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Abstract 

The monitoring of earth surface processes at a global scale requires high temporal frequency 

remote sensing observations provided up to now by moderate spatial resolution sensors (from 

250 m to 7 km). 

Non linear estimation processes of land surface variables derived from remote sensing data 

can be biased by the surface spatial heterogeneity within the moderate spatial resolution pixel. 

Quantifying this surface spatial heterogeneity is thus required to correct non linear estimation 

processes of land surface variables. The first step in this process is to properly characterize the 

scale of spatial variation of the processes structuring the landscape. Since the description of 

land surface processes generally involves various spectral bands, a multivariate approach to 

characterize the surface spatial heterogeneity from multi-spectral remote sensing observations 

has to be established. 

This work aims at quantifying the landscape spatial heterogeneity captured by red and near 

infrared high spatial resolution images using direct and cross variograms modeled together 

with the geostatistical linear model of coregionalization. This model quantifies the overall 

spatial variability and correlation of red and near infrared reflectances over the scene. In 

addition, it provides an explicit understanding of the landscape spatial structures captured by 

red and near infrared reflectances and is thus appropriate to describe landscapes composed of 

areas with contrasted red and near infrared spectral properties.  

The application of the linear model of coregionalization to 18 contrasted landscapes provides 

a spatial signature of red and near infrared spectral properties characterizing each type of 

landscape. Low vegetation cover sites are characterized by positive spatial correlation 

between red and near infrared. The mosaic pattern of vegetation fields and bare soil fields 

over crop sites generates high and negative spatial correlation between red and near infrared 

and increases the spatial variability of red and near infrared. On forest sites, the important 

amount of vegetation limits the spatial variability of red and the shadow effects mainly 

captured by near infrared induce a low and positive spatial correlation between red and near 

infrared.  

Finally, the linear model of coregionalization applied to red and near infrared is shown to be 

more powerful than the univariate variogram modeling applied to NDVI because the second 
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order stationarity hypothesis on which variogram modeling relies is more frequently verified 

for red and near infrared than for NDVI. 
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1 Introduction 

The monitoring of earth surface dynamic processes such as the exchanges of mass and energy 

between soil, vegetation and atmosphere requires observations of earth surface properties at 

the proper spatial and temporal scales. Remote sensing data are particularly appropriate to 

describe surface processes since they provide frequent spatial estimates of key earth surface 

variables (Sellers, 1997). To resolve rapid changes of vegetation status and amount under the 

influence of both climate and human activities, relatively high revisit frequency observations 

are required, currently provided by moderate resolution sensors with pixel size ranging from 

250 m to 7 km (e.g. MODIS/TERRA-AQUA, MERIS/ENVISAT, VEGETATION/SPOT, 

POLDER/PARASOL). Since the landscape is a mosaic of objects, such as agricultural fields 

or vegetation patches, which are often smaller than moderate resolution pixels (Garrigues et 

al., 2006a), the surface spatial heterogeneity information is lost at moderate spatial resolution. 

Characterizing the surface spatial heterogeneity is mandatory to identify the scale of spatial 

variation of surface processes structuring the landscape (Pielke and Avissar, 1990; Hipps and 

Neale, 1996; Wendroth et al., 1999; Csillag and Kabos, 2002; Lyons and Halldin, 2004) and 

thus to improve their representation in land surface models (Schimel et al., 1993; Pellenq et 

al., 2003; Ahl et al., 2004; Merlin et al., 2005). In addition, intra-pixel spatial heterogeneity 

biases the estimation of land surface variable (e,g. Leaf Area Index, Land Surface 

Temperature, etc) from moderate resolution observations when the algorithm relating land 

surface variable and radiometric data is non linear (Raffy, 1994; Friedl et al., 1995; Hu and 

Islam, 1997; Heuvelink and Pebesma, 1999; Lovejoy et al., 2001; Garrigues et al., 2006b). To 

limit its influence on the description of land surface processes, a first approach consists in 

explicitly taking into account the intra-pixel spatial heterogeneity in non linear retrieval 

algorithm (Garrigues et al., 2006b). A second approach is to use the surface spatial 

heterogeneity information to disaggregate moderate spatial resolution estimates of land 

surface variables at their proper scale of spatial variation (Faivre and Fischer, 1997; Pellenq et 

al., 2003; Merlin et al., 2005;). Both strategies require quantifying the surface spatial 

heterogeneity from high spatial resolution observations (with pixel size ranging from 10 m to 

30 m). Since, most land surface variables are estimated using more than one spectral band, 

multivariate approaches to characterize the surface spatial heterogeneity from multi-spectral 

remote sensing observations have to be developed. 
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Garrigues et al., 2006a provide detailed definitions of the spatial heterogeneity measured from 

remote sensing sensors as well as the factors (Sampling step and Point Spread Function of the 

sensor, scene extent, etc.) influencing its characterization. We highlight here the main points 

of these definitions. Spatial heterogeneity of a given surface property is described through two 

components:  

• The spatial variability of the surface property over the observed scene (i.e. variance of 

the remote sensing image). 

• The spatial structures: they are defined as patches or objects (e.g. agricultural fields, 

forest stands, vegetation patches, etc.) that repeat themselves independently within the 

observed scene at a characteristic length scale (i.e. spatial scale) which represents the 

extent of the spatial structure. They can be viewed as the typical correlation area (i.e. 

the typical area of influence) of the surface property. Spatial structures within 

remotely sensed images are identifiable in that their spectral properties are more 

homogeneous within them than between them and other scene elements (Jupp et al., 

1988). Data are often distributed into independent sets of spatial structures, related to 

different length scales and spatial variability, being overlaid in the same region.   

In this work, red and near infrared reflectances are the state variables used to describe the 

spatial heterogeneity of the vegetation cover at the landscape level defined here as an area of 

few square kilometers (9 to 50 km2). The spatial heterogeneity is quantified from high spatial 

resolution data (e.g. SPOT-HRV, nominal pixel size of 20m) that have been shown to be fine 

enough to resolve the spatial structures of most landscapes and coarse enough to limit the 

noise generated by spatial structures at very small length scales that may hamper the proper 

characterization of the spatial structures of vegetation cover at the landscape level (Garrigues 

et al., 2006a). Spatial variability within high spatial resolution pixels is mainly generated by 

spatial structures within the canopy. It will not be considered here because this paper 

specifically focuses on the quantification of the spatial heterogeneity at the landscape level. 

However, the methodology presented here can easily be extended to quantify the spatial 

heterogeneity at the canopy level using very high spatial resolution data (with pixel size 

smaller than 5m). 

Garrigues et al., 2006a provide a comparison of some second order statistics tools relevant to 

describe the spatial variations within an image. Among these tools, the variogram has been 

widely used to understand the nature and the causes of spatial variation within an image 

(Woodcock et al., 1988a) such as radiometric contrast between the image objects (Curran, 

1988; Woodcock et al., 1988a; Woodcock et al., 1988b; St-Onge and Cavayas, 1995; 
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Bruniquel-Pinel and Gastellu-Etchegorry, 1998), the mean size of the image objects 

(Woodcock et al., 1988a; Woodcock et al., 1988b; Lacaze et al., 1994) or the multiscale 

spatial structuring of the image (Lacaze et al., 1994; Oliver, 2001). Besides, Garrigues et al., 

2006a demonstrated that modeling the variogram of high spatial resolution NDVI 

(Normalized Difference Vegetation Index derived from red and near infrared reflectances) 

image is an efficient method to quantify the spatial heterogeneity components (spatial 

variability and spatial structure) of the landscape.   

The surface spatial heterogeneity is strongly dependent on the radiometric variable used to 

characterize it (Curran, 1988; Chavez, 1992; Lacaze et al., 1994; Atkinson, 1999). Garrigues 

et al., 2006a demonstrated that the NDVI variogram is efficient to characterize the influence 

of the land use on the landscape spatial heterogeneity. However, the NDVI variogram may be 

limited to capture some landscape pattern such as the spatial structures within a soil area 

which are better described by red reflectances (Lacaze et al., 1994). Therefore, variograms 

from multiple spectral bands such as red and near infrared may provide additional information 

compared to NDVI variogram to better understand the processes structuring the landscape.  

In addition, Garrigues et al., 2006b proposed to use the variogram of high spatial resolution 

radiometric data as a proxy for the spatial heterogeneity within moderate resolution pixel 

covering the same area as the high spatial resolution image in order to correct the scaling bias 

associated with non linear estimation of land surface variables over heterogeneous pixels. 

Since most land surface variable retrieval algorithms capitalizes on more than one spectral 

band or single vegetation index (Weiss and Baret 1999), multivariate variogram modeling, as 

developed in this work, is required to quantify the mean variability of each spectral band and 

co-variability between spectral bands within the moderate resolution pixel and implement 

Garrigues et al., 2006b ‘s approach. 

Most studies investigating the dependency between spatial heterogeneity and radiometric 

variables were limited to comparing experimental variograms computed over simulated 

landscape images or over a limited number of land cover types. The first objective of this 

paper is to extend the univariate variogram modeling developed by Garrigues et al, 2006a to 

multivariate variogram modeling. This will allow for explicit quantification of the spatial 

heterogeneity captured by two spectral bands; here red and near infrared high spatial 

resolution images, over various types of landscape. This approach will prove to be powerful 

to assess the spatial variability and co-variability of red and near infrared reflectances for 

three generic types of landscape, namely sparse natural vegetation; cropland and grassland; 

forest. The second objective of this paper is to show that multivariate variogram modeling 
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applied to red and near infrared reflectances provides a more comprehensive characterization 

of the landscape spatial structures than NDVI variogram modeling. 

In the Second Section, the 18 contrasted landscapes extracted from the VALERI (Validation 

of Land European Remote sensing Instruments) database and used in this study, are described 

along with the SPOT-HRV scenes used to describe the surface spatial heterogeneity. The third 

section is dedicated to the bivariate variogram modeling methodology applied to red and near 

infrared high spatial resolution images. In Section four, the parameters of the bivariate 

variogram models are used to quantify the spatial heterogeneity captured by red and near 

infrared over different types of landscape. Finally, in Section five, the “stationarity” of the 

data required to properly characterize the landscape spatial structures by the variogram is 

discussed for the red, near infrared and NDVI variables. 

 

2 Data description 

The data used here are part of the VALERI database (Baret et al., accepted), which provides 

SPOT-HRV scenes at 20m spatial resolution for multiple landscapes sampled through the 

world. For this study, 18 contrasted spatial heterogeneity sites were selected (Table 1). Each 

site has the following characteristics: 3 km by 3 km size, relatively flat topography, and 

contains one or two types of vegetation including crop, grass, needleleaf forest, broadleaf 

forest or shrubland. Note that for this study only 3km by 3km subset of the SPOT-HRV 

scenes was available over each site of the VALERI database. 

The reflectance was measured in three spectral bands: green (0.5-0.59μm), red (0.61-0.67μm), 

near infrared (0.78-0.89μm). In this paper, the red (denoted r(x), where x represents a pixel of 

the SPOT-HRV image) and near infrared (denoted p(x)) reflectances are the ‘state variables’ 

used to describe the spatial heterogeneity of the landscape. The Normalized Difference 

Vegetation Index (NDVI) derived from these reflectances ( Jackson, 1983), 

)()(
)()()(

xrxp
xrxpxNDVI

+
−

=                           

(1) 

will be used in Section 5 to evaluate the potential of NDVI variograms to characterize the 

spatial structures of the landscapes compared to red and near infared variograms.  
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The SPOT-HRV scenes are georeferenced in the UTM/WGS84 projection. They are not 

contaminated by clouds except in the tropical forest image (Counami01) for which a cloud 

mask was applied. They are not corrected for atmospheric scattering and absorption. But, for 

most scenes, the atmospheric effects are low in the red and near-infrared bands and their 

spatial variability is small over 3 km by 3 km scenes (Baret et al., accepted). 

 

3 Bivariate variogram modeling 

As pointed out by Garrigues et al., 2006a, the characterization of landscape spatial 

heterogeneity from the selected SPOT-HRV scenes requires several assumptions. 

• A1: the image extent (3000m) is large with respect to the spatial features of interest. 

This assumption is verified for most sites because the size of their typical objects is 

much lower than the site extent, and there is no obvious gradient through the images.  

• A2: the radiometric measurement errors (cloud detection, atmospheric effects, 

resampling effects, …) are assumed to be small relative to the surface variations. This 

assumption is acceptable because the selected images are cloud-free, and the 

homogeneity of sensor calibration and atmospheric correction is relatively even over 

such limited extent areas. 

• A3: Effect of spatial variations at scale smaller than the sampling step of the sensor 

(20 m) can be neglected. This is based on the fact that the combination of the Point 

Spread Function and the sampling step of the sensor are such that effects of spatial 

variations within a 20 m pixel are very small relative to the environmental variations. 

• A4: coregistration errors between the SPOT-HRV spectral bands are small enough to 

assume that the spatial supports of red and near infrared data are identical.  

Bivariate variogram modeling approach follows two steps. The experimental variogram of red 

and near infrared reflectances and the experimental cross variogram between these variables 

are first computed at the image scale. Variograms and cross variograms are then modeled 

together using the widely used linear coregionalization model (Wackernagel, 2003).  
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3.1 Experimental direct and cross variograms 
Red and near infrared reflectances are considered as values of punctual regionalized variables 

(Matheron, 1965) r(x) and p(x), respectively, describing the spatial distribution of the 

landscape vegetation cover over the image domain, I.  

The experimental direct variograms associated with r(x), 

( )2, )()(
)(2

1)( ∑
≈−

−=
h

re
xx

xrxr
hN

h
βα

βαγ ,                        

(2) 

and p(x), 

( )2, )()(
)(2

1)( ∑
≈−

−=
h

pe
xx

xpxp
hN

h
βα

βαγ ,                        

(3) 

measure the average of squared differences between reflectance values of all the pair of pixels 

(xα, xβ) separated by a vector h . The experimental cross variogram between p(x) and r(x), 

( )( )∑
≈−

−−=
h

rpe
xx

xrxrxpxp
hN

h
βα

βαβαγ )()()()(
)(2

1)(,,             

      (4) 

describes the spatial co-variability between the variables p(x) and r(x) over the scene. In 

Equation 2, 3 and 4, N(h) represents the number of paired pixels separated by a vector h. 

Experimental direct and cross variograms can be computed for a specific direction (h is then a 

vector) or without specifying a direction (h is reduced to a distance). In this work, the spatial 

distributions of the red and near infrared reflectances are assumed to be isotropic and the 

experimental direct and cross variograms are computed by pooling together all directions. 

This assumption is not absolutely necessary. However, since isotropy is verified for most of 

the 18 images analyzed in this paper, we introduce it for the clarity of exposition. The 

methodology presented below can easily be extended to the case of non isotropic variogram 

models. 

Variogram values are not statistically reliable at large distances (Chilès and Delfiner, 1999). 

We therefore decided to compute the variogram up to the maximum distance dmax=1500m 

equal to half the extent of the images, as advised by these authors.  
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Experimental direct and cross variograms are characterized by several key properties (Chilès 

and Delfiner, 1999). Direct variogram is usually an increasing function of the distance ||h|| 

(Figure 1) since values of pixels close together are likely to be more similar than values of 

pixels far apart. The cross variogram is related to the spatial distribution of the correlation 

between the variables p(x) and r(x). It is an increasing function of the distance ||h|| when p(x) 

and r(x) are positively correlated (Figure 1.c) and it is a decreasing function of the distance 

||h|| when p(x) and r(x) are negatively correlated (Figure 1.d). It may also display both 

negative and positive spatial correlation characterizing two different sets of spatial structures 

associated with distinct spectral red and near infrared properties (Figure 1.b: γe,p,r(h) decreases 

first and then increases at large distance).  

At large distance, direct and cross variograms may reach a sill or increase indefinitely. Most 

experimental variograms of the images under study reach a sill before dmax. This indicates that 

most images are large enough to encompass the spatial variability of the landscape spatial 

structures and confirms the acceptability of assumption A1. The sill of the direct variograms of 

p(x) and r(x) quantifies the overall spatial variability of p(x) and r(x), respectively. The sill of 

the cross-variogram between p(x) and r(x) quantifies the overall covariance between p(x) and 

r(x). For few images, the sill is not reached before dmax indicating that the image is not large 

enough to encompass the low frequency variation in the data (Chilès and Delfiner, 1999; 

Garrigues et al., 2006a). This is due to spatial structures extending beyond the image extent 

creating apparent trends in the image.  A criterion will be given in Section 3.2.3 to judge if the 

image size is large enough to encompass the spatial variability of the landscape spatial 

structures. 

The variogram ranges are characteristic distances at which variograms reach their sill (or 95% 

of the sill for exponential variogram, see Section 3.2). They are related to the length scales 

(i.e. spatial scale) of the data. A variogram may display several ranges characterizing the 

multiscale spatial structuring of the data. 

The behavior of the variogram near the origin is an important property of the variogram 

which reflects the continuity of the variable under study. In particular, a discontinuity of the 

variogram at the origin, also called nugget effect, can be related to either uncorrelated noise 

(measurement error) or to spatial structures at a length scale smaller than the pixel size. All 

experimental variograms computed on the VALERI images are linear at the origin, without 

any apparent nugget effect. This observation is a strong support to the assumptions (A2) and 

(A3).  
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3.2 Linear coregionalization model 

3.2.1 Theoretical direct and cross-variograms. 

A probabilistic model for the regionalized variables p(x) and r(x) is used to quantify the 

landscape spatial heterogeneity captured by red and near infrared high spatial resolution 

images 

In the framework of second order stationary random functions (Chilès and Delfiner, 1999; 

Wackernagel, 2003), p(x) and r(x) are regarded as one among all possible realizations of the 

(second order stationary) random functions P(x) and R(x), respectively. Second order 

stationarity of P(x) and R(x) assumes the existence and the stationarity of the first and second 

moments, 

[ ] pmxPE =)( , [ ] rmxRE =)( , ( ) )()(),( hChxPxPCov p=+ ,  ( ) )()(),( hChxRxRCov r=+  

      (5) 

( ) )()(),( , hChxRxPCov rp=+ ,  ( ) )()(),( , hChxPxRCov pr=+ ,         

      (6) 

for all x and h. The functions Cp(h) and Cr(h) are the covariance functions characterizing P(x) 

and R(x), respectively, while Cp,r(h) and Cr,p(h) are the cross-covariance functions. Note that 

Cp,r(h) ≠ Cp,r(-h), but that Cp,r(h)=Cr,p(-h). Under second order stationarity assumption, the 

theoretical direct variograms associated with P(x)  

[ ])()(5.0)( xPhxPVarhp −+=γ ,                

      (7) 

and R(x), 

[ ])()(5.0)( xRhxRVarhr −+=γ ,               

      (8) 

are related to the covariance functions according to the relationships, 

)()( 2 hCh ppp −= σγ                            

(9) 

and 
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)()( 2 hCh rrr −= σγ ,                         

(10) 

where σp
2  and σr

2 are the theoretical variances of P(x) and R(x), respectively. The theoretical 

variogram is a function starting from 0 for ||h||=0 and ultimately converging to the sill as ||h|| 

tends to infinity. The range of the theoretical variogram is the distance at which it reaches a 

sill (or 95% of the sill for exponential variogram). Data separated by a distance larger than the 

range are uncorrelated (or very weakly correlated with a correlation less than 0.05 for 

exponential model). 

The theoretical cross variogram associated to the vector of second order stationary random 

functions (P(x), R(x)) is defined by: 

( )( )[ ])()()()(5.0)(, xRhxRxPhxPEhrp −+−+=γ                      

(11) 

It can be shown that γp,r(h) = 0.5 (Cp,r(h) + Cp,r(-h)). The cross variogram corresponds thus to 

the even part of the covariance function Cp,r(h). It is bounded by the direct variograms of P(x) 

and R(x) (Wackernagel, 2003):  

)()()()()( , hhhhh rprprp γγγγγ ≤≤−                       

(12) 

The comparison of the cross variogram with respect to its lower and upper bounds 

characterizes the spatial distribution of the correlation between red and near infrared 

reflectances over the scene (Figure 1). When the cross variogram is close to its upper bound, 

i.e. the ratio 
)()(

)(,

hh

h

rp

rp

γγ

γ
 is close to 1, red and near infrared reflectances are highly 

positively correlated. When the cross variogram is close to its lower bound, i.e. the ratio 

)()(

)(,

hh

h

rp

rp

γγ

γ
is close to -1, red and near infrared reflectances are highly negatively correlated 

(Figure 1.d).  

The theoretical direct and cross variograms are estimated by fitting a valid mathematical 

function to the experimental direct and cross variograms (Chilès and Delfiner, 1999). These 

functions, also called authorized models, must be conditionally negative functions 

(Wackernagel, 2003). Exponential and spherical functions are used in this work since they 
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suit the main properties of the experimental direct and cross variograms: linear behavior and 

continuity at the origin; convergence to a sill. Table 2 provides the characteristics of those two 

variogram functions. Note that the range parameter of the exponential function is the so called 

practical range, i.e. the distance at which the variogram reaches 95% of the sill.  

3.2.2 Linear model of coregionalization 

In this paper, direct and cross variograms are modeled together using the widely used linear 

model of coregionalization (Wackernagel, 2003). This model is the multivariate extension of 

the linear model of regionalization used by Garrigues et al., 2006a to model the NDVI 

variogram. In this model, theoretical direct and cross variograms are weighted sums of the 

same l elementary variogram functions (here exponential or spherical functions with unit sill), 

gk(ak,h), k=1,…,l: 

),()(
1

2 hagbh k

lk

k
k

p
kpp ∑

=

=
= σγ                          

(13) 

),()(
1

2 hagbh k

lk

k
k

r
krr ∑

=

=
= σγ                         

(14) 

),()(
1

,2
,, hagbh k

lk

k
k

rp
krprp ∑

=

=
= σγ                         

(15) 

 

This model is particularly appropriate to describe independent sets of spatial structures, being 

overlaid in the same scene, related to different length scales and red and near infrared spatial 

variability and co-variability. It quantifies the landscape spatial heterogeneity captured by red 

and near infrared through the following components: 

• overall spatial variability and co-variability over the scene: the direct variogram sills 

σp
2  and σr

2 quantify the overall image variance of red and near infrared, respectively. 

The cross variogram sill σ2
p,r represents the overall spatial covariance between red and 

near infrared. The theoretical correlation coefficient,  
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22

2
,

,
rp

rp
rp

σσ

σ
ρ = ,              

    (16) 

is an indicator of the overall spatial correlation between red and near infrared over the 

scene.  

• Image spatial structures: Each image spatial structure modeled by the linear model of 

coregionalization is characterized by the following parameters: 

- The ranges ak associated with the elementary functions gk characterize the length 

scales of the scene.  

- The variance weights p
kb  and r

kb  quantify the fractions of the overall variance of 

near infrared and red images, respectively, for each structure k. Similar variance 

weights p
kb  and r

kb  show that near infrared and red variables vary over the same 

set of spatial structures, i.e. they capture the same spatial structures within the 

landscape, and vice versa. 

- The correlation coefficient,  

r
k

p
k

rp
k

rpr
kr

p
kp

rp
krprp

k
bb

b

bb

b ,

,22

,2
,, ρ

σσ

σ
ρ == ,      

    (17) 

quantifies the spatial correlation between red and near infrared associated with the 

structure k. 

The parameters of the linear coregionalization model are estimated by a semi-automatic 

fitting method (Isatis software, http://www.geovariances.com). First, the number of necessary 

elementary variograms, l, and the associated ranges are visually adjusted. Here, it is always 

found sufficient to have l equal to one or two. Then, the sill and the variance weights are 

estimated by weighted mean square optimization  under the linear coregionalization model 

constraints. We refer to Goulard and Voltz, 1992; Morisette, 1997; Wackernagel, 2003 for a 

complete description of the method. The linear coregionalization model is valid only if all 

coregionalization matrices, 
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r
k

rp
k

rp
k

p
krp

k bb
bbB ,

,
, =                 

    (18) 

associated with each structure k=1,…,l, are semi-definite positive which implies that each 

elementary function gk(ak,h) part of the cross variogram is also part of the direct variograms. 

In this sudy, both direct and cross variograms are defined by the same elementary functions 

gk(ak,h). 

Since experimental direct and cross variograms are not trustworthy for distances larger than 

dmax, any estimated variogram range above this distance is deemed not reliable and therefore 

was not considered. In this case, the underlying second order stationarity hypothesis must be 

rejected. Note that among the 18 sites under study, only 4 sites have an estimated range larger 

than dmax (Table 3). 

3.2.3 Quantification of the image spatial structures 

The integral range A (Equation 19) summarizes all structural parameters of the direct 

variogram model γ(h) (ranges ak and fraction of total variance bk) into a single characteristic 

area (Serra, 1982; Chilès and Delfiner, 1999; Garrigues et al., 2006a).  

( )∫ ℜ∈
−= 2 )(1 2

2 h
dhhA γσ

σ
              

    (19) 

For the linear model of coregionalization, the integral range is computed for each direct 

variogram γp(h) and γr(h). It is the weighted linear combination of the integral range Ak of each 

elementary variogram functions gk(ak,h). The integral ranges of red and near infrared 

variograms are given by Equation 20 and 21, respectively. 

,1∑ == l
k k

r
kr AbA                

    (20) 

,1∑ == l
k k

p
kp AbA                

    (21) 

with 
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( )∫ ℜ∈
−= 2 ),(1

h kkk dhhagA           

    (22) 

 Table 2 gives the value of Ak for the spherical and exponential models (Lantuéjoul, 2002). 

As shown in Garrigues et al., 2006a, the square root Dc of the integral range which is a 

weighted average of the several range parameters of the variogram model quantifies the mean 

length scale of the data, i.e. the mean extent of the image spatial structures captured by the 

data. Therefore, the parameters Dc of red (denoted r
cD ) and near infrared (denoted p

cD ) 

quantify the mean extent of the spatial structures resolved by red and near infrared, 

respectively. Different value of r
cD  and p

cD  indicates that red and near infrared capture 

different spatial structures in the landscape. 

The integral range of a given variable can also be used as a yardstick to judge if the size of the 

image of that variable is large enough to encompass the spatial variability of the spatial 

structures captured by that variable and thus if the second order stationarity hypothesis on 

which the modeling of the variogram relies is consistent with the data. Garrigues et al., 2006a 

propose that the integral range must be smaller than 5% of the image surface, i.e. Dc, must 

thus be smaller than Dc,T,3km =671m for a 3000m by 3000m image. This criterion will be used 

in Section 5 to discuss the “stationarity” of red and near infrared compared to that of NDVI. 

The parameters Dc of NDVI variogram (denoted NDVI
cD ) are provided by Garrigues et al, 

2006a for the same sites presented here. 

 

4 Results 

4.1 Overall spatial variability and correlation of red and near infrared  
Near infrared and red reflectances are sensitive to the amount of vegetation covering the 

surface (Myneni and Ross, 1991; Price, 1996). Generally, near infrared reflectance increases 

over vegetation area because leaves are more reflective than soil and the multiple scattering 

within the canopy increases the signal measured by the sensor. Red reflectance is low over 

vegetation area (absorption by chlorophyll) and increases over low vegetation cover and bare 

soil area. In the following, the amount of vegetation will be quantified by the Leaf Area Index 

(LAI) variable defined as half the total developed area of leaves per unit ground horizontal 

surface area (Chen and Black, 1992). As the LAI increases, the reflectance decreases in the 
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red and increases in the near infrared (Sellers, 1987; Myneni and Ross, 1991; Price, 1996). 

However, the non linear relationship between reflectance and LAI induces the saturation of 

the radiometric signal (Myneni et al., 2002): near infrared saturates for LAI larger than 6-8 

while red saturates for LAI larger than 3-4 (when the vegetation cover of the surface is 

complete, i.e. no soil effect).  

Given these properties, one can distinguish three major types of landscape with distinct red 

and near infrared spectral signatures (Figure 2). In this section, we will use the parameters of 

the linear model of coregionalization applied to the SPOT-HRV scenes under study (Figure 5, 

Table 3) to quantify for each type of landscape (Figure 2) the overall spatial variability of red 

(σr
2) and near infrared (σp

2 ), as well as the overall spatial correlation (ρp,r) between red and 

near infrared. 

4.1.1 Sparse natural vegetation sites (low vegetation cover) 

On Turco02 and Gourma00, the vegetation cover is low (low LAI) which induces an 

important soil effect on the radiometric signal. Since red and near infrared have similar 

spectral signature over soil (along the soil line on Figure 2), the overall correlation between 

red and near infrared reflectances is high and positive over these sites (0.88 for Turco02 and 

0.95 for Gourma00). Since the soil properties and the vegetation cover are homogeneous over 

these sites, the overall spatial variability of red and near infrared are low. 

4.1.2 Crop and grassland sites (medium vegetation cover) 

Crop sites are globally characterized by high overall spatial variability of near infrared (σp
2) 

and red (σr
2) compared to other types of landscape, as well as high and negative overall spatial 

correlation ρp,r  between red and near infrared. This is due to their mosaic spatial structure of 

bare soil and low vegetation cover fields with increasing red reflectances and decreasing near 

infrared reflectances and crop fields with decreasing red reflectances and increasing near 

infrared reflectances. The overall spatial variability σp
2 of near infrared is mainly explained by 

the differences of near infrared values between fields caused by the nature and state of the 

crops. The overall spatial variability σr
2 of red reflectances is lower than that of near infrared 

σp
2 because the differences of reflectance values between vegetation and bare soil fields are 

lower in the red than in the near infrared. But it is generally higher over crop sites than over 

most natural vegetation and forest sites since crop sites contain bare soil area alternating with 

vegetation area. It is particularly high on Barrax03 due to the variations of soil properties 
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(texture, presence of vegetation regrowth…) within the large bare soil area covering this site 

(Figure 3).  

On Barrax03 and Gilching02, the magnitude of the correlation ρp,r is low compared to other 

crop sites. This is due to the presence of a contrasting area (forest on Gilching02, Figure 4 and 

large bare soil area on Barrax03, Figure 3) over which red and near infrared are positively 

correlated, thus compensating for the negative correlation associated with the field spatial 

structures. This analysis will be refined by the characterization of the spatial structures of 

these sites in Section 4.2.2.  

On grassland (Larzac02 and Laprida01), the important vegetation cover saturating the signal 

in the red explains the low spatial variability of red. On Larzac02, the homogeneity of LAI 

over the scene explains the very low spatial variability of near infrared. On Laprida01 the 

variations of LAI due to grazing activity increases the overall spatial variability of near 

infrared. The overall correlation of grassland sites is negative but its magnitude is lower than 

on crop sites that is probably due to the saturation of red reflectances. 

4.1.3 Forest sites (high vegetation cover) 

Over forest, the important amount of vegetation which includes green understorey, high 

density of trees and the presence of broad leaves saturates the signal in the red (saturation for 

LAI larger than 3), causing to limit the red spatial variability. Near infrared reflectance 

captures some variations of LAI. However, the LAI variability is too small over the forest 

sites under study to explain the whole spatial variability of near infrared. In addition, near 

infrared also tends to saturate for LAI larger than 6. The main source of spatial variability of 

the radiometric signal is the shadow effects caused by variations of canopy architecture, 

density of trees and size of the crowns. These shadow effects are mainly captured by near 

infrared reflectances characterized by an overall spatial variability close to that of crop sites 

(for Jarvselja01, mixed forest σp
2 =0.0045 and for SudOuest02, crop σp

2=0.0046). However, 

they are poorly resolved by red reflectances (low overall spatial variability) because the red 

radiometric resolution is not fine enough to detect the very low variations of red reflectances 

generated by the shadow effects. Since shadows affect both red and near infrared in the same 

way, the overall spatial correlation ρp,r is generally positive over forest. However, because of 

the limitation of the red radiometric resolution, the magnitude of the spatial correlation is low 

over most forest sites. 

Some forest sites are not in agreement with these findings. On Counami01 and Aekloba01, 

sites characterized by a very dense vegetation cover (LAI larger than 6), the shadow effects 
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are limited and the radiometric signal saturates, thus explaining the very low spatial 

variability of near infrared over these sites. On other sites, the presence of spatial structures 

with contrasting red reflectances (young seedling plantation, bare soil and water area on 

Concepcion03 and Hirsikangas03; quarry and rocky area on Puechabon01) increases the 

overall spatial variability of red. The very low overall correlation between red and near 

infrared (close to zero) observed on some sites is caused by various factors such as the 

presence of water (e.g. Larose03) which affects the radiometric signal. In contrast, on 

Puechabon01, the presence of rocky area and a quarry associated with both increasing values 

of red and near infrared increases the magnitude of the overall correlation over this forest site.  

 

4.2 Image spatial structures 
On some sites the overall correlation is low with regard to the type of vegetation (e.g 

Barrax03 and Gilching02). The parameters (σp
2, σr

2, ρp,r) are not always sufficient to 

understand the nature and the causes of the spatial variations over the scene. In this section, 

we analyze the structural parameters of the coregionalization model in order to understand the 

differences in spatial structures captured by red and near infrared reflectances over the scene. 

In the first sub-section, we globally quantify these differences by comparing the mean extent 

of the spatial structures captured by red ( r
cD ) and near infrared ( p

cD ) for the 18 landscapes 

under study. In the second sub-section, we use all the structural parameters of the linear 

model of coregionalization to characterize the nature and the scale of variation of each spatial 

structure captured by red and near infrared over two particular sites. 

4.3.1 Overall quantification of the spatial structures captured by red and near infrared. 

Figure 6 displays the comparison of r
cD  and p

cD . On most crop sites (except Gilching02 and 

Barrax03), r
cD  and p

cD  are similar. This indicates that red and near infrared capture the same 

mosaic spatial structure of agricultural fields that explains the high magnitude of the spatial 

correlation between red and near infrared over crop sites. The differences between r
cD  and 

p
cD  observed on Gilching02 and Barrax03 are explained in the following sub-section.  

On most forest sites (e.g. Jarvselja01, Larose03), red and near infrared generally do not 

capture the same spatial structures ( r
cD  and p

cD  are different) which explains the low 

magnitude of the spatial correlation between red and near infrared over forest sites. p
cD  

characterizes the mean extent of the spatial structures generated by both the variations of LAI 
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and the variations of canopy structure (shadow effects). The early saturation and radiometric 

resolution of the red band limit the detection of these spatial structures by red which explains 

the lower value of r
cD  than p

cD  observed on most forest sites. On the Counami01 tropical 

forest site, both red and near infrared saturates, which explains their low degree of structuring 

(low and similar values of r
cD  and p

cD ,). 

4.3.2 Characterization of near infrared and red spatial variability and correlation at the 

spatial structure scale 

Among the 18 sites under study, Gilching02 and Barrax03 present a feature that deserves a 

specific mention. They are composed of two spatial structures with very contrasting red and 

near infrared spectral properties (Figure 3 and Figure 4). As a result, red and near infrared do 

not capture the same spatial structures over these sites (as shown by the differences between 
r
cD  and p

cD  ) and their overall correlation is low compared to other crop sites. We chose to 

analyze these two particular sites to illustrate the potential of the coregionalization model to 

discriminate spatial structures with distinct red and near infrared spectral properties. For this, 

we use the structural parameters ( p
kb , r

kb , rp
k

,ρ ) of the linear model of coregionalization 

(Table 3) which quantify the spatial variability and correlation of red and near infrared 

associated with each spatial structure k. 

Gilching02 is composed of a forest area and a crop area (Figure 4). The first structure of the 

linear model of coregionalization (Figure 1.b, Table 3) is characterized by a negative 

correlation coefficient ( 48.0,
1 −=rpρ ) and an associated short range (a1=380m). It explains 

most of the near infrared overall spatial variability ( %931 =pb ) and a significant part of the 

red overall spatial variability ( %401 =rb ). It is related to a large extent to the mosaic spatial 

structure of agricultural fields captured by both red and near infrared. But it is also influenced 

by the variations of LAI and canopy structure (shadow effects) within the forest area which 

are detected by near infrared (Figure 4). The forest spatial structure (Figure 1.b, Table 3)  is 

associated with a larger range a2=1180m and is characterized by a positive correlation 

coefficient ( 99.0,
2 =rpρ ). It is mainly captured by red reflectances ( %602 =rb ) which are 

more homogeneous within the forest area than between the forest area and other scene 

elements (Figure 4). 
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On Barrax03, irrigation discs of vegetation are laid over a large bare soil background (Figure 

3). The positive correlation coefficient associated with the first structure (Figure 1.a, Table 3) 

characterizes the small bare soil fields (a1=400m) within the bare soil area. The variation in 

soil properties is mainly captured by red reflectances ( %611 =rb ). This is also detected by near 

infrared but generating a lower spatial variability of near infrared ( %5.71 =pb ) than that of red. 

The second structure (Figure 1.a, Table 3) is related to the irrigation discs of vegetation with a 

range value similar to the average extent of the discs (a2=800m). The spatial structure of the 

vegetation discs is mainly captured by near infrared ( %932 =pb ) because of the high 

variability of near infrared between vegetation discs and bare soil fields. The spatial structure 

of vegetation disc also explains %392 =rb of the overall variability of red which are more 

homogeneous within the vegetation fields than between them and other scene elements. In 

agreement with other crop sites, the alternation of bare soil and vegetation fields generates a 

negative correlation associated with the second spatial structure of the linear model of 

coregionalization.  

Garrigues et al., 2006a show that NDVI variogram of Barrax03 detects only the vegetation 

disc spatial structures and did not describe the spatial structures within the bare soil area. 

Besides, the information provided by the NDVI variogram of Gilching02 was not sufficient to 

clearly identify the two spatial structures composing the scene. As stated in Section 3, the 

linear model of coregionalization is appropriate to describe independent sets of spatial 

structures being overlaid in the same scene. It is not a hierarchical model for two stage 

systems such as forest area and a finer scale of variation within the forest as it is the case for 

Gilching02 (Figure 4). But despite this fact, the linear model of coregionalization applied to 

red and near infrared on Gilching02 is able to provide a more comprehensive characterization 

of the nature of the processes structuring this hierarchical landscape than NDVI variogram 

modeling. 

 

5 Discussion: Stationarity of red and near infrared variables  
In the previous sections, we used bivariate variogram models applied to red and near infrared 

to characterize the landscape spatial heterogeneity. Garrigues et al., 2006a performed the 

same analysis for the univariate variogram modeling applied to NDVI which combines red 

and near infrared variables in one synthetic variable. To demonstrate the utility of the 

bivariate variogram modeling, we propose here to evaluate the “stationarity” of red and near 
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infrared variables compared to that of NDVI (Equation 1). Indeed, variogram modeling relies 

on the second order stationarity hypothesis which ensures that the variogram characterizes 

properly the landscape spatial structures. To verify if the second order stationarity hypothesis 

of a given variable is consistent with the data, i.e. the image extent of that variable is large 

enough to encompass the spatial variability of the spatial structures captured by that variable, 

we use the criterion defined in Section 3.2.3 stating that the mean length scale Dc of the 

variable must be smaller than the threshold Dc,T,3km=671 m for a 3km image.  

Figure 7 displays a comparison of r
cD , p

cD and NDVI
cD . The values of NDVI

cD  are provided by 

Garrigues et al., 2006a for the same scenes under study. On most crop sites, r
cD , p

cD and 

NDVI
cD show similar values smaller than Dc,T,3km indicating that red, near infrared and NDVI 

capture the same mosaic pattern of agricultural fields which is completely characterized at the 

image scale. On forest and natural vegetation sites, the image extent is not always large 

enough to resolve the spatial variability of the landscape spatial structures. This is due to 

spatial structures extending beyond the image extent or to the presence of a contrasting spatial 

structure in the border of the image (Garrigues et al., 2006a). For example, on Concepcion03, 

the presence of a large area of young seedling plantation (characterized by the second range 

r2=1800 m) in the border of the scene explains the non stationarity of red, near infrared and 

NDVI ( r
cD , p

cD and NDVI
cD  larger than Dc,T,3km). The non stationarity can affect the three 

variables red, near infrared and NDVI or only one particular variable. Figure 7 shows that the 

non stationarity of NDVI is more frequent than that of red and near infrared. Indeed, on 

Puechabon01, Nezer01 and Hirsikangas03 NDVI
cD  is larger than Dc,T,3km while r

cD and p
cD  are 

smaller than Dc,T,3km . 

Since the second order stationarity hypothesis is verified on more sites for red and near 

infrared than for NDVI, bivariate variogram modeling applied to red and near infrared 

appears to be more powerful than NDVI variogram modeling to characterize the spatial 

structures of the landscapes under study.  
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Conclusions 

This work highlights the potential of multi-spectral remote sensing observations to quantify 

the landscape spatial heterogeneity. It shows that direct and cross variograms modeled 

together using the linear coregionalization model are powerful tools to quantify the landscape 

spatial heterogeneity captured by red and near infrared high spatial resolution images. The 

linear model of coregionalization quantifies the overall spatial variability and correlation of 

red and near infrared over the scene. In addition, it provides an explicit understanding of the 

landscape spatial structures captured by red and near infrared over the scene that it is 

particularly appropriate to describe landscapes composed of areas with contrasted red and 

near infrared spectral properties. Each spatial structure is characterized by i) the spatial 

variability and correlation of red and near infrared explained by the spatial structure and by ii) 

the variogram range which is an indicator of the extent of the spatial structure. The integral 

range which summarizes all structural parameters of the variogram into a single characteristic 

area is computed for each red and near infrared direct variogram. Its square root quantifies the 

mean extent of the image spatial structures captured by red and near infrared. It is also used to 

judge if the size of the scene is large enough to encompass the spatial variability of the 

landscape spatial structures captured by each variable and thus if the second order stationarity 

hypothesis on which the modeling of the variograms relies is consistent with the data.  

The application of the linear model of coregionalization to 18 contrasted landscapes provides 

a spatial signature of red and near infrared spectral properties characterizing each type of 

landscape. Low vegetation cover sites are characterized by a high positive spatial correlation 

between red and near infrared due to the soil effect on the radiometric signal. On crop sites, 

the mosaic pattern of bare soil fields and crop fields is captured by both red and near infrared. 

As a result, red and near infrared are generally more variable over crop sites than over forest 

and natural vegetation sites and the spatial correlation between red and near infrared is 

generally high and negative. On forest sites, the important amount of vegetation homogenizes 

the spatial distribution of red except when the site contains low vegetation cover objects 

which increase the spatial variability of red. The shadow effects caused by the variations of 

the forest canopy structure are the main sources of spatial variability on the radiometric 

signal, generating positive spatial correlation between red and near infrared. However, while 

shadow effects are captured by near infrared, their detection by red is limited by the red 
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radiometric resolution that substantially decreases the magnitude of the spatial correlation 

between red and near infrared over forest sites. 

Compared to NDVI variogram model, the linear model of coregionalization applied to red and 

near infrared provides a more comprehensive characterization of the spatial scale of variation 

and the nature of the processes structuring the landscapes on the 18 sites of the VALERI 

database. In addition, the second order stationarity hypothesis on which variogram modeling 

relies is more frequently verified for red and near infrared than for NDVI. As a result, 

bivariate variogram modeling applied to red and near infrared potentially has a broader range 

of application than NDVI variogram modeling in order to properly characterize the spatial 

structures of the landscapes under study. 

However, the results of this paper are limited by the number, the type, the low complexity and 

the small size of the landscapes analyzed. In particular, for few landscapes, the 3000 m by 

3000 m image size used in this work was too small to encompass the spatial variability of the 

landscape spatial structures. Additional works should thus consider larger area and a more 

representative sampling of landscape type in terms of different types of vegetation, land use, 

topography features and soil properties. Further studies should also apply the linear model of 

coregionalization to additional spectral bands or combination of spectral bands in order to 

capture other surface properties such as the vegetation water content described by middle 

infrared spectral band.  

Finally, multivariate variogram model of high spatial resolution data can be used as a proxy 

for the spatial heterogeneity within moderate resolution pixel to correct the scaling bias 

associated with non linear estimation of land surface variables from multi-spectral 

observations over heterogeneous pixels (Garrigues et al., 2006b). However, to implement this 

method, ways have to be found to get prior knowledge of variograms and cross-variograms of 

high spatial resolution data without systematic concurrent high spatial resolution images that 

would make moderate spatial resolution images useless. Ongoing works are investigating the 

possibility of using a temporal sampling of high spatial resolution multi-spectral data to 

retrieve the spatial heterogeneity within moderate resolution pixels and account for it in non 

linear retrieval algorithm of land surface variables. 
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Tables: 

 
Table 1: Data base (detailed information on each site is available on the VALERI web 

site www.avignon.inra.fr/valeri). Date is the acquisition month of the image. mNDVI and 

σNDVI are the mean and standard deviation of the NDVI image characterizing the mean 

and variability of vegetation amount over each site.  
Landscape 

type 

Site name Site number Biome  Date Lat Lon mNDVI σNDVI 

Fundulea01 1 Cropland May 44.41 26.58 0.51 0.23 

Alpilles01 2 Cropland Mar 43.81 4.74 0.41 0.19 

Barrax03 3 Cropland Jul 39.06 2.10 0.29 0.19 

SudOuest02 4 Cropland Jul 43.51 1.24 0.50 0.17 

Alpilles02 5 Cropland Jul 43.81 4.74 0.38 0.16 

Gilching02 6 Cropland and mixed 

forest 

Jul 48.08 11.33 0.60 0.12 

Laprida01 7 Grassland Nov 36.99 -60.55 0.62 0.09 

                 

Crop and 

grassland  

Larzac01 8 Grassland Jul 43.95 3.12 0.49 0.06 

Larose03 9 Mixed forest Aug 45.38 -75.22 0.70 0.06 

Jarvselja01 10 Mixed forest Jul 58.29 27.29 0.82 0.05 

Hirsikangas03 11 Needleleaf forest Aug 62.64 27.01 0.59 0.09 

Nezer01 12 Needleleaf forest 

(pine forest) 

Jun 44.51 -1.04 0.66 0.06 

Concepcion03 13 Needleleaf forest 

(80% of pine) 

Jan -37.47 -73.47 0.69 0.09 

Aekloba01 14 Broadleaf forest 

(Palmtree 

plantation) 

Jun 2.63 99.68 0.65 0.04 

Counami01 15 Broadleaf forest 

(tropical forest) 

Oct 05.35 53.25 0.69 0.03 

                       

Forest 

Puechabon01 16 Closed shrubland 

(Mediterranean 

vegetation) 

Jun 43.72 3.65 0.54 0.10 

Gourma00 17 Savanna Sep 15.32 -1.55 0.22 0.01 Sparse 

vegetation Turco02 18 Barren and sparse 

vegetation 

Aug -18.23 -68.18 0.11 0.01 
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Table 2: Characteristics of the spherical and exponential variogram models.  
Model Formula (γ(h)) Integral range 

(A) 

Spherical (Sph) 

 

5

2aπ
 

Exponential (Exp) 
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−−=

a
hh 3exp1)( 2σγ  

9
2 2aπ

 

The term h represents the distance.  In the spherical model, a is the variogram range (i.e. the distance at 
which the variogram reaches the sill σ2) while in the exponential variogram a is the practical range (i.e. 
the distance at which the variogram reaches 95% of the sill σ2). 

⎪
⎩

⎪
⎨

⎧

>

≤
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛−

=

ahifσ

ahif
a
h

a
h

σγ(h)
2

3
2

2
1

2
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Table3: Parameters of the linear model of coregionalization adjusted for each each site.  
  Overall spatial variability 

and correlation 

First spatial structure Second spatial structure Mean length scales 

Landscape 

type 

Site 

number 

2
pσ  

 

2
rσ  rp,ρ  )( 11 rg  pb1  rb1

 

rp,
1ρ  

)( 22 rg  pb2  rb2
 rp,

2ρ  p
cD    r

cD  
NDVI
cD
 

1 
0.0148 0.00029 -0.91 

Sph(790) 
100 100 -0.91 

/ 
0 0 0.00 626 626 

619 

2 
0.0048 0.00115 -0.68 

Sph(260) 
62.4 67.6 -0.56 

Sph(1290) 
37.6 32.4 -0.89 648 606 

664 

3 
0.0058 0.00615 -0.19 

Sph(400) 
7.5 61.1 0.62 

Sph(800) 
92.5 38.9 -0.54 616 467 

514 

4 
0.0046 0.00083 -0.66 

Sph(340) 
55.3 58.4 -0.40 

Sph(830) 
44.7 41.6 -0.99 484 472 

513 

5 
0.0030 0.00101 -0.55 

Sph(185) 
36.7 31.3 -0.35 

Sph(415) 
63.3 68.7 -0.65 276 285 

289 

6 
0.0064 0.00068 -0.05 

Exp(380) 
93.5 32.4 -0.48 

Sph(1180) 
6.5 67.6 0.99 389 790 

493 

7 
0.0031 0.00010 -0.27 

Exp(216) 
59.3 73 -0.18 

Sph(950) 
40.7 27 -0.44 500 421 

562 

Crop and 

grassland 

8 
0.0007 0.00009 -0.35 

Exp(280) 
79.2 65 -0.55 

Sph(1400) 
20.8 35 0.17 548 683 

506 

9 
0.0025 0.00002 -0.10 

Exp(140) 
72.9 99.7 -0.08 

Sph(650) 
27.1 0.3 -0.99 286 120 

236 

10 
0.0045 0.00006 0.30 

Exp(194) 
69.8 90 0.33 

Sph(1078) 
30.2 10 0.23 489 311 

550 

11 
0.0034 0.00048 -0.01 

Exp(200) 
75.8 69.5 0.26 

Sph(1000) 
24.2 30.5 -0.76 416 459 

1058 

12 
0.0024 0.00018 0.26 

Exp(220) 
48.4 52 0.06 

Sph(750) 
51.6 48 0.46 446 433 

922 

13 
0.0032 0.00032 -0.04 

Exp(150) 
62.2 6.4 -0.31 

Sph(1800) 
37.8 93.6 0.03 930 1455 

1014 

14 
0.0002 0.00005 -0.15 

Exp(150) 
61.3 91 -0.06 

Sph(1800) 
38.7 9 -0.54 893 445 

561 

15 
0.0008 0.00001 0.43 

Exp(60) 
86.2 83.2 0.44 

Sph(700) 
13.8 16.8 0.35 211 232 

215 

forest 

16 
0.0010 0.00120 0.64 

Exp(350) 
39.7 59.6 0.77 

Sph(1000) 
60.3 40.4 0.53 674 577 

841 

17 
0.0007 0.00030 0.95 

Exp(70) 
10 22.2 0.89 

Sph(2000) 
90 77.8 0.97 1504 1399 

1059 Sparse 

vegetation 18 
0.0001 0.00010 0.88 

Exp(255) 
77.7 69.7 0.91 

Sph(2000) 
22.3 30.3 0.82 771 891 

1053 

The subscript r and p stands for red and near infrared, respectively. In the three first 

column, σr
2 and σp

2 measure the overall spatial variability of red and near 

infrared, respectively, over the scene and ρp,r quantifies the overall spatial 

correlation between red and near infrared over the scene. Each image spatial 

structure k (k=1,2) is described by: 1) the elementary variogram model gk (gk is 

either an exponential (Exp) or spherical (Sph) model) function of the range ak (in 

meter); 2) the fractions (in %)  of the overall spatial variability of red r
kb  and 

near infrared p
kb  explained by the structure k; 3) the spatial correlation 

rp
k

,ρ between red and near infrared generated by the structure k. r
cD  and p

cD  (in 

meter) are the mean length scale of red and near infrared, respectively. We 

added the mean length scale of the NDVI NDVI
cD  (provided by Garrigues et al, 

2006a) for comparison purpose. 
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Figure 1: Direct and cross variograms of red (RED) and near infrared (NIR) for the following 

sites a/Barrax03, b/Gilching02, c/Jarvselja01, d/Fundulea01. The gray dashed lines (--) 

are the experimental variograms. The black solid lines represent the fitted variogram 

models. On the Figure of the NIR RED cross variogram the black dash-dot lines (-.-) 

represent the lower ( )()( hhLB rp γγ−= ) and the upper ( )()( hhUB rp γγ= ) bounds of 

the cross variogram model. The parameters of the variogram models are given in 

Table 3.  
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Figure 2: Red (RED) and near infrared (NIR) spectral signature of three types of landscape: 

forest (F); crop (C) and grassland (G); bare soil (BS) and sparse vegetation (SV). The 

solid line represents the soil line. 
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Figure 3: NDVI (a), near infrared (b), red (c) images and near infrared (NIR)/red (RED) plot 

(d) of Barrax03 (crops).  On this site, vegetation discs (VD) are laid over a large bare 

soil background (BS).The NIR/RED plot is computed over a spatial subset of the 

scene. The blue points represent bare soil pixels (associated experimental correlation 

coefficient is ρexp,bs=0.9) and the red points are crop pixels (associated experimental 

correlation coefficient is ρexp,crop=-0.68) 
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Figure 4: NDVI (a), near infrared (b), red (c) images and near infrared (NIR)/red (RED) plot 

(d) of Gilching02. This site is composed of a forest area (F) and two crop areas (C). 

The NIR/RED plot is computed over a spatial subset of the scene. The blue points 

represent forest pixels (associated experimental correlation coefficient is ρexp,bs=0.6) 

and the red points are crop pixels (associated experimental correlation coefficient is 

ρexp,crop=-0.4) 
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Figure 5 :Parameters (σp

2 , σr
2, ρp,r) of the linear model of coregionalization applied to the 

SPOT-HRV scenes under study. The sills σp
2  and σr

2 quantify the overall spatial 

variability of near infrared and red reflectances, respectively, over the scene. ρp,r is an 

indicator of the overall spatial correlation between red and near infrared reflectances 

over the scene. The numbers represent the site number given in Table 1. 
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Figure 6: Comparison of the mean extent of the spatial structure captured by red ( r
cD ) and 

near infrared ( p
cD ) for the 18 SPOT-HRV scenes under study (numeric values given in 

Table 3). The numbers represent the site number given in Table 1.  The dash lines 

represent the threshold Dc,T,3km=671 m above which the image extent of a given 

variable (red or near infrared) is deemed to be not large enough to encompass the 

spatial variability of the spatial structures observed in the image and thus the second 
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order stationarity used to model the variogram of that variable is not consistent with 

the data. 
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Figure 7: Comparison of the mean extent of the spatial structure captured by red( r
cD ), near 

infrared ( p
cD ) and NDVI ( NDVI

cD provided by Garrigues et al., 2006a) for the 18 SPOT-HRV 

scenes under study (numeric values given in Table 3). The numbers represent the site number 

given in Table 1. The dash lines represent the threshold Dc,T,3km=671 m above which the 

image extent of a given variable (NDVI, red or near infrared) is deemed to be not large 
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enough to encompass the spatial variability of the spatial structures observed in the image and 

thus the second order stationarity used to model the variogram of that variable is not 

consistent with the data. 

 

 
 


