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ABSTRACT

Selection plans in plant and animal breeding are driven by genetic evaluation. Recent developments
suggest using massive genetic marker information, known as ‘‘genomic selection.’’ There is little evidence of
its performance, though. We empirically compared three strategies for selection: (1) use of pedigree and
phenotypic information, (2) use of genomewide markers and phenotypic information, and (3) the
combination of both. We analyzed four traits from a heterogeneous mouse population (http://
gscan.well.ox.ac.uk/), including 1884 individuals and 10,946 SNP markers. We used linear mixed models,
using extensions of association analysis. Cross-validation techniques were used, providing assumption-free
estimates of predictive ability. Sampling of validation and training data sets was carried out across and within
families, which allows comparing across- and within-family information. Use of genomewide genetic markers
increased predictive ability up to 0.22 across families and up to 0.03 within families. The latter is not
statistically significant. These values are roughly comparable to increases of up to 0.57 (across family) and
0.14 (within family) in accuracy of prediction of genetic value. In this data set, within-family information was
more accurate than across-family information, and populational linkage disequilibrium was not a completely
accurate source of information for genetic evaluation. This fact questions some applications of genomic
selection.

THIS workevaluates theempiricalperformanceof the
so-calledgenomewideselection strategy formarker-

assisted selection (MAS) in a mouse population, using
massive molecular marker information. MAS techniques
are advocated as a tool for more efficient selection
schemes in plant and animal populations (Dekkers and
Hospital 2002). In general, MAS techniques are based
on tracing the inheritance of the quantitative trait loci
(QTL) of interest throughout the pedigree with the
help of molecular markers. However, the use of MAS
techniques in animal populations is still not much ex-
tended, because of its complexity in practice (Boichard

et al. 2006) and relatively small additional gains. For
example,ChamberlainandGoddard(2006)estimated
by cross-validation an increase in prediction accuracy
over pedigree index (no use of MAS) of, at best, 0.02.
Recent developments in massive single-nucleotide poly-
morphism (SNP) marker genotyping increased the in-
terest for MAS techniques. Dense marker maps capture
much richer information, including not only recombi-
nation events in the genotyped pedigree (i.e., linkage
analysis) but also the populational linkage disequilib-
rium pattern in the genome, i.e., the possibility of pre-
dicting alleles at some loci on the basis of alleles in other
(possibly close) loci. This allows for a much finer de-
scription of the genome.

Genetic evaluation methods and application issues in
MAS in livestock have been extensively described (Fer-

nando and Grossman 1989; Fernando and Totir

2003; Boichard et al. 2006). Roughly, this is a two-step
process: first, putative QTL locations have to be found in
a resource population; later, inheritance of these QTL
loci is traced through linkage analysis, and this in-
formation is used to estimate breeding values. There
are two sources of inefficiency in this approach: first, the
fact of having to ‘‘declare’’ (usually by a statistical test in a
QTL detection experiment) QTL locations implies that
only a few QTL are used, due to lack of power, and their
sizes are usually biased upward by the ‘‘Beavis’’ effect
(Lynch and Walsh 1998). Second, at least at the first
stage, linkage equilibrium has to be assumed between
markers and QTL at the founders; this results in loss of
across-family information and lower accuracies. How-
ever, linkage disequilibrium (LD) analysis (i.e., associa-
tion between markers and QTL) is more effective
because it applies to within- and across-families selection
and because the phase of the QTL can be predicted
across families (Boichard et al. 2006).

Marker-assisted selection techniques considering
several QTL loci exist (Lande and Thompson 1990;
Villanueva et al. 2005). Genomewide selection or
genomic selection is a term used by Meuwissen et al.
(2001). These authors overcome the problems of
linkage analysis by fitting a mixed linear model with
the effects of thousands of two-marker haplotypes or
individual marker loci. In their simulations, breeding
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values were estimated with high accuracies, up to 0.85.
There were two major insights in their work: to reject the
previous stage of QTL position testing and to assume
that, for dense marker maps, LD information alone is
enough to inform about QTL effects. Piyasatian et al.
(2007) showed that genomic selection is also valuable in
the case of crossings between two inbred lines, requiring
a much smaller number of genetic markers.

The main assumption of both methods is that most
QTL explaining genetic variation are in linkage disequi-
librium with available genetic markers, an assumption
that is met in the simulations (Meuwissen et al. 2001), in
the inbred populations (Piyasatian et al. 2007), and, to
some extent, in crossings of outbred populations (Pérez-
Enciso and Varona 2000). It is unknown to what extent
this holds in outbred populations. Nevertheless, if
promises from genomewide selection are fulfilled, very
economically efficient selection schemes can be set up
(Schaeffer 2006; Dekkers 2007).

There is little empirical evidence of practical perfor-
mance of genomewide selection. Sölkner et al. (2007)
compiled several approaches with evidence of high
accuracies in dairy bulls, using progeny-test estimated
breeding values as a proxy for true genetic values.

The objective of this article is to test the performance
of genomewide selection and genetic evaluation, using
data from a heterogeneous stock mouse population
(Valdar et al. 2006a), including 1884 individuals (168
full-sib families) and 10,946 SNP markers and four
different traits (weight, growth slope, body length, and
body mass index). In addition, to gain insight on models
and traits, variance components were estimated for
different linear mixed models including genomic
information.

Predictive ability (the correlation between predicted
and observed phenotypes) was estimated using cross-
validation. Its connection with genetic gain and accuracy
(correlation between true and predicted genetic value)
is shown. Cross-validation techniques considered sam-
pling across families (i.e., choosing entire full-sib fami-
lies) or within families (splitting families into two), thus
disentangling across- and within-family information.

MATERIALS AND METHODS

Mouse population: Recently (Valdar et al. 2006a), a
population of heterogeneous stock mice was used to finely
describe the sources of quantitative genetic variation. This
population has been extensively described and analyzed
(Mott et al. 2000; Mott 2006; Solberg et al. 2006; Valdar

et al. 2006a,b). We refer here to the relevant aspects for this
work. The data are freely available at http://gscan.well.ox.
ac.uk/. The origin of this population is a crossing of eight
inbred strains, followed by 50 generations of pseudorandom
mating. This population is valuable for testing genomewide
selection because, due to the high number of markers, it is
expected that many (about three of every five) QTL loci will be
in complete LD with marker loci (Mott et al. 2000). Indeed,
the extent of LD in this population is small (Valdar et al.

2006a), which indicates high resolution: average R2 among two
loci falls from 0.5 within 2 Mb to 0.2 within 8 Mb, and average
R2 among adjacent loci is 0.62. The family structure and
history of the population are known and therefore interpre-
tation of the results is easy.

Only animals with available phenotype and genotype were
retained for data analysis. Details on the genotyping techni-
ques and choice of SNP can be found in Valdar et al. (2006a).
We discarded animals with ,10,000 genotyped SNPs. Our data
set was composed of 1884 individuals with 10,946 polymorphic
loci (SNPs). Of these, some genotypes were missing, in a very
low frequency of 0.001. These missing values should have a
negligible effect on the analysis. To simplify the analysis, we
imputed them at random from their allelic frequencies; no
attempt of reconstruction based on family information was
made. Pedigree extended over 2272 individuals. Genealogical
information is available on parents of phenotyped mice but
not on their grandparents. No parent of a phenotyped animal
has been phenotyped itself. This genealogy is roughly orga-
nized into 168 full-sib families with 11.21 offspring on average.

We chose four morphological traits: weight at 6 weeks
(hereinafter weight), growth slope, body mass index, and body
length. The heritabilities of these traits are 0.74, 0.30, 0.21, and
0.13 (Valdar et al. 2006b). Environmental covariates affecting
those traits include sex for weight and growth slope, and body
weight, season, month, and day for body mass index and body
length; moreover, there is a ‘‘cage’’ effect considered as ran-
dom (Valdar et al. 2006b). To simplify the analysis, we used
the precorrected (by fixed effects, but not cage) data, which
are available at http://gscan.well.ox.ac.uk/. Analysis with true
phenotypes for weight gave very similar results. An overall
mean was added to these residuals and included in the model.

A note of caution has to be made about the cage effect. The
allocation of animals to cages is not at random—most animals
in the cage are full sibs. From 359 cages in the data, there are
just 8 cages with offspring from more than one sire; conversely,
each full-sib group is allocated to an average of 2.84 cages.
Therefore, it can be considered that cage is a random effect
almost nested within the sire effect. This means that, in the
absence of a polygenic additive effect, the cage effect might
take into account part of the (genetic) family effect.

Two types of methods were needed in this study. The first
type is the use of different statistical/genetic models to
estimate genetic value, conditionally on marker genotypes,
phenotypes, and pedigree. These models are described in the
following. The second type is the empirical evaluation of these
estimates by cross-validation.

Models for genetic evaluation: The following describes the
linear mixed models (in the spirit of BLUP; Lynch and Walsh

1998) that were used for prediction of genetic and environ-
mental values. In short, the models were as follows: model 1,
including polygenic (or infinitesimal) effects, without using
genomic information (this is the most typical model in genetic
improvement nowadays); model 2, including genomic in-
formation (SNP genotypes) but not polygenic effects; and
model 3, which considers both. In addition to the genetic
effects, all models included a random cage effect. The details
of the models are as follows.

Model 1—classical polygenic model: This is the model of choice
nowadays in applied animal breeding and does not rely on
molecular information. This model can be expressed, in
matrix algebra notation, as

y ¼ Xb 1 Tu 1 Sc 1 e;

where b is a vector of environmental effects (an overall mean),
c is a vector of cage effects, and u is a vector of additive genetic
polygenic effects; and X, S, and T are the corresponding
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design matrices. As usual, residuals e are assumed indepen-
dent and to follow a normal distribution, e � N ð0; Is2

e. We
assumed c and u to be random normal effects with a priori
normal distributions

c � N ð0; Is2
c Þ; u � N ð0;Gs2

uÞ;

where I is the identity matrix and G is the additive genetic
relationship matrix (Lynch and Walsh 1998). It is worth
remarking that the purpose of genomewide selection and in
general of any MAS strategy is to be of better predictive ability
than this model.

Model 2—marker-locus effects model: The basic model includ-
ing SNP effects can be described as follows. Consider n SNP
loci. In the jth locus, there are two possible alleles for each SNP
(say 1 and 2), and there are three possible genotypes: ‘‘11,’’
‘‘12,’’ and ‘‘22.’’ We arbitrarily assign the value 1 1

2 aj to the al-
lele 1 and the value� 1

2 aj to the allele 2. This follows a classical
parameterization in which aj is half the difference between
the two homozygotes (Lynch and Walsh 1998). These are
the additive effects of the SNPs and they can be thought of
as classical substitution effects in the polygenic model. It is
possible to further postulate a ‘‘dominant’’ effect, assigning
the value dj to the heterozygous genotype, 12. After pre-
liminary analysis we discarded this option as it did not increase
predictive ability of the different methods (not shown). There-
fore the effects of the different genotypes are 1aj for 11, 0
for 12, and �aj for 22. The effects of the different genotypes
at the n loci sum up to form the genetic effect. The model
for the phenotype (ignoring other effects for the sake of
clarity) is

yi ¼
Xn

j¼1

ðzij ajÞ1 ei ;

where yi is the phenotype of the ith animal, zij is an indicator
covariate for the ith animal and the jth SNP locus, and ei is a
residual term. Hereinafter and for the sake of clarity we refer to
1aj as ‘‘marker-locus effects.’’ A marker-locus effect represents
the effects on phenotype of unobserved genes (QTL) that are
in partial or complete linkage disequilibrium with the marker
locus.

If environmental effects are included, and in matrix
notation, the model becomes

y ¼ Xb 1 Za 1 Sc 1 e;

where a is the marker-locus effects and Z is the corresponding
design matrix. It is possible to fit a as a ‘‘fixed’’ effect, but for the
case of large number of effects and small number of records,
the predictive ability will be very poor (Lande and Thompson

1990; Miller 1990; Meuwissen et al. 2001). Therefore, we
assume that a follows a normal distribution, a � N ð0; Is2

aÞ.
Meuwissen et al. (2001) used a priori information for s2

a (they
divided the polygenic variance by the number of SNP loci),
which matched their simulated population. Our attempt to do
so resulted in worse predictive abilities (not shown). As for the
BayesA and BayesB approaches, substantial a priori information
is needed (number of segregating loci and variances) that we
did not try to guess at.

Model 3—marker-locus effects model and polygenic component: A
simple extension of the previous model is to consider, in
addition to marker-locus effects, polygenic components:

y ¼ Xb 1 Za 1 Tu 1 Sc 1 e:

The polygenic component u here can be thought of as
fitting the genes not accounted for by the marker-locus
effects in a.

Cross-validation: There is extensive literature in model
selection techniques, some of whose criteria have been applied
in animal breeding. In this work we used cross-validation. This
is a robust, nonparametric technique for model selection. The
method consists of splitting the data y into a training data set
(y1) and a validation data set (y2). Model parameters are
estimated in the training data set. Parameter estimates from y1
are then used to predict observations in the validation data set
(i.e., ŷ2 j y1). A function of interest among the predicted and
true observations summarizes the performance of the model
and is assumption free and comparable across models. We used
Pearson’s correlation among predicted and realized observa-
tions in the data set. Cross-validation has also an interpretation
in terms of efficiency of genetic improvement; this is further
developed in the discussion.

In the following, we talk of the correlation rðŷ2; y2Þ as the
‘‘predictive ability’’ (of unobserved records), whereas we keep
the term ‘‘accuracy’’ for the correlation rðg ; ĝÞ between total
genetic value of an individual (g) and its estimate (ĝ). Accuracy
can be approximately estimated from predictive ability, as
shown in the appendix. In our work, ŷ ¼ ĝ 1 ĉ, where c is the
cage effect. Differences in accuracies among models can
be estimated by Drðg ; ĝÞ ¼ Drðy; ŷÞ=ðH VÞ, where H 2 ¼ s2

g=
ðs2

g 1 s2
c 1 s2

e Þ and V2 ¼ s2
ĝ=ðs2

ĝ 1 s2
ĉ Þ. Estimates for these

variance components were obtained from model 1 in Table 1.
Training and validation sets: A key feature in cross-valida-

tion is the choice of the training and validation sets. The first
choice is the size of each set, as there is a trade-off between
precision of the model in the training set and overfitting in the
validation set. Usual recommendations are the validation set
to be one-fifth or one-tenth of the full data set. However, we
have chosen to split the data set into half for training and half
for validation because we consider that, in this context, 1000
animals should be enough to get good estimates of the model.
For example, Meuwissen et al. (2001) fitted 50,000 effects to a
data set comprising 2000 records.

The second and more critical choice is how to split the data
into training and validation sets. As explained above, the
mouse population is composed of several full-sib families with
little or no known relationship among them. We devised two
options. The first option is to sample whole families; i.e., we use
across-family information. The second option is to randomly
split every family into two; i.e., we use within-family informa-
tion. Note that prediction is based on different kinds of
information in each setting. For example, when within-family
information is used, performance is predicted basically from
full sibs using relationships (in models 1 and 3) and from full-
sibs and other families via genomic information (in models 2
and 3). On the other hand, when across-family information is
used, performance is predicted from other families via
genomic information (in models 2 and 3), but it is not possible
to use relationships across families (in models 1 and 3) as these
are unknown. Loosely speaking, across families, the genetic
ties between training and validation data sets are distant
relationships (i.e., at the level of grandparents) and popula-
tional LD. However, within families, the genetic ties are much
stronger, being close relationships as well as populational LD.
In practical selection schemes, this is a more likely setting; for
instance, prospective bulls are chosen among sons of bulls with
good estimated breeding values. The fact of splitting data in
two different ways implicitly evaluates the relative weight of
each source of information. Splitting was repeated at random
10 times to ensure that the results were not due to random
sampling of the data, providing empirical estimates of the
standard errors.
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ANALYSIS

Variance component estimates with the full data set:
The first set of analyses consisted of parameters estima-
tion for the different models, using the whole data set.
Although these estimates are not of direct interest for
the main subject of this work (efficiency of genomic
selection), they help to clarify the different models. Pa-
rameters estimates were obtained in a Bayesian frame-
work from the posterior distributions, using MCMC (in
particular, Gibbs sampling).

Cross-validation of the genomewide predictive ability:
Values for the different unknowns (marker locus effects,
polygenic effects, cage effects) were estimated, from the
training data set, using Henderson’s mixed-model equa-
tions (Lynch and Walsh 1998). Means of the marginal
posterior distributions for the unknowns in the model
were estimated in a Bayesian framework, using Gibbs sam-
pling as well. This marginalization maximizes accuracy
and expected genetic progress (Gianola and Fernando

1986), accounting for uncertainty in parameters (in par-
ticular, variance components), which might be very high
for such small data sets. As discussed before, it was dif-
ficult to come up with adequate priors. Flat priors were
thus used for variance components and fixed effects. In
the cross-validation step, the correlation between the
observed and predicted—from the estimates in the pre-
vious steps—performances in the validation data set was
computed.

Computational issues: In variance component estima-
tion and cross-validation, we used Henderson’s mixed-
model equations (Lynch and Walsh 1998) to compute
solutions for the different models, using homemade
software (available on request from the authors). Flat
priors were used for variance components. Computing
requirements (time and memory) of the mixed-model
equations under these models are formidable, because
for these models the matrix of crossproducts Z9Z to be
included is of big size (10,946 3 10,946) and almost
100% dense. To alleviate this problem, the Gauss–Seidel
with residual updating strategy was used (Legarra and
Misztal 2008).

RESULTS

Variance component estimates with the full data set:
Table 1 summarizes estimates. The results differ for
weight with respect to the other three traits. For growth
slope, body length, and body mass index, estimates of
cage and residual variance are fairly constant across
models. This is not the case, though, for weight, where
cage variance is inflated when the polygenic effect was
not included in the model (model 2). Estimates of the
residual variance indicate roughly the same fit for all
models for growth slope, body length, and body mass
index, but a loss of fit for weight when the polygenic
term was not fit.

As for the effects of individual SNPs (a), they roughly
follow normal distributions a posteriori. This is as ex-
pected because by the nature of the mixed model, they
are severely shrunken toward a mean of 0. As an ex-
ample, for body length the estimated (posterior means)
a effects in model 2 range between �1.61 3 10�3 and
1.51 3 10�3, for a trait with a polygenic additive variance
of 0.02.

Cross-validation of the genomewide predictive ability:
Results are shown in Table 2. Model 1 is the reference, as
it is based on phenotype and pedigree information only.
Across families, model 1 has a low predictive ability,
because there is no family information to rely on, just the
common cage environmental effect. Therefore, models
2 and 3 are expected to perform better, due to the
molecular information. This is the case and the differ-
ence is significant, going up to an increase of 0.22 in
predictive ability.

Within families, models including genomewide in-
formation slightly outperform model 1 in predictive
ability. This gain in predictive ability is not significant,
but nevertheless suggestive and fairly consistent across
traits. Model 2 always has the better predictive ability in
spite of being the simpler one.

Changes in accuracy of the genetic value are shown in
Table 3. For the across-families case, accuracies in-
creased up to �0.5. This is actually not surprising as
these accuracies were close to 0 in model 1. For the
within-families case, the increase in accuracy in pre-
diction of genetic value ranged from 0 up to 0.14 by
using genomic information. It has to be kept in mind,
though, that in this case these values are not significant.

TABLE 1

Variance components estimates for different models of
genomic selection

Model s2
a s2

u s2
c s2

e

Weight
1 4.59 2.12 0.16
2 3.52E-04 3.34 1.94
3 2.52E-04 3.56 2.15 0.19

Growth slope
1 8.37E-04 9.72E-04 8.22E-04
2 1.04E-07 10.30E-04 10.79E-04
3 1.00E-07 2.36E-04 9.65E-04 9.57E-04

Body length
1 0.040 0.048 0.146
2 9.09E-06 0.051 0.150
3 8.58E-06 0.010 0.048 0.144

Body mass index
1 2.49E-04 3.91E-04 18.72E-04
2 0.80E-07 3.94E-04 18.46E-04
3 0.77E-07 0.67E-04 3.75E-04 18.08E-04

Estimated variance components are shown for marker-locus
effects a, random cage effects c, polygenic additive genetic
effects u, and residual e.
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DISCUSSION

Global performance: Genomewide selection tools
show in general similar or better predictive ability than
classical polygenic methods. This is as expected if data
are adequate and underlying assumptions (additivity of
QTL effects, strong linkage disequilibrium among at
least some markers and QTL) are true (Meuwissen et al.
2001). The increase in accuracy of prediction of the
genetic value in our study varied, but it was at best at
�0.14. This value is comparable to values found by sim-
ulations or other data analysis (Meuwissen et al. 2001;
Sölkner et al. 2007). However, it has to be kept in mind
that we have only suggestive results for the within-
families case. The estimators of accuracy are approxi-
mated and dependent on variance components, which
are estimated (see materials and methods). This might
be a source of error. However, this is not the case for the
predictive ability shown in Table 2. This difference in
predictive ability is assumption free and exact (up to
numerical error) and clearly shows better predictive
abilities of the models including genomic information.

Model 3 shows lower predictive ability than model 2
and even sometimes than model 1 (Table 2). One could
expect the opposite, because the polygenic term is ex-
pected to catch all the genetic variability not traced by
genetic markers. The most likely explanation is double:
first, markers capture polygenic resemblance between
relatives (see discussion below); second, for this reason,
polygenic genetic values and ‘‘marker-explained’’ global
genetic values are expected to be extremely collinear,
which deteriorates performance of the estimation.

Intriguingly, results (Tables 2 and 3) show more benefit
from using genomic selection for decreasing heritabil-
ities. Whereas predictive ability is, as expected, lower for
low-heritable traits, the difference in predictive ability
and accuracy of the models including SNP information
increases with decreasing heritability, with respect to the
polygenic model (model 1). If this is confirmed, genomic

selection would be a good tool for selecting low-heritable
traits.

Role of within- and across-family information: We
have split the data in two ways for the cross-validation
approach: across and within families. The comparison
between these two ways shows the relative performance
of each source of information, either close or distant
relatives, respectively. In this work, the information from
distant relatives is equivalent to the population-level
information (indeed even the most distant individuals
in a population are distant relatives). Clearly, in this data
set, information from distant relatives has a poorer pre-
dictive ability (and thus accuracy in prediction of the
genetic value) than information from close relatives, as
shown in Table 2. Therefore family information should
not be discarded for practical use. This fact partly
invalidates the assumption of Meuwissen et al. (2001)
that most genetic variation can be traced by the use of
populational linkage disequilibrium between markers
and QTL. This also invalidates some proposals of
genomic selection (Schaeffer 2006) that assume no
need of genotyping and phenotyping close-relative
animals. The point has been explored in further detail
by Habier et al. (2007), who show that some methods
(BayesB and a fixed regression) capture better the
population LD, which is more useful in the long range,
i.e., after several generations.

Model 2, using genomewide SNP information, shows
good accuracies and predictive abilities, in spite of not
using explicitly pedigree information. This implies that
genomewide selection might be of interest for species
with difficult or no pedigree tracing, like fish (Martinez

2006), self-pollinating crops, or trees (Bauer et al. 2006).
The molecular information would not be used to re-
construct the pedigree (probably with errors) but would
be used ‘‘as is.’’ The accuracy will depend on whether
individuals analyzed together are close relatives or not,
but these relationships do not need to be known.

Accuracies: In our work we estimated by cross-
validation the increase in predictive ability (Table 2).
These estimates can be compared to accuracies found in
simulations (Meuwissen et al. 2001) or other real data
analysis (Sölkner et al. 2007). These authors showed
accuracies in the prediction of genetic value of 0.81–
0.85, for traits of heritability of 0.5 (Meuwissen et al.

TABLE 2

Predictive ability of different models for genomic selection

Model

Trait 1 2 3

Across familiesa

Weight 0.07 0.25 0.20
Growth slope 0.04 0.26 0.19
Body length 0.05 0.16 0.12
Body mass index 0.06 0.17 0.12

Within familiesb

Weight 0.67 0.67 0.63
Growth slope 0.54 0.55 0.51
Body length 0.24 0.27 0.25
Body mass index 0.32 0.35 0.33

a Standard errors �0.03.
b Standard errors �0.02.

TABLE 3

Approximate increase in accuracy of estimation of the genetic
value from model 1 to model 2

Trait Across families Within families

Weight 0.26 0.00
Growth slope 0.57 0.03
Body length 0.40 0.11
Body mass index 0.51 0.14
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2001) and �1 (progeny-tested estimated breeding
values in bulls; Sölkner et al. 2007).

Unfortunately, they did not compare their genome-
wide genetic evaluations with a polygenic model strategy
without genomic information, such as model 1. They
suggest comparison with parents’ information in a poly-
genic model, which is at best 0.71. Further increase could
be achieved, in a polygenic model framework, only by
means of the progeny information. While this is true for
the simulations in Meuwissen et al. (2001), we consider
that this assertion is false in Sölkner et al. (2007), who
found accuracies of �0.8. They used a complex, real
pedigree of dairy bulls. In a cross-validation approach,
they sampled four-fifths of these bulls for training and
one-fifth for validation. However, most of these bulls are
related. It is thus likely that bulls in the validation data set
have some descendants in the training data set. For
example, assume a bull breeding value is estimated from
the information from his father, maternal grandfather,
and four sons. This would result in a theoretical accuracy
of 0.81 (Van Vleck et al. 1987), without using genomic
information.

At any rate, their increase in accuracy might be
considered to be �0.10–0.14. Our results (Table 3) are
comparable. This is uncertain, though, for differences
are not always significant and are higher for low-heritable
traits. Conversely, for a trait with heritability of 0.50, the
increase of 14% in accuracy found by Meuwissen et al.
(2001) would be reflected in an increase in predictive
ability of 10%, which is comparable as well to our results in
Table 2.

Cross-validation in a genetic improvement context:
We addressed validation of the genomewide genetic
evaluation by cross-validation. Cross-validation has a clear
interpretation in a genetic improvement context because
it mimics a genetic improvement process. The objective
of any breeding program is to improve future perfor-
mance of the individuals in the population. In practice,
the breeding process goes on through the analysis of a
series of phenotypes (y1), to estimate breeding values,
these estimators being used to select the next generation
that in turn will express its phenotypes (‘‘future’’ perform-
ances, ŷ2). If these predicted future performances are
used to make breeding decisions (e.g., producing se-
lected animals in the population expressing y2), the
observed phenotypic gain DP depends on the correla-
tion r between ŷ2 and y2, DP ¼ i � r � sy2

, where i is the
selection intensity. This equation reduces to the usual
breeders’ equation (Lynch and Walsh 1998) under the
usual assumptions of the polygenic model P ¼ G 1 E, if
there is no other random effect.

This holds as well for the across-family cross-valida-
tion, where we might want to select individuals on the
basis of information from other families. Therefore the
correlation among predicted and observed perform-
ances in a cross-validation setting is a direct measure of
the efficiency of a breeding scheme applying the pro-

posed model to this set of data. Although this approach
is robust and assumption free, its interpretation in ge-
netic terms remains problematic as far as there are
environmental effects. Another possibility for validation
is the use of quasi-true estimated breeding values
(Sölkner et al. 2007), although this neglects the role
of other phenomena such as genotype–environment
interactions, epistasis, or dominance.

Other models for genetic evaluation: There is an
equivalence between the genomewide marker-locus
effects models and models using markers as indicators
of relatedness (identity-by-state, IBS) (Caballero and
Toro 2002; Habier et al. 2007). We can summarize the
overall genetic value due to marker-locus effects (v) of
individual i as vi ¼

Pn
j¼1 zijkajk , where ajk are individual

SNP effects (aj1 for allele ‘‘1’’ and aj2for allele ‘‘2’’) and
zijk are indicator variables. Assuming small ajk effects, it
comes out that the joint distribution of v is approximately
multivariate normal, with mean ¼ 0 and variance ¼
ZZ9s2

a . Note that v is a ‘‘genomic’’ counterpart of u, the
polygenic breeding value; v might be called genomewide
or genomic breeding value. It can be shown that ZZ9

is related to the matrix of IBS probabilities, as
IBS ¼ ZZ9=4n. The IBS matrix would give the same
information as the identical-by-descent (IBD) (the co-
efficient of coancestry) probabilities if SNPs were fully
informative about their origin [i.e., infinite loci and
different alleles at each loci for every individual in the
base population (Caballero and Toro 2002)]. How-
ever, this is not the case here and two copies of the same
locus might be IBS without being IBD.

Using genomewide breeding values v, a linear model
can be constructed as follows:

y ¼ Xb 1 Tv 1 Sc 1 e

v � N ð0;ZZ9s2
aÞ:

The model is equivalent to model 2 in the sense of
Henderson (1985), i.e., after appropriate transforma-
tion solutions for v are identical. The joint distribution
of v is well defined for positive-definite ZZ9; i.e., its rank is
equal to the size of v (otherwise, likelihood is 0). We tried
this approach, but it led to serious numerical problems
(ZZ9 positive definite but of extremely small determi-
nant) and we did not further pursue this option.

IBS can be thought of as a molecular counterpart of
the additive genetic relationship matrix G, with more
and less information at the same time: more, because we
can trace meiosis sampling among full sibs; less, because
this matrix assumes that two animals sharing the same
molecular information are identical in spite of the pos-
sibility of this being just by chance, without one being
related to the other. A more refined approach is to use as
well the IBD information conditional on molecular and
genealogical information, to reflect relationships among
relatives. Similar ideas have been used in different con-
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texts: genomic control (Yu et al. 2006), refining of poly-
genic models (Visscher et al. 2006), or genetic evalua-
tion (Villanueva et al. 2005). The latter three condition
the IBD state to the available genealogy. The fact that
predictive ability is better using within-family informa-
tion suggests that within-family IBS (i.e., IBD) is impor-
tant and might be worth modeling.

Two such models are (1) the segment-mapping ap-
proach (Pérez-Enciso and Varona 2000), which models
total breeding value as a sum of small segments of the
genome, allowing for linkage, and (2) the use of marker-
assisted relatedness (Villanueva et al. 2005; Visscher

et al. 2006), which models the covariance between
relatives using molecular information conditional on
genealogy. Another possibility is to avoid explicit model-
ing; nonparametric methods might have better predictive
abilities and are robust to departures from the assumed
theory (Fox 2000; Gianola et al. 2006).

Conclusion: Our results suggest, but do not prove, that
genomewide genetic evaluation and selection have better
accuracies and predictive abilities than the classical poly-
genic model. More traits and studies across different
species need to be carried out to further confirm this
hypothesis. Results also prove that within-family infor-
mation, for this data set, is a more accurate source of
information than across-family information. This infor-
mation is relevant for the setup of genetic improvement
programs. Cross-validation has been shown to be a valu-
able tool for this study. Results also show good properties
of genomic selection for the case of unrecorded pedi-
grees, where available tools are scarce. As for its practical
implementation, the use of genomic selection will de-
pend on a cost-benefit analysis of recording of DNA
samples against expected additional economic gains.
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for discussions. We gratefully acknowledge The Wellcome Trust
Centre for Human Genetics, Oxford, for making the heterogeneous
stock data available at http://gscan.well.ox.ac.uk.

LITERATURE CITED

Bauer, A. M., T. C. Reetz and J. Léon, 2006 Estimation of breeding
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APPENDIX: RELATION BETWEEN ACCURACY IN
THE ESTIMATION OF GENETIC VALUE AND

PREDICTIVE ABILITY:

Let us assume y and ŷ are random variables denoting
the realization and the prediction of a phenotype. For a
realization of y, we can write the simple model y ¼ g 1 e,
where g is the overall genetic value and e is a residual
term. Variables g and e are assumed uncorrelated. On
the other hand, ŷ ¼ ĝ. Therefore, the correlation be-
tween observed and predicted phenotype

r ðy; ŷÞ ¼ Covðg 1 e; ĝÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Varðg 1 eÞVarðĝÞ

p

can be reduced to

rðy; ŷÞ ¼ r ðg ; ĝÞsg sĝffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

g 1 s2
e

q
sĝ

¼ rðg ; ĝÞH ;

where H 2 ¼ s2
g=ðs2

g 1 s2
e Þ, i.e., the broad-sense herita-

bility. Therefore, the ‘‘true’’ accuracy might be obtained
as rðg ; ĝÞ ¼ r ðy; ŷÞ=H .

In the case of our work we assumed three random
variables in y: a genetic effect g (with different modeli-
zations across models), the cage effect c, and the residual
e. Therefore ŷ ¼ ĝ 1 ĉ. Following a development as
above, we have

rðy; ŷÞ ¼ Covðy; ŷÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VarðyÞVarðŷÞ

p ;

which might be simplified and split as

r ðy; ŷÞ ¼ Covðg ; ŷÞ
sysŷ

1
Covðc; ŷÞ

sysŷ
:

As an approximation, the second term might be
assumed to be constant across models, because all of
them fitted the cage effect. As for the first term, it can be
further developed by expanding ŷ into ĝ 1 ĉ:

Covðg ; ŷÞ
sysŷ

¼ r ðg ; ĝÞH sĝffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

ĝ 1 s2
ĉ

q 1 rðg ; ĉÞH sĉffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

ĝ 1 s2
ĉ

q :

Assuming rðg ; ĉÞ ¼ 0 (i.e., the cage effect does not
capture genetic information), the second term can be
again neglected (this is likely an approximation). In this
expression there are pseudoheritability terms that in-
dicate the amount of variation in the prediction ex-
plained by the genetic part. This can be assumed to be
fairly constant across models.

It is thus possible to refer, at least approximately,
differences in the predictive ability rðy; ŷÞ among models
to differences in the predictive ability for the genetic
component, rðg ; ĝÞ, as

Drðg ; ĝÞ � Drðy; ŷÞ
H V

;

where H 2 ¼ s2
g=ðs2

g 1 s2
c 1 s2

e Þ and V2 ¼ s2
ĝ=ðs2

ĝ 1 s2
ĉ Þ.
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