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Abstract
Background: Understanding evolutionary processes that drive genome reduction requires
determining the tempo (rate) and the mode (size and types of deletions) of gene losses. In this
study, we analysed five endosymbiotic genome sequences of the gamma-proteobacteria (three
different Buchnera aphidicola strains, Wigglesworthia glossinidia, Blochmannia floridanus) to test if gene
loss could be driven by the selective importance of genes. We used a parsimony method to
reconstruct a minimal ancestral genome of insect endosymbionts and quantified gene loss along the
branches of the phylogenetic tree. To evaluate the selective or functional importance of genes, we
used a parameter that measures the level of adaptive codon bias in E. coli (i.e. codon adaptive index,
or CAI), and also estimates of evolutionary rates (Ka) between pairs of orthologs either in free-
living bacteria or in pairs of symbionts.

Results: Our results demonstrate that genes lost in the early stages of symbiosis were on average
less selectively constrained than genes conserved in any of the extant symbiotic strains studied.
These results also extend to more recent events of gene losses (i.e. among Buchnera strains) that
still tend to concentrate on genes with low adaptive bias in E. coli and high evolutionary rates both
in free-living and in symbiotic lineages. In addition, we analyzed the physical organization of gene
losses for early steps of symbiosis acquisition under the hypothesis of a common origin of different
symbioses. In contrast with previous findings we show that gene losses mostly occurred through
loss of rather small blocks and mostly in syntenic regions between at least one of the symbionts
and present-day E. coli.

Conclusion: At both ancient and recent stages of symbiosis evolution, gene loss was at least
partially influenced by selection, highly conserved genes being retained more readily than lowly
conserved genes: although losses might result from drift due to the bottlenecking of
endosymbiontic populations, we demonstrated that purifying selection also acted by retaining genes
of greater selective importance.
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Background
The smallest genomes belong to bacterial obligate patho-
gens or intracellular symbionts of eukaryotes (e.g., Molli-
cutes, Rickettsiae, Spirochetes, Chlamydiae, and insect-
associated gamma-proteobacteria). Phylogenetic analyses
indicate that their small genome size is a derived state
accompanying the transition to their specialized intracel-
lular lifestyle. In other words, all these microbes certainly
evolved from ancestors with larger genomes. One of the
smallest genome described to date belongs to B. aphidi-
cola, gamma-proteobacteria that maintain mutualistic
endosymbiotic associations with aphids [1]. Gamma-pro-
teobacteria include other obligate partners of insects and
command special attention for several reasons: first,
genome reduction in this group has been extreme, yield-
ing a ten fold range of genome sizes; second, free-living
relatives of these symbionts include the model organism
Escherichia coli (E. coli) for which extensive genetic infor-
mation is available; third, gene order is extremely well
conserved between symbionts of the same genus [2,3] and
rather well conserved over genome fragments between
symbionts and free-living relatives [4]. This allows the
reconstruction of gene loss events at different evolution-
ary steps of symbiosis. The first genome sequence of B.
aphidicola BAp [5] initiated comparative studies shedding
light on the process of genome reduction in this endosym-
biont [6,7] but the recent sequencing of two additional B.
aphidicola strains [2,8] and of three endosymbionts closely
related to Buchnera, i.e. Blochmannia floridanus and Bloch-
mannia pennsylvanicus (the endosymbionts of carpenter
ants, respectively Camponotus floridanus and Camponotus
pennsylvanicus; [3,9]), and Wigglesworthia glossinidia (the
endosymbiont of the tsétsé fly, Glossina brevipalpis; [10])
considerably increase the scope for comparative analysis
to reveal evolutionary patterns of gene loss. Moreover, it
provides the opportunity for assessing the generality of
the process of genome size reduction in three kinds of
symbiotic lineages that have different gene content
shaped by specific nutritional needs of their insect hosts.

The identification of long term evolutionary forces that
drive genome shrinkage in endosymbionts is much
debated. The trend toward large scale gene loss could
reflect the inefficiency of natural selection at maintaining
genes in the genomes of these cytoplasmically inherited
bacteria. Indeed, the vertical partitioning of symbiotic lin-
eages among hosts and their reduced population sizes
strongly favour drift, a mechanism proposed to be respon-
sible for the accumulation of mildly deleterious muta-
tions in symbiotic genomes [6,11]. The hypothesis of an
increased fixation of deleterious mutations is supported
by several lines of evidence: the general acceleration of
evolutionary rates and massive AT enrichment [[12,13];
but [14] for a selectionist interpretation], the increased
proportion of non-synonymous mutations [12], the loss

of adaptive codon bias [15] and the very low level of
intraspecific polymorphism observed in bacterial popula-
tions [16,17]. Because the host environment provides
metabolites, many bacterial loci would become redun-
dant thereby accumulating slightly deleterious mutations
by a process known as Muller's ratchet, which eventually
could lead to the functional inactivation of non essential
genes. In fact, the DNA of a pseudogene may be com-
pletely deleted from the B. aphidicola genome in 40 to 60
My [18]. Even some apparently beneficial genes (DNA
repair, transcriptional regulation and replication initia-
tion mechanisms) have been lost confirming that drift
may play an important role in genome reduction [5,9,19].

If the ultimate forces leading to genome shrinkage in
endosymbionts are still much debated, the proximal
mechanisms responsible for DNA removal seem to be bet-
ter understood [20,21]. In particular, it has been suggested
that DNA removal occurs because of mutational bias
favouring deletions over insertions in bacterial genomes
[22]. This process which is apparently universal in
prokaryotes could account for the scarcity of non coding
DNA in most bacterial lineages. The loss of genes involved
in DNA repair which are otherwise broadly conserved in
bacteria might explain why deletion biases are not "cor-
rected" and eventually lead to gene degradation and loss.
Strikingly, such losses are a common characteristic of
Buchnera, Wigglesworthia and Blochmannia, but also of
Sitophilus orizae primary endosymbiont (a younger symbi-
ont with a larger genome, where two of such genes are
inactivated [23]) and even of free-living marine bacteria
recently engaged in genome reduction [24].  Chromo-
somal rearrangement which can lead to large deletion
events as also contributes to DNA removal. Finally, obli-
gate bacterial mutualists have lost the ability to incorpo-
rate foreign DNA which grants them a "one-way ticket to
genome shrinkage".

Understanding the evolutionary processes that drive
genome reduction requires determining the tempo (rate)
and the mode (size and types of deletions) of gene losses.
Detailed information is available on recent events of gene
loss from comparing closely related symbionts: for exam-
ple extreme genome stasis (conservation of gene order
and gene repertoires) has been shown for three B. aphidi-
cola genomes [2,8] with an estimated tempo of gene loss
in the range of 2–3 Myr per gene. Similar patterns emerge
for Blochmannia [3], where a comparison between two
species revealed a limited number of gene losses scattered
along the genome with different rates for the two species
(ca 0.6 Myr per gene for B. floridanus and ca 6 Myr per gene
for B. penssylvanicus). These findings of gradual gene loss
with some degree of specific variation is compatible with
a phenomenon of drift, as seen above, mitigated by selec-
tive processes, since gene loss affects differential gene
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functions for different symbionts (e.g. B. aphidicola strains
tend to conserve many genes involved in amino acid syn-
thesis, while Blochmannia species tend to conserve a dis-
proportionate number of genes involved in synthesis of
cofactors).

In contrast, less is known about the rhythm and types of
gene loss that occurred in the early steps of the acquisition
of symbiosis. This is particularly critical, because gene
losses that occurred in the ancestor of all B. aphidicola
strains or Blochmannia species respectively were massive
(estimated to >1000 genes lost [25]). Two recent compar-
ative studies which reconstructed the hypothetical ances-
tral genome of B. aphidicola BAp and its free-living
relatives have reached diverging conclusions on the organ-
isation of gene losses. Moran and Mira [6] found that
early gene loss involved deletions of large sets of contigu-
ous genes including loci with unrelated functions, possi-
bly due to recombination at repeated sequences [2,26].
Such massive and non-oriented process would be the sign
of strong genetic drift and weakened selection in the early
stages of endosymbiosis [6,11,27,28]. In contrast, Silva et
al. [25] who focused on blocks of conserved synteny,
found that genome shrinkage arose through multiple
events of gene disintegration dispersed over the whole
genome, which would be better explained by selection
acting on individual genes even in these early steps. Even
if larger deletions could not be ruled out, these authors
insisted on the importance of selection for explaining the
genome shrinkage observed in endosymbionts. Interest-
ingly, recent genomic and experimental data support both
scenarios: on the one hand, the presence of hundreds of
pseudogenes scattered around the genomes of some path-
ogens recently sequenced [29-32] support the scenario
whereby genome reduction occurs by slow erosion of
individual genes. On the other hand, Nilsson et al. [33]
have nicely showed that, even on a short evolutionary
time scale, the disappearance of large stretches of DNA
can be frequent in bacteria establishing in a constant envi-
ronment. This experimental result suggests that large-scale
deletions may occurred during the initial stages of
genome reduction [33].

Characterizing the final set of genes of reduced genomes
should help resolve this debate. Genome shrinkage is
largely a lineage-specific process [34]. Indeed, because
evolution is a highly contingent process, it is difficult to
predict the fate of each single lineage. Moreover, succes-
sive losses are not independent events because the loss of
a gene from a genome may influence the types of losses
tolerated in the future. Finally, identical functions can be
achieved by non-orthologous genes in different lineages.
For example, the comparison of genomes of closely
related insect endosymbionts shows that they share only
50% of their protein-coding genes. Although important

functions such as cell division processes, information
storage and processing show a high conservation of their
gene repertoires, remarkable differences exist for those
genes that encode proteins involved in the cell envelope,
flagellum biosynthesis and the metabolism of amino
acids, nucleotides, or coenzymes [9,34]. However, this
does not necessarily mean that gene loss is a completely
random process. In eukaryotes, Krylov et al. [35] recently
investigated the relation between the propensity of a gene
to be lost and its functional importance. Interestingly,
these authors found significant relationships between the
"propensity for gene loss" (PGL) and sequence substitu-
tion rate, gene dispensability, the number of protein inter-
actions and the expression level of the gene. Thus, at least
in eukaryotes, the likelihood of being lost seems to be an
inverse relation of the biological importance of a gene. To
date, this hypothesis has not been tested in prokaryotes,
possibly because it is difficult to disentangle the respective
contribution of gene loss and horizontal gene transfers in
the evolution of bacterial genome size [36]. However, we
propose that the well characterized group of insect endo-
symbionts provides a good model system for investigating
the relative importance of drift and purifying selection in
the process of genome shrinkage.

In this study, we used five available endosymbiotic
genome sequences of the gamma-proteobacteria – B.
aphidicola BAp, B. aphidicola BSg, B. aphidicola BBp, Wig-
glesworthia glossinidia (Wgl) and Blochmannia floridanus
(Bfl) – to test whether gene loss was related to the selective
importance of genes. We used a parsimony method to
reconstruct a minimal ancestral genome of insect endo-
symbionts and quantified gene loss along the branches of
the phylogenetic tree. This allowed us to assess different
loss events at different evolutionary scales and to estimate
the likelihood that a gene be lost during the evolution of
symbiosis. To evaluate the selective or functional impor-
tance of genes, we used a parameter that measures the
level of adaptive codon bias in E. coli (i.e. codon adaptive
index, or CAI), and also estimates of evolutionary rates
(Ka) between either pairs of orthologs in free-living bacte-
ria or in pairs of symbionts. These parameters are expected
to be correlated with the selective pressure on the genes.
We also studied the distribution of deletion sizes (in
number of loci) in order to determine whether they
occurred by small steps or through large deletions of mul-
tiple loci at different positions on the phylogenetic tree
rooted at the last common ancestor of free living bacteria
and modern endosymbionts.

Results and discussion
Single or multiple origin(s) of endosymbiosis?
To place each gene loss event in an evolutionary context,
we needed a reliable species tree onto which gene losses
could be mapped. Our most parsimonious phylogenetic
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reconstruction yielded a monophyletic group containing
the five symbiont lineages (Figure 1). The alternative tree
topologies, in particular the scenario supporting a non-
sister origin of these endosymbionts, showed significantly
lower likelihoods, which confirm that the symbiosis
between these five endosymbionts and their hosts
resulted from an infection from a single bacterial strain.
This does not mean that a single ancestral infection
occurred that would have been followed by cospeciation
of hosts and their symbionts. Rather, we may assume that
a same species of bacteria tended to cohabit with species
of insects belonging to different orders, and managed sev-
eral times to establish symbiosis.

It is worth noting that the same result was recently found
in at least three other studies, applying different methods
on a different set of orthologous protein-coding genes
[9,37,38]. In particular, Lerat et al. [38] insisted on the
complete lack of conflict between 205 orthologous genes
they chose resulting in a fully resolved phylogeny where B.
aphidicola BAp and Wiggleworthia grouped together. In this
context, we believe that the monophyletic topology of
these five endosymbionts is a good "working hypothesis"
although our phylogenomic approach precludes classical
bootstrapping testing of the robustness of the tree.

However, Herbeck et al. [39] using a similar approach
with more taxa but only two genes, the conserved groEL
and 16S rRNA, proposed a different scenario. They found

various phylogenies that group Blochmannia and Wiggles-
worthia but separately from Buchnera, which leaded them
to conclude that Blochmannia and Wigglesworthia repre-
sent an origin of primary endosymbiosis that is independ-
ent from that of Buchnera.  Another recent study also cast
in doubt the monophyletic character of the three endo-
symbiotic lineages [4]. These authors found a strong dis-
cordance between a phylogeny based on concatenated
conserved amino acid sequences and reconstructions
based on gene order. The former supported a single origin,
while the latter placed Blochmannia as closer relative to E.
coli than Yersinia and any other symbiotic lineage. This
comes from the fact that synteny is high between Bloch-
mannia and E. coli [3]. This result could still be compatible
with a single origin for endosymbionts, provided that dif-
ferent levels of gene rearrangements occur among differ-
ent lineages.

Although we cannot definitively conclude on the single/
multiple origin of AT-rich endosymbionts, we have
retained the monophyly of endosymbionts as a working
hypothesis since it has been reached several times by dif-
ferent phylogenomic approaches, including our.

Gene loss and CAI of E. coli
At all evolutionary scales low CAI genes were more readily
lost than high CAI genes (Figure 2). Significantly (U-test,
P < 0.001), gene loss was particularly biased towards low
CAI genes early in the acquisition of symbiosis, since
more than 80% of the sequences with CAI <0.25 (in E.
coli) were lost between LCA1 (last common ancestor of
endosymbionts and their free-living relatives) and LCA2
(last common ancestor of endosymbionts), representing
123 genes out of 158, while fewer than 20% of sequences
with CAI >0.55 were lost, representing 22 genes out of
166. This result is not dependent on the hypothesis of
common origin of all endosymbionts. Indeed, the pattern
of loss is similar between LCA1 and Blochmannia, LCA1
and Wigglesworthia, LCA1 and the common ancestor of B.
aphidicola strains (LCA3) or LCA1 and LCA2 (Figures 2a,
2b).

The proportion of genes lost in each CAI class within the
symbiont clade did not exceed 60% (Figure 2c), probably
because most low CAI genes had already been lost. How-
ever, even within the symbionts, three times as many low
CAI than high CAI genes were lost (Figures 2c, 2d). Con-
sequently, we find a significant increase in the mean CAI
of lost genes along the tree which is also illustrated by the
negative correlation between the propensity of a gene
(PGL) and the CAI (Table 1).

Gene loss and substitution rates
The pairwise estimates of non-synonymous substitution
rates between two free-living species pairs (Eco-Stm, Eco-

Phylogenetic tree based on an alignment of 61 concatenated conserved protein-coding genes involved in translationFigure 1
Phylogenetic tree based on an alignment of 61 concatenated 
conserved protein-coding genes involved in translation. DNA 
sequences were aligned using a protein alignment from clus-
talw, and then trimmed with Gblocks and limited to the first 
two codon positions resulting in 19143 nucleotides. The tree 
was reconstructed with NHML version 3 (Galtier 1998). LCA 
= Last Common Ancestor; Numbers in bold at the nodes 
indicate the number of protein coding genes (CDS) present 
at these steps. Numbers below the branches indicates the 
number of lost CDS since the last node. In front of each 
endosymbiotic lineage were indicated the chromosome size, 
the number of CDS and that of pseudogenes (assimilated to 
gene losses).

Chromosome      #CDS     #pseudogenes
(bp)

Vibrio cholerae

Yersinia pestis CO92 

Salmonella thyphimurium

Escherichia coli K12 

W. glossinidia 697,724 484 8

Bl. floridanus 705,557 476 6

LCA1
1983

LCA2
865

1118
96

282 

274 

Bu. aphidicola BBp 615,980 492 9

Bu. aphidicola BSg 641,454 544 33

Bu. aphidicola BAp 640,681 556 12

LCA3
588

24

36

8

LCA4
758

277

107 
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Ype) were averaged for three different categories of genes:
(A) Genes lost during the transition to symbiosis, i.e.
between LCA1 and LCA2; (B) Genes present in the com-

mon ancestor of all symbionts but lost in some symbiotic
lineages; (C) Genes retained in all endosymbionts (Fig-
ures 3, 4). We found a significant (U-test, P < 0.01) decline

Table 1: Correlations coefficients (R) between Propensity of Gene Loss (PGL) and Codon Adaptive Index (CAI) or non-synonymous 
substitution rates (Ka). The analysis is restricted to the genes present in the LCA2 that have been lost at least one time during 
symbiosis (Figure 3). All coefficients are highly significant (non parametric correlation test of Spearman; P < 0.005). N: number of 
genes.

N R

CAI 1983 -0.435
Ka

Eco-Ype 1363 0.355
Eco-Stm 1949 0.248
Wgl-Bfl 262 0.244
BAp-BSg 516 0.147
BAp-BBp 286 0.178
BSg-BBp 308 0.209

Relationship between frequency of gene loss in endosymbionts and adaptive codon bias (CAI) of the E. coli ortholog at different depths of the treeFigure 2
Relationship between frequency of gene loss in endosymbionts and adaptive codon bias (CAI) of the E. coli ortholog at different 
depths of the tree. y-axis: percentages of genes lost at least on one occasion between different nodes (or a node and a tip), x-
axis: CAI classes of E. coli K12.
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of Ka from (A) to (C) indicating that genes lost later were
more conserved, hence probably of greater selective
importance. This result demonstrates that the selective
importance of a gene in free-living bacteria predicts its
propensity of being lost in endosymbionts.

We also examined the non-synonymous substitution rates
estimated for four endosymbiotic species pairs (BAp-BSg,
BAp-BBp, BSg-BBp, Bfl-Wgl): for all comparisons tested,
we found a similar evolutionary signal within the endo-
symbiont clade. Genes lost at least once within endosym-
bionts (B) were significantly less conserved than genes
never lost (C), suggesting once again that those genes that
were lost were of less essential function (Figure 5).

In consequence, we found significant positive correlations
between PGL and the non-synonymous substitution rate
for the five pairwise comparisons conducted (Table 1).

Genes lost over the course of symbiosis evolution were
faster evolving than average (in symbiont and free living
bacteria).

Interestingly, CAI was negatively correlated with non-syn-
onymous substitution rates both in symbiotic bacteria
(four different comparisons tested) and free-living bacte-
ria (two comparisons tested, Table 2). It is noteworthy
that greater conservation of high expression genes at non
synonymous site has been recently described in endosym-
bionts [40]. These results and ours confirms, also for
prokaryotes, previous findings that highly expressed genes
appear to evolve slowly [35,41].

Why some genes are retained and some are lost?
We have tried to determine the extent to which gene loss
is predictable, by evaluating the correlations between
some evolutionary parameters and the propensity of a
gene to be lost. We showed that losses are concentrated on
the genes that are evolutionary less constrained and of
probably less selective importance (genes characterized by
low adaptive codon bias in E. coli and high evolutionary
rates in free-living and symbiotic species). The bias
between propensities of loss for different categories of
genes (genes of different CAI in E. coli and of different
non-synonymous substitution rates) is particularly strong
at the initial steps of the acquisition of symbiosis. We
indeed demonstrated that at all stages of symbiosis,
genome reduction was specifically targeted to genes of
lesser selective importance, or less essential for the sur-
vival of the host/symbiont couple. It also is significant
that symbionts retain some informative signal about the
propensity of gene loss across subsequent diversification
in their hosts: indeed, gene losses in later stages concern
primarily sequences characterized by relatively high evo-
lutionary rates in other symbiotic lineages. Late gene
losses also primarily affect genes characterized by low CAI
in E. coli. All this suggests that gene loss, even though gov-
erned by drift, was also partially influenced by selection
both at ancient and recent stages of symbiosis evolution.

There is no a priori reason why non-synonymous substi-
tution rate should be correlated with the propensity of a
gene to be lost. Indeed, these two variables are measures
of evolutionary conservation that capture substantially
different aspects of evolution and one can imagine that
functional constraints could be relaxed on a protein
achieving an important function in the cell. Here, we have
showed that PGL, sequence evolution rate and CAI are
interdependent as already found in eukaryotes [35]. Thus,
we believe that the large prokaryotic genomes already
available combined with data on gene dispensability,
expression, and protein interactivity, open the possibility
to new comparative studies testing the prevailing forces
driving genome reduction.

Non-synonymous substitution rates calculated between E. coli and two free living bacteria (S. typhimurium and Y. pestis) for each loss scenario (A, B, C correspond to gene loss in all, some or none of the symbionts respectively)Figure 4
Non-synonymous substitution rates calculated between E. 
coli and two free living bacteria (S. typhimurium and Y. pestis) 
for each loss scenario (A, B, C correspond to gene loss in all, 
some or none of the symbionts respectively). Global signifi-
cance of differences between medians was tested by Mann-
Whitney tests.
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Gene present in LCA2 but lost in some of the symbiotic line-
ages – here is a particular example were a gene has been lost 
independently in BBp, Wgl and Bfl (C) Gene kept in all endo-
symbionts. Solid lines represent the presence and dashed 
lines the absence of a gene.
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A majority of deletions involving few genes in syntenic 
fragments
We reconstructed loss events between the last common
ancestor of free living and symbiotic bacteria (LCA1) and
the last common ancestor of B. aphidicola strains (LCA3)
or between LCA1 and the supposed common ancestor of
symbiotic bacteria (LCA2). Figure 6 gives one example of
our approach, where a deletion between LCA1 and B.
aphidicola BAp is re-analysed after considering gene con-
tent of other B. aphidicola strains (i.e. in the LCA1 to LCA3
reconstruction of gene losses) or of other symbionts, Bfl
and Wgl (i.e. in the LCA1 to LCA2 reconstruction). Using
information from the two other B. aphidicola strains made
little difference given the small number of additional
genes they contributed to the reconstruction of LCA3. The
common ancestor of the B. aphidicola strains possessed
only 32 additional genes not found in BAp. Also, in both
cases, and as found already by Moran & Mira (2001), a
large majority of the losses were in non-syntenic frag-

ments. In sharp contrast, and compared to previous stud-
ies [6,7], many fewer genes were lost in the transition
from LCA1 to LCA2 because Wgl and Bfl possess 280
genes apparently absent from LCA3. Besides, this step
showed a complete inversion of the proportion of genes
lost in syntenic vs non-syntenic fragments. This is mainly
caused by the fact that gene order was more conserved
between E. coli and Bfl than in any other comparison as
already described by Belda et al. (2005) and Degnan et al.
(2005). Therefore, adding Bfl in the analysis allows the re-
establishment of synteny for many fragments (Figure 6).

We also compared the size distribution (in number of
loci) of losses for the LCA1–LCA3 and LCA1–LCA2 steps
for both syntenic and non-syntenic losses (Figure 7).
Because a greater fraction of gene losses appeared to be in
synteny for the LCA1–LCA2 comparison, most classes of
deletion sizes were more represented compared to the
LCA1–LCA3 case. However, this was not seen for "large"

Non-synonymous substitution rates (Ka) calculated between pairs of endosymbionts for two different gene loss scenarios across all endosymbionts (B) Genes lost at least once, in some other symbiotic lineage; (C) Genes kept in all endosymbiontsFigure 5
Non-synonymous substitution rates (Ka) calculated between pairs of endosymbionts for two different gene loss scenarios 
across all endosymbionts (B) Genes lost at least once, in some other symbiotic lineage; (C) Genes kept in all endosymbionts.
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deletions (10 genes or above) since the LCA1–LCA2 anal-
ysis shows only 5 such instances (versus 8). The curves for
non-syntenic losses showed an inverse pattern with
respect to quantities (fewer non-syntenic losses in the
LCA1–LCA2 comparison). But again, the decrease was
particularly marked for large deletion size classes: if we
actually focus on deletions of 10 genes or above, only 14
remain in the LCA1–LCA2 comparison (36 for LCA1–
LCA3). Considering the information from all the symbi-
onts "breaks" many apparently long non-syntenic
stretches of genes lost into shorter stretches (N = 340).
Reconstructing an hypothetical genome ancestral to dif-
ferent symbionts also led to reduced total number of gene
losses, and to smaller blocks of deleted genes. Previous
conclusions based on a comparison between a single B.
aphidicola genome and E. coli found on the contrary that
early gene loss was supposed to result from large and ran-
dom deletions [6,11,28]. If the hypothesis of a common
origin for these symbioses is accepted, this shows that
reductive evolution was from the beginning most often
the result of small deletions involving one to five or six
gene.

To test if deletions were random or clustered, we analysed
the distribution of syntenic losses between LCA1 and
LCA2 (Figure 8). In the former case, deletion sizes should
follow a Pascal (geometric) law of mean P equal to the
proportion of genes lost (P = 0.438). In the second case,
we should expect long stretches of contiguous genes from
LCA1 lost or maintained in the symbionts. We considered
the events of two adjacent genes from LCA1 conserved in
LCA2 which constitute the class "zero" of deletion sizes,
and found that observed and expected curves were signif-
icantly different (P < 0.0001). This was due in part to an
excess of "large" deletions of 10 genes or above but even
more to an excess of the "zero" class. The fact that more
regions with contiguous genes were conserved than
expected by chance could be explained by the effect of the
level of codon bias (CAI) on the probability of loss (as
shown above), given that genes with high or low CAI
respectively tend to be clustered in the E. coli genome (for
example ribosomal genes, with high CAI, are organised in
clusters). We tested this effect by using a subset of the

Distribution of deletion sizes in syntenic (upper graph) and non-syntenic (lower graph) fragments between LCA1 and LCA3 (filled bars) or between LCA1 and LCA2 (open bars)Figure 7
Distribution of deletion sizes in syntenic (upper graph) and 
non-syntenic (lower graph) fragments between LCA1 and 
LCA3 (filled bars) or between LCA1 and LCA2 (open bars).
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Determination of synteny and deletion events between three 
extant symbionts (BAp, BBp, Bfl) and their reconstructed 
free-living ancestor (LCA1), through "alignment" of ortholo-
gous genes ordered in each genome. Shaded arrows repre-
sent genes from the chosen fragment of LCA1 and still 
present in symbionts (open symbols for genes in symbionts 
represent genes from LCA1 present in another fragment) 
while genes of this fragment that were lost are represented 
by dotted arrows. The numbers below genes in symbionts 
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approach in three steps: alignment between BAp and LCA1 
suggest a non syntenic deletion of 8 genes. Alignment 
between BBp and LCA1 suggest a non syntenic deletion of 7 
genes. Alignment between Bfl and LCA1 finally suggest a syn-
tenic deletion of only 1 gene.
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LCA1 genome, composed of the fragments syntenic with
LCA2, and evaluating for that subset the relation between
CAI and the probability of loss. We fitted this curve with a

sigmoid equation of the form 

and simulated losses in the LCA1 genome that followed a
probability function of the CAI of the gene. We averaged
n = 150 simulations to evaluate the distribution of dele-
tion sizes obtained in this way and the mean fraction of
genes lost (P' = 0.432). We then again simulated losses in
the LCA1 genome, assuming a constant probability of loss

for each gene, equal to P'. The resulting differences
between the two hypotheses, i.e. a probability of loss
being either a function of CAI or being constant across the
genomes actually show that considering the effect of CAI
and the clustering of genes with similar CAI does result in
a slight excess of regions without deletions and of regions
with "large" deletions (more than 5 genes, Figure 8,
imbedded diagram). However, these differences are small
when compared to the differences between observed and
expected distributions under a random expectation (Fig-
ure 8), so the clustering of genes with a similar CAI only
explains a small part of the clustering of deletions. Other
reasons may in fact explain that genes were not lost in a
strictly random way throughout the genome: genes are
often in operons, the whole operon being either lost or
conserved altogether. This result on clustering of deletions
is consistent with previous findings [6]; however, in our
case, discrepancies between the observed distribution of
deletions and a "neutral" model of deletions were mostly
seen for blocks of 2–5 genes. These conclusions concern
losses in syntenic fragments (although these could now
represent the majority of losses), and it may still be imag-
ined that a few large blocks were lost in non-syntenic frag-
ments, through processes mostly governed by drift.
Finally, our result are fully consistent with the "domino"
theory of gene extinction in bacterial genomes [42], which
posits than in a first step all genes are under an even threat
to be knocked out by mutations, which results in a second
step by mass decay of depending genes involved in the
same pathway. This would also explain the physical clus-
tering of deletions involving a few genes as found in our
study, while no or few large blocks would be lost.

Validity of the results under alternative phylogenetic 
scenarios
We stress that even under the hypothesis of independent
origins of endosymbionts, our conclusions on the links
between gene dispensability and selective parameters
(CAI, Ka) would be little affected. Indeed, a strong effect
of CAI and Ka on the propensity of gene loss was observed

P CAI
K

a e r CAI
( )

( )
=

+ − −1 1 

Frequency of classes of deletions sizes (in number of genes) between LCA1 and LCA2, for syntenic fragmentsFigure 8
Frequency of classes of deletions sizes (in number of genes) 
between LCA1 and LCA2, for syntenic fragments. Open tri-
angles, observed frequencies. Open squares, expected fre-
quencies if losses were random and deletions sizes followed 
a Pascal (geometric) law of mean P equal to the frequency of 
genes in syntenic fragments actually lost (P = 0.438). Inbed-
ded histogram: i) open bars represent the difference in % 
between observed frequencies and simulated frequencies of 
size classes (averages of n = 150 simulations) for a constant 
probability of loss (H1 hypothesis) ii) open bars represent 
the difference in % between simulated frequencies for a 
probability of loss function of the CAI (H2 hypothesis) and 
for simulated frequencies under H1. The class "zero" corre-
sponds to two adjacent syntenic genes conserved in LCA2 
(i.e. no deletion occurred).
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Table 2: Correlation (R) between CAI and Ka for several pairwise comparisons between free-living and endosymbiotic bacterial 
lineages. All coefficients are highly significant (non parametric correlation test of Spearman; P < 0.005). 

Pairwise comparisons R

Eco-Ype -0.491
Eco-Stm -0.447
Bfl-Wgl -0.374
BAp-BSg -0.361
BAp-BBp -0.387
BSg-BBp -0.400
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even without considering the existence of LCA2 because it
was observed for the losses occurring between LCA1 and
each of the extant endosymbiotic lineages.

In contrast the reconstruction of deletion sizes is more
dependent on the validity of our common ancestry of the
five symbionts studied. Considering the reconstructed
ancestor of the three B. aphidicola strains that are clearly
monophyletic affected only marginally earlier studies
based on single genome [6].

Conclusion
The particular originality of this work compared to that of
precedent studies [6,7] lies in its integration of the infor-
mation on the selective pressures on genes together with
more genome data. The larger genome data set allowed us
to detect and characterize more ancient events of gene loss
by including the reconstructed common ancestors of sym-
biotic lineages. We have shown that genes lost in the early
stages of symbiosis are on average less selectively con-
strained than genes conserved in any of the extant symbi-
otic strains studied. This is shown by significant
differences among the two types of genes of two parame-
ters that can measure selective importance: non-synony-
mous evolutionary rates (in symbionts or in free-living
enterics) and codon bias in E. coli. In addition, our recon-
struction of deeper nodes allowed also a better description
of deletion events at the different steps, in particular of
their size distribution. Under the hypothesis of a common
origin of different symbioses, gene losses would have
been mostly occurring through rather small blocks, and in
syntenic regions between at least one of the symbionts
and present-day E. coli. Our study did not include two
genomes from insect-associated endosymbionts that have
just been completed, Blochmannia pennsylvanicus [3] and
B. aphidicola BCc (host Cinara cedri, available soon). Stud-
ying these genomes will help to better reconstruct recent
gene loss events, which occurred after the divergence of
Blochmannia and B. aphidcola strains respectively. How-
ever, given their small genomes that include very few
genes not already present in other complete sequences,
their inclusion could not significantly change our conclu-
sions on early patterns of gene loss.

The knowledge of more endosymbiotic genomes, particu-
lar of genomes of larger sizes (e.g. Sitophilus oryzae primary
endosymbiont [23] will be of paramount interest for fully
resolving several puzzles that remain to date. It will
indeed provide a more robust phylogenetic scenario of
symbiosis acquisition (in single or multiple events) and a
finer knowledge on the rate and patterns of gene losses,
which will allow disentangling mutational and selective
pressures that modulate genome reduction.

Methods
Genomic sequences
Complete genomes were retrieved from EMBL database:
Escherichia coli K12 (NC_000913), Salmonella typhimurium
LT2 (NC_003197), Vibrio cholerae O1 biovar eltor str.
N16961 (NC_002505, NC_002506), Yersinia pestis
(NC_003143), Buchnera aphidicola of Baizongia pistaciae
(NC_004545), Buchnera aphidicola of Schizaphis graminum
(NC_004061), Buchnera aphidicola of Acyrthosiphon pisum
(NC_002528), Wigglesworthia brevipalpis (NC_004344),
Candidatus Blochmannia floridanus (NC_005061). The
symbiotic strains will be referred as B. aphidicola BAp, B.
aphidicola BSg, B. aphidicola BBp, Wigglesworthia (Wgl) and
Blochmannia (Bfl).

Phylogenetic tree
Phylogenetic reconstruction of trees including endosym-
biotic DNA sequences which are strongly AT-biased and
evolve at relatively high rates is problematic when using
classical models of DNA sequence evolution. To avoid
this pitfall, we used the tree building method imple-
mented in NHML3 which is based on a heterogeneous
model accounting for unequal transition/transversion
rates, unequal evolutionary rates among sequence sites
and unequal base compositions of sequences [43]. Maxi-
mum likelihood inference based on this model was
applied to a trimmed alignment of 61 concatenated con-
served protein-coding genes (19143 nucleotides)
involved in translation. Trimming was done with
GBLOCKS [44] in order to limit the data set to unambig-
uous well conserved parts of the alignments. Only the first
two positions of codons, which are relatively less AT
enriched [15] were retained for phylogenetic analysis.
This yielded a most likely phylogenetic tree that grouped
together the five endosymbiotic lineages (Figure 1) sug-
gesting a unique origin of endosymbionts. As the calcula-
tion time of this phylogenetic method impeded bootstrap
analysis, we decided to test alternative tree topologies, for
example assuming several acquisitions of endosymbiosis.
We also tested slightly different topologies resulting from
the move of Yersinia pestis and Salmonella thyphimurium
along the tree. Loglikelihood differences between all addi-
tional trees and the initial topology were tested using the
loglikelihood ratio tests.

Reconstruction of endosymbiotic ancestors
Because it is difficult to assign orthology for structural
RNA, we excluded from the analysis all non coding genes.
To determine the set of orthologous coding genes between
E. coli K12 and each of the nine bacteria, we performed
reciprocal blasts with a cut off value of 10-4, retaining only
those genes that were best hits in both comparisons.
Applying a parsimony principle, the common ancestor of
all endosymbionts was reconstructed as the sum of the
orthologous coding genes present in at least one endo-
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symbiotic lineage, E. coli and V. cholera. This led to
removal of the few genes that were present in endosymbi-
onts but have no orthologous equivalent in either E. coli
or V. cholera. Pseudogenes of endosymbiotic genomes
were included in the analysis and considered as lost genes.

Finally, this approach allowed the determination of a
minimal free-living ancestor of endosymbionts and of
their free-living relatives (LCA1) comprising 1983 con-
served coding genes that have a low probability of being
acquired by lateral gene transfer (LGT). Indeed, LGT gen-
erally involves uptake, from distantly related bacteria or
phages [45], of genes that are absent from related bacteria.
Since our method for reconstructing LCA1 was very con-
servative, we can speculate that the real last free-living bac-
teria that gave rise to endosymbionts contained more
genes. Intermediary common ancestor to symbiotic line-
ages were defined as subsets of the initial 1983 CDS of
LCA1: LCA2 corresponded to the sum of genes present in
all endosymbiotic lineages, generating our common
ancestry to all these symbionts, LCA3 to the sum of the
genes present in all B. aphidicola lineages, and LCA4 to the
sum of genes present in Blochmannia and Wigglesworthia
lineages (Figure 1).

Quantifying gene loss
Gene loss was quantified using different approaches
including both quantitative and qualitative variables.

A quantitative marker of gene loss: for each gene present in
LCA1, a parameter called the propensity of a given gene to
be lost (PGL) was calculated [35]. This measure required
the identification of gene loss along the branches of the
phylogeny which was based on the reconstruction of last
common ancestors of endosymbionts described above.
The propensity of a gene to be lost was calculated as the
ratio of the sum of the lengths of branches lacking a given
gene to the sum of the lengths of all branches of the tree.
This generated a quantitative parameter ranging from 0
(never lost) to 1 (lost from all the branches) that could be
used to perform correlations with CAI and substitution
rates (Tables 1 and 2).

Discrete categories of genes (Figure 3): we quantified gene
loss by grouping genes present in LCA1 into three catego-
ries: (A) genes lost in all symbionts, presumably between
LCA1 and LCA2; (B) genes present in LCA2 but lost in
some of the symbiotic lineages; (C) genes kept in all endo-
symbionts.

CAI and substitution rate estimates
Our main objective was to examine correlations between
patterns of gene loss (at different depths of the tree) and
the functional importance of genes, in order to measure if
losses, particularly in the initial stages of symbiosis could

have been limited by rather precise constraints [7]. To
evaluate the level of functional importance of genes, we
used two different parameters i) the level of adaptive
codon bias (CAI) and ii) the rate of sequence evolution.
The former parameter is correlated with the level of gene
expression in E. coli [46], and more essential genes proba-
bly have higher levels of expression [47]. Unfortunately
CAI data are not available for genes of endosymbionts
which show hardly any trace of adaptive bias [12,15]. We
therefore used the CAI of E. coli orthologs, calculated
through the CODONW package [48].

In addition, we estimated synonymous (Ks) and non-syn-
onymous (Ka) substitutions rates by performing pairwise
comparisons of coding sequences. Estimates were calcu-
lated using Li's method [49] implemented in the diverge
function from the GCG 10.2 package. Since Ks were likely
saturated for many of the pairwise comparisons, we
restricted our analysis to non-synonymous substitution
rates (Ka). Pairwise estimates of non-synonymous substi-
tution rates were conducted for two free-living species
pairs (Eco-Stm, Eco-Ype) and four endosymbiotic species
pairs (BAp-BSg, BAp-BBp, BSg-BBp, Bfl-Wgl; see Schaber et
al. [40] for detailed results on substitution rates).

Finally, we looked at the relation between gene loss at dif-
ferent depths of the tree and the degree of functional con-
straint of genes (estimated by CAI or evolutionary rates)
(Figures 3, 4, 5). The significance of the different relation-
ships was tested using either the non-parametric Mann-
Whitney tests or the Spearman correlation tests.

Reconstruction of gene deletions
Following Moran and Mira [6], we assumed that the LCA1
possessed the E. coli gene order. This is likely true for a
majority of genes, given evidence discussed by these
authors that most gene rearrangements occurred in the
symbiont, and is also supported by our estimations that
about 75% of the genes from chromosome I in V. cholerae
are in syntenic fragments with E. coli. Synteny was defined
between fragments of the LCA1 and individual symbiotic
species if consecutive genes in the LCA1 corresponded to
consecutive genes in a given symbiont. To reconstruct syn-
teny between LCA1 and the ancestor of B. aphidicola
strains (LCA3), we used the fact that gene order is con-
served in that group and simply "filled the gaps" of B.
aphidicola BAp with genes absent from this species but
present in either of the two other B. aphidicola strains. It
was not possible to establish the gene order in LCA2 given
the major rearrangements between Blochmannia, Wiggles-
worthia, and Buchnera (LCA3). However, we assumed that
if synteny was established between a fragment in LCA1
and genes from any of these three symbionts, this frag-
ment must have been syntenic with LCA1 in the common
ancestor of these symbionts (LCA2).
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