysis were further confirmed with a small set of genes
using real time RT-PCR performed on nine trout liver sam-
ples per experimental group, including the samples we
used in the microarray experiment (see additional file 3).
Genes were selected for each category of effects we
observed, i.e. fads2 (encoding for the protein Δ6-FAD, or
delta-6-desaturase) and pgdh3 (D3-phosphoglycerate
dehydrogenase), which exhibited a significant diet-
induced change, got2 (aspartate aminotransferase) and
mdh (malate dehydrogenase), that were found to be dif-
ferentially expressed between lines, pgd (6-phosphogluco-
nate dehydrogenase), that was regulated by both factors,
and finally g6pd (glucose-6-phospahte dehydrogenase)
and gk (glucokinase), for which a line/diet interaction was
detected. The real time RT-PCR analysis of fads2 (delta-6-
desaturase) not only confirmed the dietary effect detected
by microarray analysis, but also revealed a significant line
effect, with higher expression in the F line than in the L
line.

2-D gel analysis of soluble liver proteins
Over 900 different spots were detected in at least one
experimental condition, and 570 were detected in all four
groups. According to the two-way ANOVA analysis, 265
protein spots showed a change in abundance between
experimental conditions (p < 0.05). Of them, 70 were

Table 4: Overview of hepatic transcripts exhibiting differential expression between the two genotypes (F vs L)1

Statistical analysis ANOVA (p < 0.01) SAM FDR ≤ 0.15 ANOVA∩SAM

Total 154 77 70
F > L 90 65 58
F < L 64 12 12

Transcripts with known biological function 127 64 58

Biological function
Metabolism 47 (37.0%) 30 (46.7%) 27 (46.6%)

Lipid (4.67%) 2 (3.1%) 2 (3.4%)
Precursor metabolites and energy 7 (5.5%) 6 (9.4%) 5 (8.6%)
Carbohydrate 2 (1.6%) 1 (1.6%) 1 (1.7%)
Amino acid and derivative 9 (7.1%) 6 (9.4%) 5 (8.6%)
Protein folding/synthesis/breakdown 11 (8.7%) 6 (9.4%) 5 (8.6%)
Xenobiotic and oxidant 7 (5.5%) 6 (9.4%) 6 (10.3%)
Purine and pyrimidine 3 (2.4%) 3 (4.7%) 2 (3.4%)
Iron 2 (1.6%) 1 (1.6%) 1 (1.7%)

Transcription/translation 19 (15.0%) 3 (4.7%) 2 (3.4%)
Immune response 7 (5.5%) 5 (7.8%) 5 (8.6%)
Trafficking 11 (8.7%) 5 (7.8%) 5 (8.6%)
Signal transduction 7 (5.5%) 3 (4.7%) 3 (5.2%)
Cell cycle 9 (7.1%) 5 (7.8%) 4 (6.9%)
Extracellular matrix and structural components 9 (7.1%) 3 (4.7%) 2 (3.4%)
Others 18 (14.2%) 10 (15.6%) 10 (17.2%)

1 According to ANOVA (p < 0.01), SAM analysis (FDR < 0.15) and both statistical methods
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deemed to be of sufficient quality to allow peptide mass
fingerprinting, and 36 yielded significant identities (see
Additional file 4). Of the 36 proteins identified, 28 corre-
sponded to proteins involved in metabolic pathways
(78%). In particular, we identified two protein species of
heart-type fatty acid binding protein (H-FABP), with dif-
ferent isoelectric points and molecular weights (figure 2).
The best match for trypsin digest products from these two
spots corresponded to the two EST printed on the micro-
array that we found to be differentially expressed using
transcriptome analysis (Genbank accession numbers
BX298066 and CU069693). We also identified two α-1
enolase and two transketolase protein species.

Three proteins involved in intracellular lipid transport
(two H-FABPs and ACBP) were reduced with the HE diet,

in agreement with the results observed with the transcrip-
tome analysis. In addition, the two H-FABPs showed
greater abundance in the F line than in the L line, an effect
that was not evidenced at the transcript level. Glycerol-3-
phosphate dehydrogenase (G3PDH) that is involved in
phospholipid biosynthesis was also more highly
expressed in the F line than in the L line. Finally, apolipo-
protein A-1 (Apo A-1), the major protein in high-density
plasma lipoprotein, was specifically up-regulated in the L
line fed the HE diet (L-HE group).

Two proteins involved in the generation of precursor
metabolites and energy were identified, i.e. NADP-
dependent isocitrate dehydrogenase (ICDH-NADP),
which was lower in fish fed the HE diet, and ubiquinol
cytochrome c reductase, a component of the respiratory

Table 5: Hepatic transcripts exhibiting differential expression between the two genotypes (F vs L)1

Biological function F/L ratio ANOVA SAM

GenBank Acc. N° Best-hit Swiss-Prot description LE diet HE diet P-value FDR cut off

Lipid metabolism (7.4%)
BX857103 Ceramide kinase -1.6 -2.8 < 10-3 0.1
CA376046 Nonspecific lipid-transfer protein (NLTP) 1.4 1.1 10-3 0.1
Generation of precursor metabolites and energy (18.5%)
CA366638 10-formyltetrahydrofolate dehydrogenase 1.8 1.5 < 5.10-4 0
CA342644 6-phosphogluconate dehydrogenase (6-PGDH) 2.0 1.3 0.002 0.15
BX860760 10-formyltetrahydrofolate dehydrogenase 2.0 1.9 0.003 0
CA351158 Malate dehydrogenase, cytoplasmic (MDH) 1.4 1.2 0.003 0.1
BX301878 Ubiquinol-cytochrome c reductase iron-sulfur subunit 1.6 1.4 0.006 0.1
Carbohydrate metabolism (3.7%)
BX306300 Protein phosphatase 1 regulatory subunit 3D 1.3 1.5 0.008 0.15
Amino-acid derivative metabolism (18.5%)
CA343008 Betaine-homocysteine S-methyltransferase (BHMT) 1.5 1.2 < 5.10-4 0
BX076291 Aspartate aminotransferase, mitochondrial (GOT2) 1.6 1.2 10-3 0.1
CA353510 Aspartate aminotransferase, mitochondrial (GOT2) 1.1 1.2 0.004 0.15
CA345122 4-aminobutyrate aminotransferase, mitochondrial (GABT) 1.4 1.1 0.004 0.15
CA365793 Histone H3-K9 methyltransferase 4 1.3 1.2 0.006 0.15
Protein folding/synthesis/breakdown (18.5%)
CA345680 Calpain-9 1.3 1.1 < 5.10-4 0.15
CA362332 Ubiquitin-conjugating enzyme E2 E1 (UB2E1) 1.3 1.4 < 10-3 0.1
CA351453 α-1,3-mannosyl-glycoprotein

2-beta-N-acetylglucosaminyltransferase 1.3 1.2 < 10-3 0.1
CA342952 Proteasome subunit beta type 7 precursor (PSB7) 1.6 1.5 0.002 0.1
BX302854 Proteasome-associated protein ECM29 homolog 1.5 1.6 0.003 0.1
Xenobiotic and oxidant (22.2%)
CA359966 UDP-glucuronosyltransferase 2A1 precursor 1.3 1.6 < 5.10-4 0
BX302905 Metal-regulatory transcription factor 1 1.2 1.4 0.003 0.1
CA387417 Stress-activated protein kinase 3 (MK12) 1.5 1.3 0.004 0.15
BX078145 7,8-dihydro-8-oxoguanine triphosphatase 1.8 1.0 0.004 0.15
BX305962 ATP-binding cassette sub-family G member 2 1.5 1.6 0.007 0.1
BX299516 Cytochrome P450 2K4 1.3 1.2 0.007 0.15
Purine and pyrimidine metabolism (15%)
BX295336 Nucleoside diphosphate kinase A -1.3 -1.1 < 5.10-4 0.15
CA381176 Equilibrative nucleoside transporter 1 -1.4 -1.4 < 10-3 0.15
Iron metabolism (3.7%)
BX909008 Transferrin receptor protein 1 -1.6 -1.4 0.005 0.15

1 According to both ANOVA (p < 0.01) and SAM (FDR < 0.15) analysis
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Mean-centered, unit-normalized transcript levels of metabolism-related genes exhibiting significant line/diet interactions in the microarray experimentFigure 1
Mean-centered, unit-normalized transcript levels of metabolism-related genes exhibiting significant line/diet 
interactions in the microarray experiment. g6pd: glucose 6-phosphate dehydrogenase; Acsl5: long-chain acyl-CoA syn-
thetase 5; lipg: endothelial lipase; ndufs8: NADH dehydrogenase [ubiquinone] iron-sulfur protein 8; uqcrfs1: cytochrome b-c1 
complex subunit; gk: glucokinase; usp5: Ubiquitin carboxyl-terminal hydrolase 5; psme2: Proteasome activator complex subunit 
2;psmd1: 26S proteasome non-ATPase regulatory subunit 1; Sbp2: selenium-binding protein 2. Data are presented as means of 
6 samples ± SD. * P < 0.01.
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chain, that was more abundant in the F line than in the L
line. ICDH-NADP was in addition markedly reduced in L
fish fed the HE diet (L-HE group).

Six proteins involved in carbohydrate metabolism, partic-
ularly in glycolysis/gluconeogenesis (GAPDH, transaldo-
lase, two α-1 enolase and two transketolase species) were
expressed at lower levels in fish fed the HE diet compared
to fish fed the LE diet. With regard to the selection effect,
GAPDH, phosphoglucomutase (PGM), one α-enolase
and one transketolase were more abundant in the F line
than in the L line. In addition, line/diet interactions were
observed for PGM, the two α-1 enolases and the two tran-

sketolases that were considerably less abundant in L fish
fed the HE diet (L-HE group).

Several key enzymes involved in amino acid metabolism
were identified: glutamate dehydrogenase (GDH) and
alanine:glyoxylate aminotransferase (AGX), both
involved in amino acid transamination, and betaine alde-
hyde dehydrogenase (BADH), involved in sulfur amino
acid bioconversion pathways, were expressed at lower lev-
els in fish fed the HE diet, whereas serine hydroxymethyl
transferase was expressed at higher level in these fish.
Aspartate aminotransferase (GOT), GDH, AGX and
homogentisate 1, 2-dioxygenase (HGD) were detected in
greater abundance in the F line than in the L line. In con-

Representative two-dimensional gel electrophoresis of rainbow trout liver proteinsFigure 2
Representative two-dimensional gel electrophoresis of rainbow trout liver proteins. Total liver protein extract 
(150 μg) was separated first by IEF on 3–10 non-linear IPG drystrips, and then SDS-PAGE was performed on 12.5% polyacryla-
mide gel. The proteins were revealed by silver staining as described by Heukeshoiven and Dernick (1985). Differentially abun-
dant proteins positively identified by trypsin digest fingerprinting are located by arrows, with their corresponding identity and 
spot ID.
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trast, serine hydroxymethyltransferase (SHMT) and 4-
hydroxyphenylpyruvate dioxygenase (4HPPD) were
expressed at higher levels in the L line.

Finally, we identified four proteins related to oxidative
cell status, i.e. glutathione peroxidase (GPX) and glutath-
ione S transferase (GST), involved in the anti-oxidant
process, as well as stress-activated protein kinase 3
(MK12) and arylamine N-acetyltransferase, that are
induced by oxidative stress conditions. Lower levels of the
two anti-oxidant enzymes were detected in the F line than
in the L line, whereas the two stress-induced proteins were
less abundant in the latter. Of these four proteins, only
GPX showed a diet-induced change in abundance, with
higher protein levels upon HE diet feeding.

Discussion
Agreement between transcriptome and proteome analyses
Transcriptome and proteome analysis constitute powerful
tools for obtaining a view of the changes induced by
genetic selection procedures and molecular adaptations to
dietary treatments. The combination of the two
approaches was justified in several respects. Indeed, the
expression of a transcript and that of its corresponding
protein are not necessarily related. Although much rele-
vant information can be obtained from proteome analysis
alone, the current proteomics technologies have some
limitations of a technical order [21]. In addition, we are
currently limited in the sequenced proteins available for
fish species, in particular rainbow trout. About half of the
spectra generated in this study led to significant protein
identification. The combination of microarray and pro-
teome analyses therefore makes it possible, to some
extent, to get round the drawbacks associated with each
method and to extract complementary information from
these two independent methods.

In the present study, these two overall approaches pro-
vided consistent results. Some of the differentially
expressed proteins we identified were also found on
microarray to have altered mRNA levels (two H-FABPs,
ACBP, GOT, GAPDH and the stress-activated protein
kinase 3 [MK12]). The changes in abundance detected for
these proteins were in accordance with the changes
observed at the mRNA level.

Long term effects of a high energy/high lipid diet on the 
hepatic gene and protein expression profiles
One of the aims of the present study was to examine the
changes in hepatic gene and protein expression profiles
induced by long term feeding of a high energy/high fat
diet. As could be expected, given the large number of
genes that are transcriptionally regulated by dietary fatty
acids, particularly PUFAs [22], a high proportion of the
transcripts that showed differential expression between

dietary groups were involved in lipid metabolism. Three
proteins involved in intracellular fatty acid transport (one
ACBP and two H-FABPs) exhibited lower abundance at
both mRNA and protein levels in fish fed the HE diet. H-
FABPs belong to a family of small, cytosolic proteins that
bind long-chain fatty acids and cholesterol. They are pre-
dominantly expressed in the heart, skeletal muscle and
testes of mammals [23], but have been detected in a wider
range of tissues, including the liver, in several fish species
such as zebrafish, mummichog and lamprey [24-26].
Whereas H-FABP is thought to be involved in fatty acid
uptake and transport toward mitochondrial β-oxidation
in muscle tissues, as evidenced in mammals and Atlantic
salmon [27-29], indications that H-FABP may also medi-
ate intracellular fatty acid sequestration and transport
toward the lipogenic process in the liver and oocytes have
been reported in zebrafish [26]. Our results support the
latter assumption, since the change in H-FABP level coin-
cided with a decrease in the activity of key lipogenic
enzymes [30]. ACBP is an intracellular lipid-binding pro-
tein that selectively binds medium and long chain acyl-
CoA esters (C14–C22) with high specificity [31]. Studies
in yeast [32] and the mouse [33] have suggested that
ACBP may play a role in the synthesis of very long chain
fatty acids, with dual regulation by both PPARα and
SREBP-1, as for Δ5 and Δ6 desaturases [34]. The HE diet
down-regulated the gene expression of 6-phosphogluco-
nate dehydrogenase (6-pgd), a key enzyme of the pentose
phosphate pathway that provides NADPH for the lipo-
genic process. The HE diet also decreased transcript level
of Δ6-desaturase (Δ6-fad), a rate-limiting enzyme for the
synthesis of highly unsaturated fatty acids (HUFAs). Fish
oil is particularly rich in (n-3) polyunsaturated fatty acid
and several studies performed in mammals [35] and sal-
monids [36-38] have demonstrated that a HUFA-rich diet
reduces hepatic mRNA levels of Δ5- and Δ6-desaturases.
Increasing the level of dietary (n-3) fatty acid supply has
been shown to enhance enzymes of the antioxidant
defense system such as GPX and catalase at both activity
and mRNA levels [39]. Accordingly, we found that protein
levels of GPX, a key enzyme in the antioxidant defense
system, were increased in fish fed the HE diet, which con-
tained 15% fish oil.

The protein abundance of GDH and AGX, two key
enzymes of amino acid transamination and indicators of
metabolic utilization of dietary amino acids, was lower in
fish that received the HE diet. Some transcripts involved in
proteasome-dependent proteolysis were also expressed at
lower level with this diet. Fish swiftly use proteins as oxi-
dative substrates [40,41]. Thus, increasing non-protein
energy-yielding nutrients such as lipids generally leads to
a protein sparing effect, probably by redirecting dietary
protein and amino acids from energy production toward
tissue deposition [42,43]. This is consistent with the
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enhanced protein efficiency ratio and growth perform-
ance observed in fish fed the HE diet, as previously
described [30]. Feeding the HE diet was also associated
with reduced levels of transcripts and proteins involved in
sulfur amino acid bioconversion, such as 3-PGDH, CGL,
or BADH. This might reflect a decrease in amino acid turn-
over in response to higher lipid supply, a nutritional con-
text that would allow the cell to rely less heavily on the use
of essential amino acids such as methionine to meet their
energy requirements.

Long term feeding a diet supplemented in fish oil has
been shown to induce substantial lowering of blood trig-
lycerides (at least in part) by inhibiting the production
and secretion of triglyceride-rich lipoprotein particles by
the liver [44]. The plasma triglyceride level was consist-
ently lower in fish fed the HE diet than in fish fed the LE
diet. A reduction in lipogenesis associated to a stimulation
of fatty acid oxidation in the liver, as suggested by our pre-
vious results [30], resulting from the higher level of fish
oil provided by the HE diet might have decreased triglyc-
eride and VLDL secretion in circulating blood.

Hepatic transcripts and proteins affected by the selection 
procedure
In contrast to the results observed regarding the dietary
effect on hepatic gene expression, the transcriptome anal-
yses revealed minor changes in lipid metabolism induced
by the selection procedure. However, the proteome
approach yielded some complementary information, as
higher levels of the two H-FABP proteins were present in
the livers of the F line compared to the L line. This might
have been due to post-transcriptional regulation, or to
increased stability of these two proteins in the F line hepa-
tocytes. Abundance of G3PDH, involved in phospholip-
ids biosynthesis, was also increased in F fish livers. In
addition, real time RT-PCR measurement of fads2, encod-
ing for the delta-6-desaturase, an enzyme involved in fatty
acid desaturation, showed increased mRNA levels in the F
line. All these results, together with increased gene expres-
sion of 6-PGD, a key enzyme that provide NADPH for
lipogenic process, suggest greater hepatic lipid biosynthe-
sis in the F line. This is in good agreement with the higher
activity of acetyl-CoA carboxylase, as previously evidenced
[30], although no differences in fatty acid synthase activity
could be found between the two lines [30].

However, most of the alterations induced by the selection
procedure we observed occurred in protein and amino
acid metabolism. In particular, levels of mitochondrial
aspartate aminotransferase (GOT), GDH and AGX, three
key enzymes that play a major role in amino acid catabo-
lism, were increased in the livers of F fish. Transcripts and
proteins that functioned in amino acid bioconversion
(BHMT and GABT) and in proteasome-dependent prote-

olysis were also enhanced in this line. All these findings
may reflect an increase in hepatic flux for energy produc-
tion through amino acid metabolism in the F line com-
pared to the L line. This is in agreement with the lower
growth rate and protein efficiency observed for the F line
[30]. Interestingly, some studies have reported strong evi-
dence that amino acid catabolism may be negatively reg-
ulated by the peroxisome proliferator-activated receptor α
(PPARα) in rodent liver [45-47]. In agreement with this,
PPARα expression was lower in the F line than in the L
line [30]. The increase in amino acid metabolism sug-
gested here could thus be mediated through weaker inhi-
bition of related genes by PPARα. This phenomenon has
previously only been described in the mouse and rat.
Although this remains to be confirmed by appropriate
experiments in fish, the fact that such a mechanism might
also operate in lower vertebrates would support the idea
that regulation of amino acid metabolism by PPARα
might be evolutionarily conserved throughout verte-
brates.

The lower protein levels of two key enzymes in the anti-
oxidant defense system (GPX and GST) observed in the F
line might be explained by a lower production of reactive
oxygen species (ROS) derived from fatty acid oxidation.

Taken together, all these findings suggest that a difference
in nutrient utilization occurs between the two lines, the L
line having a higher propensity to oxidize fatty acids than
the F line [30], which may use comparatively more pro-
tein and amino acids for energy production. This differ-
ence in nutrient utilization could be at least in part
orchestrated by PPARα, exerting opposing controls of
fatty acid oxidation and amino-acid catabolism.

Plasma triglyceride levels were higher in the F line than in
the L line. Increased fatty acid synthesis and decreased
fatty acid oxidation in the liver of the F line might have led
to enhanced fatty acid availability for triglyceride and sub-
sequently VLDL production. Another hypothesis might be
that a decreased extra-hepatic tissue lipid uptake in the F
line compared to the L line also contribute to their higher
blood triglyceride levels by lowering triglyceride clearance
from plasma. Further analysis of the muscle and visceral
adipose tissue lipid uptake should enlight this point.

Comparing the effects of the HE diet and upward selection 
for muscle fat content on hepatic expression profiles
Significant effect exerted by both dietary treatment and
genetic background were observed for some liver tran-
scripts and proteins involved in processes such as cell
cycle, transcription/translation, immune response and
metabolic pathways. Overall, the HE diet and upward
selection for muscle fat content exerted opposite effects in
the liver. In particular, the expression of genes and pro-
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teins involved in lipid biosynthesis and amino acid and
protein catabolism were decreased by the HE diet, and
were increased in the F line compared to the L line. Some
transcripts and proteins were involved in line/diet interac-
tions, but they did not fall into function-related groups,
except for the protein involved in glycolysis/neoglucogen-
esis, the abundance of which was decreased in the livers of
fish from the L-HE group. Gene expression level of GK, a
key enzyme of glycolysis that plays a major role in glucose
homeostasis, was particularly high in the L-HE group
compared to the three other groups. We are currently not
able to explain the magnitude of changes observed for GK
gene expression, since these changes are not correlated
with glycaemia. This might reflect a disturbance of carbo-
hydrate metabolism in the L line. Further analyses are
needed, such as glucose tolerance test or post-prandial
kinetics of glycaemia and GK gene expression. The relative
few number of genes and proteins affected by both factors
as well as line/diet interactions observed in the present
work is in agreement with the results derived from our
previous study [30]. All together, these results suggest that
the dietary treatment and the genetic selection used in this
study to manage muscle fattening are likely to act through
different metabolic actors in the liver. The present study
reveals that the cumulative effect exerted by the genetic
selection and the high energy diet on muscle fattening is
not associated with cumulative changes of hepatic meta-
bolic pathways.

Conclusion
The combination of liver transcriptome and proteome
analysis led to the identification of several molecules that
responded to the dietary treatments and the genetic selec-
tion for muscle fattening.

The increase in dietary energy and lipid supply provided
by the HE diet induced significant changes in the hepatic
transcriptome and proteome. The present findings con-
firmed the effects of long term feeding of a high-PUFA diet
on the expression of genes and proteins involved in fatty
acid desaturation and anti-oxidant metabolism previously
described in mammals, suggesting that the underlying
molecular mechanisms are evolutionarily conserved. The
use of high throughput technologies led to the identifica-
tion of previously unappreciated molecular actors, such as
those involved in amino acid and protein metabolism,
which responded to long term feeding with a high energy/
high fat diet. They provide complementary information
on the effects of dietary fat levels on genes involved in the
regulation of energy metabolism.

Although muscle was the direct target, the selection proce-
dure applied significantly affected hepatic metabolism.
The main changes observed were in transcripts and pro-
teins involved in amino acid and protein catabolism that

were higher in the F line than in the L line. Some tran-
scripts involved in lipogenesis were also increased in the F
line compared to the L line. To our knowledge, the present
study is the first that provides insights into the hepatic
metabolic changes associated with differences in body fat
distribution in a context of similar whole body fat con-
tent. We identified genes and proteins that could be used
as markers to prevent excess muscle fat accumulation.

Further analysis of the muscle and visceral adipose tissue
transcriptome and/or proteome will provide greater
understanding of the mechanisms that are responsible for
the differences in fat allocation between the two lines and
of the fattening effects of a high energy/high fat diet on
these body compartments.

Methods
Experimental animals and diets
The animals used in this study were the same as those
described in Kolditz et al. [30]. Briefly, two lines of rain-
bow trout, a lean muscle line (L) and a fatty muscle line
(F), were obtained after three generations of divergent
selection for high or low muscle fat content, evaluated
using a non-destructive method (Distell Fish Fatmeter) in
live fish. Triplicate groups of fish of both lines were fed
diets containing either 100 g (LE diet) or 230 g (HE diet)
lipids/kg dry matter, from the first feeding for six months.
Both diets were made from the same fishmeal-based mix-
ture. About 15% fish oil was added to the HE diet to create
a large difference in lipid content between the two diets.
The inclusion of fish oil in the HE diet resulted in an
increase in the overall energy content of the HE diet
(+13%) compared to the LE diet. The main change in
nutrient content involved the lipid fraction (+135%
higher level in the HE diet) with an increase in n-3/n-6
polyunsaturated fatty acids ratio (+67% in the HE diet).
Minor changes occurred in protein and starch content,
both being decreased in the HE diet (-11% and -24%,
respectively) as a consequence of a dilution effect (Table
6). At the end of the 6 month feeding trial, all fish were
anesthetized with 2-phenoxyethanol at the recommended
dose for surgical procedures (0.2 ml/l) 24 hours after the
meal, and individually weighed. Nineteen fish per tank
were sacrificed by a sharp blow on the head. Livers and

Table 6: Chemical composition of experimental diets

Diets LE HE

DM (%) 93.0 93.3
Protein (% DM) 57.6 51.1
Lipid (% DM) 9.8 23.1

n-3 FA/n-6 FA 1.5 2.5
Starch (% DM) 12.1 9.2
Energy (kJ/g DM) 21.0 23.8

DM, Dry Matter; FA, Fatty acids
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viscera were weighed in order to calculate the hepato-
somatic index (HSI (%) = [100 × (liver weight/body
weight)]), and the viscero-somatic index (VSI (%) = [100
× (total viscera weight/body weight)]). Fillets from the left
side of the fish were kept after trimming and skin removal
as samples for analysis of lipid content. The livers of three
fish per tank were sampled under RNAse-free conditions
to perform gene and protein expression analysis. All the
tissue samples were frozen in liquid nitrogen and stored
at -80°C until analysis. The experiment was conducted
according to the National Guidelines for Animal Care of the
French Ministry of Research.

RNA extraction
The RNA extracts used for the present microarray and real
time PCR analyses were the same as used by Kolditz et al.
[30]. Total RNA was extracted from 9 individual livers per
experimental condition using the TRIzol reagent method
(Invitrogen, Carlsbad, CA, USA). Total RNA was quanti-
fied using spectrophotometry based on absorbance at 260
nm, and integrity was ascertained using the Agilent 2100
Bioanalyzer (Agilent Technologies, Kista, Sweden).

cDNA microarray production
Nylon microarrays were obtained from the INRA-GADIE
Biological Resources Center (Jouy-en-Josas, France) [48].
The microarrays contained 9023 distinct rainbow trout
cDNAs originating from a normalized multi-tissue library
[49]. Positive (luciferase) and negative (water) controls
were also spotted on each microarray. This rainbow trout
generic array was deposited in the Gene Expression Omni-
bus (GEO) database (Platform# GPL3650) [50].

Microarray hybridization
Six hepatic RNA samples out of the 9 that were extracted
from each experimental condition were randomly chosen
and used for microarray hybridization at the INRA
UMR1067 transcriptome facility (St-Pée-sur-Nivelle,
France). A first hybridization was performed at 42°C for
48 h using a 33P-labelled oligonucleotide (TAATACGACT-
CACTATAGGG, sequence which is present at the extrem-
ity of each PCR product) to monitor the amount of cDNA
in each spot. After stripping (3 hours 68°C, 0.1× SSC,
0.2% SDS), arrays were prehybridized for 1 h at 42°C in
hybridization solution (5× Denhardt's, 5× SSC, 0.5%
SDS). Labelled cDNAs were prepared from 3 μg of RNA by
simultaneous reverse transcription and labelling for 1
hour at 42°C in the presence of 30 μCi [alpha-33P] dCTP,
0.6 μl 120 μM cold dCTP, 0.6 μl 20 mM dATP, dTTP,
dGTP and 200 units SuperScript™ III Reverse Transcriptase
(Invitrogen, Carlsbad, CA, USA) in 30 μL final volume.
RNA was degraded by treatment at 68°C for 30 min with
1 μl 10% SDS, 1 μl 0.5 M EDTA and 3 μl 3 M NaOH, and
then equilibrated at room temperature for 15 min. Neu-
tralization was done by adding 10 μl 1 M Tris-HCl plus 3

μl 2N HCl. 2 μg of PolydA 80 mers were then added to the
solution to saturate polyA tails. Arrays were incubated
with the corresponding denatured labelled cDNAs for 48
h at 65°C in hybridization solution. After 3 washes (1
hours 68°C, 0.1× SSC 0.2% SDS), arrays were exposed 60
hours to phosphor-imaging plates before scanning using
a FUJI BAS 5000.

Microarray signal processing
Signal intensities were quantified using AGScan software
[51], and normalization was performed using BASE soft-
ware (BioArray Software Environnement), a MIAME-com-
pliant database available at the bioinformatics facility
SIGENAE [52]. Spots with an oligonucleotide signal lower
than three times the background level were excluded from
the analysis. After this filtering step, signal processing was
performed using the vector oligonucleotide data to correct
each spot signal according to the actual amount of DNA
present in each spot. After correction, the signal was nor-
malized by dividing each gene expression value by the
median value of the array and then log transformed.
Microarray data from this study have been deposited in
the GEO database (Series# GSE12031) [50].

Statistical analysis of microarray data
A total of 7740 clones out of 9023 (86%) passed through
the background filter and were kept for further analysis.
To evaluate potential interactions of diet and genotype,
variations in gene expression were analyzed by two-way
ANOVA (p < 0.01) for each gene, using Tiger TMEV 3.1
software [53], with dietary treatment and genotype as
independent variables. When interactions were signifi-
cant, means were compared using the Student Newman
Keuls test. Analysis of the global effect of each mean factor
(diet or genotype) was complemented by a two class
unpaired comparison of Significance Analysis of Microar-
ray (SAM) [54] using the Microsoft Excel software. The
SAM analyses were performed on the whole set of data
using different FDR cut offs (from 0 to 25% estimated
false positives) on the following group comparisons: 1)
HE vs LE, whatever the line 2) L vs F, whatever the diet. We
chose a moderate FDR cut off of 0.15 that allow sufficient
power while keeping the estimated number of false posi-
tives acceptable. Only transcripts concordantly identified
by both statistical approaches were considered in the
present study to assess the global effect of the diet on one
hand, of the genotype on the other hand. Their expression
ratios were calculated as 10log(A)-log(B), A and B being
respectively the mean expression value of HE and LE cal-
culated within each line, or F and L, calculated within
each dietary group.

Data mining
Rainbow trout sequences originating from INRA AGENAE
[55] and USDA [56] EST sequencing programs were used
Page 12 of 16
(page number not for citation purposes)



BMC Genomics 2008, 9:506 http://www.biomedcentral.com/1471-2164/9/506
to generate publicly available contigs. The 8th version
(Om.8, released January 2006) was used for BlastX [57]
comparison against the Swiss-Prot database (January
2006) [58]. This was performed automatically for each
EST spotted onto the membrane and used to annotate the
9023 clones of the microarray. For all genes identified as
differentially abundant in the transcriptome analysis,
ontologies were obtained using the GoMiner software
[59] and complemented when necessary with informa-
tion from the literature. When feasible, functional catego-
ries were allocated as they related to liver biology.

Gene expression analysis: qRT-PCR
Nine individual samples per experimental condition were
used as biological replicates, including the six samples
used for microarray hybridization. Real-time PCR meas-
urements were performed as described in Kolditz et al.
[30] on a set of genes selected for each category of effects
observed (dietary effect alone, selection effect alone, die-
tary effect + selection effect, line/diet interaction). The
Genbank accession numbers, the sequences of the for-
ward and reverse primers and the corresponding anneal-
ing temperature used for each gene tested for its
expression are described in Additional file 5. Relative
quantification of the target gene transcript with ef1α refer-
ence gene transcript [60] was made following the method
described by Pfaffl [61] using the equation 1. The effect of
dietary treatment, lines and line/diet interaction on real-
time PCR data were tested using the statistical software
SAS® by means of a two-way ANOVA. Differences were
considered significant when the probability level was <
0.05. When interactions were significant, means were
compared using the Student-Newman-Keuls test.

Protein extraction
Five individual liver samples for each experimental condi-
tion were used for proteome analyses. They were ran-
domly chosen among the 6 animals per condition used
for microarray analysis. Samples (100 mg) of frozen tissue
were homogenized in lysis buffer (8 M urea, 4% (w/v)
CHAPS, 40 mM Tris-HCl, 1 mM EDTA, 50 mM DTT, 1
mM AEBSF, 10 μM E-64) at room temperature, using an
Ultra-Turrax homogenizer. Following homogenization,
the tissue lysates were first centrifugated at 15,000 g for 30
min at 18°C, and subsequent supernatants were then cen-
trifugated at 105,000 g for 1 hour at 18°C to remove any
insoluble particles. The supernatant was then added to
1% (w/v) IPG buffer pH 3–10 NL (Amersham Bio-
sciences) and stored at 70°C until gel electrophoresis was
performed.

Two-dimensional polyacrylamide gel electrophoresis
Gels were made in triplicate for each sample. Samples
(150 μg total proteins) were diluted to 450 μL with
DeStreak solution supplemented with 0.5% IPG buffer
pH 3–10 NL (Amersham Biosciences). After incubation

for 1 hour at room temperature, samples were loaded
onto a 24 cm nonlinear immobiline dry strip, pH range
3–10 (IPG drystrips 3–10 NL, 24 cm; Amersham Bio-
sciences). Isoelectric focusing (IEF) was performed using
an IPGphor IEF system (Amersham Biosciences). After
active in-gel sample rehydration, carried out at 30V over
12 hours, proteins were focused using five phases of
stepped voltages from 200 to 8000 V, with total focusing
of 78,810 Vh (all stages at 2 mA and 5 W). The strips were
then equilibrated twice for 15 min with gentle shaking in
equilibration solution containing 6 M urea, 50 mM Tris-
HCl buffer, 30% glycerol, 2% SDS. DTT (65 mM) was
added to the first equilibration solution in order to reduce
disulfide bridges. Iodoacetamide (2.5%) and 0.5%
bromophenol blue were added to the second solution.
SDS-PAGE was then carried out using an Ettan Dalt6 unit
(Amersham Biosciences). The IPG strip was laid onto a
12.5% constant concentration polyacrylamide slab gel
(24 × 18 cm). Running was conducted using a two-step
program, with 2.5 W/gel for 40 min, and then increased
to 17 W/gel for 4 hours. For subsequent image analysis,
fixed 2-D gels were silver-stained as described by Heuke-
shoven and Dernick [62]. Molecular masses of the pro-
teins were determined by coelectrophoresis with standard
protein markers. Isoelectric points were determined
according to the IPG strip manufacturer's specifications.

Analysis of 2D gels
The gels were scanned at a resolution of 200 dpi using an
ImageScanner apparatus (GE Healthcare) and stored as
TIF files. Subsequent analysis of the gel images was per-
formed using the software package Image Master 2D Plat-
inum Version 5.0 (Amersham Biosciences). Protein spots
were detected using an automated procedure from the
software combined with manual editing to remove arte-
facts. A reference gel was developed using 200 μg of total
protein from a pool of all sample protein extracts in order
to represent all the proteins they expressed, and against
which all the remaining gels were matched using standard
routines from the software. After the matching procedure,
all protein spots were assigned a spot number from the
reference gel. Individual protein spot abundance was
determined by the area of the spot, multiplied by the den-
sity and referred to as the volume. The spot volumes were
normalized to the total volume of all proteins detected on
each gel. The normalized spot volume is described as the
abundance of a particular protein spot. Data were subse-
quently analyzed using two-way ANOVA. The level of sig-
nificance of difference was set at P < 0.05.

Protein identification by peptide mass mapping
For protein identification, proteins resolved by 2D-PAGE
were detected using silver staining compatible with pro-
tein mass spectrometry identification, as described by Yan
et al. [63] and Coomassie Blue G250 [64]. Sample loading
was increased from 150 μg to 600 μg. Proteins of interest
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were excised from the stained gel and subjected to in-gel
trypsin digestion, as described by Com et al. [65]. The
eluted peptides were subsequently analyzed by mass fin-
gerprinting in a Matrix-assisted laser desorption time of
flight (MALDI-TOF) mass spectrometer (Bruker Dalton-
ics, Bremen, Germany). For protein identification, trypsin
peptide masses were used to search the National Center
for Biotechnology Information (NCBI) non-redundant
sequences database using the MASCOT search program
[66]. To utilize the EST nucleotide sequences now availa-
ble for salmonid fish (108,000 sequences), the trypsin
digest products were searched for in a database containing
all fish cDNA sequences available (last update September
2006).
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