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ABSTRACT

We describe a rapid, high-throughput method to
scan for new RNA editing sites. This method is
adapted from high-resolution melting (HRM) analy-
sis of amplicons, a technique used in clinical
research to detect mutations in genomes. The
assay was validated by the discovery of six new
editing sites in different chloroplast transcripts
of Arabidopsis thaliana. A screen of a collection of
mutants uncovered a mutant defective for editing of
one of the newly discovered sites. We successfully
adapted the technique to quantify editing of partially
edited sites in different individuals or different
tissues. This new method will be easily applicable
to RNA from any organism and should greatly
accelerate the study of the role of RNA editing in
physiological processes as diverse as plant devel-
opment or human health.

INTRODUCTION

RNA editing is a process reported in a wide range of
organisms from viruses to mammals and plants where it
has different functions such as regulating gene expression,
increasing protein diversity or reversing the effect of
mutations in the genome (1). RNA editing is defined as a
site-specific modification of RNA molecules, occurring by
nucleotide insertion/deletion, nucleotide substitution or
nucleotide modification, usually by deamination of A to I
or C to U. Occurring via several molecular mechanisms,
different types of editing have been described generally
involving a specificity factor (RNA or protein) that
recognizes the editing site, an enzyme catalyzing the
reaction and sometimes other accessory factors. RNA
editing alters the sequence of different types of mRNAs
but also tRNAs, rRNAs and small regulatory RNAs (2)
(microRNAs). The number of site-specific editing sites
varies considerably between organisms. While about a

thousand have been reported in some early diverging land
plants (3), only a few are known in humans. In many
cases, RNA editing is essential for correct production of
the protein encoded by the RNA, such as in trypanoso-
matid and plant organelles or in humans, where this
process is essential for the absorption of dietary fats in
small intestine by producing the lipid-carrying protein
apolipoprotein B48 (4). In other cases, RNA editing
modulates the functional properties of the encoded
protein as in the case of the glutamate and serotonin
receptors in the central nervous system (5,6).
RNA editing events result in a single nucleotide

polymorphism between genomic DNA and the corre-
sponding RNA sequence. Partial editing is common and
results in a mixed edited and unedited RNA population.
The unpredictability of RNA editing and the possibility of
editing frequency varying with tissue, development and
environmental conditions have made it extremely difficult
to effectively screen systematically for editing events or for
mutants that are affected in the RNA editing processes.
Computational approaches have suggested that editing is
much more prevalent than previously realized, particularly
in primates (7–9), but few of the predicted sites have been
experimentally verified. Previously used methods such as
cDNA sequencing, primer extension or pyrosequencing
are either too expensive, not sensitive enough or too labor
intensive for high-throughput screens (10–12). A one-step,
high-throughput method that allows both the scanning of
transcripts for new editing sites (without any prior
knowledge of their nature or location) and the quantifica-
tion of editing would greatly accelerate RNA editing
research.
We reasoned that techniques used in clinical and

genetics research to detect mutations and determine
allele frequency should be suitable for detecting new
editing sites and quantifying editing. High resolution
melting (HRM) of PCR amplicons is used as a closed-tube
method for mutation scanning and genotyping that does
not require probes or labeled oligonucleotides, and no
purification step is needed (13–18). A PCR is performed
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using a fluorescent double-stranded DNA dye that can
be used in fully saturating conditions. The amplicon is
analyzed by melting—the change in fluorescence caused
by the release of the intercalating dye from a DNA duplex
as it is denatured by increasing temperature is precisely
monitored. The presence of heteroduplexes (containing
one or more mismatches), that melt at lower temperature,
alter the shape of the melting curve.
Here, we report the successful adaptation of HRM

analysis to scan transcripts for new editing sites and to
quantify editing variability in different individuals under
various conditions. Our model is the plant Arabidopsis
thaliana which displays a moderate frequency of C-to-U
editing in mitochondrial and chloroplast transcripts,
but the approach would be easily applicable to RNA
samples from any organism and to any type of nucleotide
substitution or modification editing that results in a
different base being incorporated by reverse transcriptase.

MATERIAL AND METHODS

Template preparation

DNA was isolated from leaves of Arabidopsis Col-0 as
described in Edwards et al. (19). Total RNA was extracted
with an RNeasy minikit (Qiagen Pty Ltd, Clifton Hill,
VIC, Australia) and treated with a DNA-free kit
(Ambion, Austin, TX, USA). DNA-free RNA (3 mg) was
reverse transcribed for 1 h at 508C with the SuperScript III
Reverse Transcriptase (Invitrogen Australia Pty, Mount
Waverley, VIC, Australia) using random hexamers. PCR
and RT-PCR products were cloned in the pGEM-T easy
vector (Promega, Madison, WI, USA).

HRM: amplification and melting conditions

The primers used to scan Arabidopsis plastid transcripts
are given in Supplementary Table S1. They allow the
amplification of fragments of an average size of 500 bp
(ranging from 350 to 1330 bp). The intercalating dye used
was LCGreen Plus (Idaho Technology Inc., Salt Lake
City, UT, USA).
(i) One nanogram of gDNA, (ii) 25 pg of plasmid DNA

and (iii) 3 ml of a 1/100 dilution of cDNA or a mixture
of (i) and (iii) were amplified in a volume of 10 ml using the
LightCycler 480 Probes Master mix (Roche Diagnostics
GmbH, Mannheim, Germany) and 200 nM of each
primer. All PCR reactions were performed in duplicate.
PCR cycling and HRM analysis was performed on an
LC480 machine (Roche). The exact amount of cDNA
used was not determined, but was adjusted empirically
in preliminary experiments to give similar rates of ampli-
fication for a wide range of amplicons to those measured
using genomic DNA template. The approach is very
robust to large differences in cDNA/gDNA ratio.
Short amplicons (60–200 pb) were produced with

the following conditions; one cycle of 958C for 10min;
40 cycles of 958C, 20 s; 608C, 20 s and 728C, 20 s. For
longer amplicons, extension time was increased to 30 s.
The amplicons were then denaturated at 958C for 30 s,
renaturated at 708C for 30 s and melted from 70 to 908C
with 30 signal acquisitions per degree.

The cost per data point for the HRM results was
approximately $0.79 AUD, including the cost of primers,
amplification mix, fluorescent dye and multiwell plates.

Primer pairs which gave PCR fragments with candidate
editing sites were used to re-amplify, clone and sequence
cDNAs (sequencing by Macrogen Inc., Seoul, Korea), at
a cost of approximately $5.60 AUD per sample.

Amplification and HRM analyses

Amplicons were analyzed with the LightCycler 480
software package. First, an absolute quantification
analysis was performed to check the amplification curve
and the Crossing Point (CP) value. Then, a Tm calling
analysis was done to generate melting curves representing
the fluorescence signal (at 450–500 nm) with increasing
temperature, melting peaks corresponding to the negative
derivative (�d/dT) of the fluorescence signal, and to
calculate Tm values.

Transcript scanning. To detect sequence variation
between genomic and cDNA we used the Gene Scanning
Software. This software analyzes the high-resolution
melting curve data to identify changes in the shape of
the curve that indicate sequence polymorphisms. The
melting curves of different samples are normalized using
the fluorescence intensity before and after melting, and
temperature shifted to superimpose the curves and better
compare their shapes. The Gene Scanning Software
generates a difference plot by subtracting the curves
from a reference curve and automatically groups samples
with similar melting curves. To detect editing events, we
compared the amplification product obtained from gDNA
and a mix of gDNA and cDNA, and used the Auto Group
mode with the highest sensitivity value.

Quantitative assay using short amplicons. The editing
efficiency of a particular site was determined by comparing
the shape of the melting peaks and Tm values of RT-PCR
products to known dilution mixes of edited and unedited
plasmids containing the same site.

Poisoned primer extension assay

PPE of RT-PCR products and determination of editing
efficiency were performed essentially as described in
Peeters and Hanson (11) except that the oligonucleotides
used were fluorescently labeled at the 50 end using
6-carboxyfluorescein (FAM) (Sigma Genosys, Sigma-
Aldrich Pty Ltd, Castle Hill, NSW, Australia). PCR
templates were generated using the primers listed in
Supplementary Table S1. Unincorporated primers and
nucleotides were removed using ExoSAP-IT (USB
Corporation, Cleveland, OH, USA) treatment following
the manufacturer’s instructions.

The 50 FAM oligonucleotide (0.5 pmol) was extended
using 1U of Thermosequenase (ThermoSequenase Cycle
Sequencing kit, USB) in a 20 ml reaction containing the
thermosequenase buffer, 100 nM of 3 out of 4 dNTP and
100 nM of the fourth ddNTP in a thermocycler for
35 cycles (30 s at 948C, 30 s at 558C, 10 s at 728C).
PPE products were resolved on 12% acrylamide
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sequencing gels (Sequagel, National Diagnostics, Atlanta,
GA, USA) at 55W. Following electrophoresis, gels were
scanned at 200mm resolution using a Typhoon Trio
imager (GE Healthcare, Amersham, UK) with the
emission filter 520 BP 40. FAM fluorescence was collected
at 488 nm with a photomultiplier tube voltage set at 500V.

The cost of a single PPE reaction came to approx-
imately $5.00 AUD including labeled primer, enzymes and
sequencing gel.

Scans were analyzed using ImageQuantTL 1D gel
analysis software (Amersham Biosciences, Piscataway,
NJ, USA). The bands corresponding to edited or unedited
products were manually defined. The software gives raw
volume data corresponding to fluorescence intensity.
A background volume was subtracted from edited and
unedited band volumes, by defining as a band the location
of either edited or unedited product in the unedited
plasmid and edited plasmid control, respectively. The
editing efficiency (% edited product) for every lane was
calculated as 100�(edited band volume—background
volume for edited band)/(edited band volume—
background volume for edited band) + (unedited band
volume—background volume for unedited band).

RESULTS

HRMdetects single nucleotide polymorphisms between
DNA and RNAwith high throughput

Until recently, special apparatus was required to perform
HRM analysis that was not designed for high-throughput
analyses. However, the latest generation of real-time
PCR machines (e.g. Roche LC480) offers the possibility
of analyzing 384 samples in parallel on a machine not
specifically designed for HRM but with sufficiently
resolutive melting curves to attempt the analysis. We
tested the ability of the LC480 to detect C to U editing
events in transcripts. As we planned to compare amplifi-
cation products from genomic DNA with a C at the
editing sites and RT-PCR products with a T at the same
position, we assayed the detection of C/T heteroduplexes,
by mixing plasmid DNA containing a C and plasmid
DNA containing a T at the same site in various ratios.
We were able to convincingly detect single base-pair
mismatch heteroduplexes that alter the melting curve
shape in amplicons up to 700 bp (data not shown).

To scan transcripts for editing sites, we compared the
melting curves of amplification products from genomic
DNA (homoduplexes) to amplification products from a
mix of genomic (gDNA) and cDNA (containing hetero-
duplexes if the cDNA has been reverse transcribed from
an edited mRNA). The procedure is described in
Figure 1a. Our interest was to gain a complete description
of the editing sites in chloroplast transcripts of the model
plant A. thaliana as an important step towards character-
izing editing factors in plants. To generate amplicons to
be analyzed by HRM, primers originally designed to
screen chloroplast transcripts for transcription, proces-
sing and splicing defects were used (Charles Andrés,
Andéol Falcon de Longevialle, ALCB, Claire Lurin and
IS, in preparation). This primer set comprises 320 pairs

spanning the entire Arabidopsis plastid genome with an
average amplicon size of �500 bp.
Among these primer pairs, 21 couples flank all 28 of

the known editing sites (20). Four of these pairs flank
multiple editing sites. All these pairs were tested and all
21 amplicons were flagged as containing heteroduplexes
by the HRM assay, demonstrating the sensitivity of the
technique (Table 1).

Discovery of six new editing sites inArabidopsis chloroplasts

Out of the full set of 320 amplicons, besides the 21 known
to contain editing sites, 18 other amplicons were found to
give different melting curve shapes from gDNA alone
versus a mix of gDNA and cDNA. The amplification
products were checked by gel electrophoresis and those
presenting more than one band (5 out of the 18) were not
considered further as multiple PCR products obviously
interfere with the melting analysis. To confirm the
remaining 13 candidates, we sequenced cloned RT-PCR
products. For 6 candidates, no difference in the sequence
was found indicating that they are false positives. The
remaining 7 candidate amplicons contained single C to
T changes consistent with RNA editing, covering six new
sites not previously identified in Arabidopsis (Figure 2,
Table 1). One of these new sites was covered by two
amplicons in the screen and detected in both. Five of the
six new sites could be further confirmed by analysis of
public EST databases that revealed sequences containing
the same C/T polymorphisms. No publicly available ESTs
exist for the sixth transcript, accD.

Identifying mutants impaired in editing

The factors involved in RNA editing in plants are still
elusive. Two pentatricopeptide repeat (PPR) proteins have
been reported to be essential for the editing of specific sites
in the chloroplast transcript ndhD of Arabidopsis (21,22),
raising the possibility that this large family of RNA-
binding proteins could constitute the specificity factors
recognizing the sequence around the target C and
recruiting the enzyme to catalyze editing (23).
We are undertaking extensive HRM screening of

Arabidopsis mutant lines lacking different proteins of the
PPR family, to check for defects in RNA editing. One
mutant, clb19, with an insertion in the gene At1g05750
was found to be impaired in the editing of two sites in
the transcripts rpoA and clpP (Figure 3). This mutant
will be described more fully elsewhere (Charles Andrés,
ALCB, Maricela Ramos Vega, Arturo Guevara-Garcı́a,
Marı́a de la Luz Gutiérrez-Nava, Araceli Cantero,
Luis Felipe Jiménez, Claire Lurin, IS and Patricia León,
in preparation). The site in rpoA is one of the six new sites
discovered in the screen developed during this study.

HRM to quantify RNA editing

HRM has been used to detect mutations in heterogeneous
DNA populations and proved reasonably sensitive (15).
We decided to adapt this type of sensitivity test to quantify
editing (the procedure is shown in Figure 1b and differs
primarily from the screens described previously in that
the cDNA is not mixed with genomic DNA before
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amplification and that much shorter amplicons are
required for the best results). We first calibrated the test
with mixes of plasmid DNA containing a range of ratios
of C to T at known editing sites. In short amplicons of
70 bp, as little as 2.5% T was easily detected and melting
peak profiles for amplicons differing by only a few percent
in C/T could be distinguished (Figure 4). In plant
organelles, the extent of RNA editing of some sites can
vary according to the genotype, the tissue or in different
growth conditions (11,24–26). No systematic survey has
been published so far concerning such changes, which may
well have physiological relevance. To gauge the efficacy of
the HRM assay for such a survey, we prepared cDNA

samples from different Arabidopsis genotypes, different
organs, or from plants grown in different conditions.
The cDNAs were amplified, subjected to HRM analysis
and their melting peak profiles were compared to the
ones from plasmid mixes with increasing ratios of T
as compared to C. Five primer pairs flanking four
different sites in the transcripts clpP, accD, ndhG and
rpoA were tested. The results obtained with the HRM
assay were compared to those obtained by a widely used,
but much more labor-intensive poisoned primer extension
(PPE) assay (11). In all, 24 comparisons were made
(6 samples� 4 editing sites). In 18 of the 24 comparisons,
the editing efficiency measured by HRM matched that

Figure 1. Procedures to scan transcripts for new editing sites (a) and quantify editing (b) by high-resolution melting analysis of amplicons. A real-
time PCR is done in the presence of a fluorescent double-stranded DNA-specific dye. At the end of the amplification, amplicons are denatured,
renatured and then a high-resolution melting is performed. The decrease in fluorescence is precisely monitored as the temperature increases causing
the denaturation of the DNA molecules and the release of the fluorescent dye. The presence of less thermostable heteroduplexes in a sample alters the
shape of the melting curves. (a) To scan transcripts, primers spanning the transcripts are designed to give PCR products with a maximum size of
600 pb. For each primer pairs, the shape of the melting curve of a control genomic DNA (cont) is compared to the melting curve of a mix of genomic
DNA and cDNA (exp: experiment). If there is no editing site, both control and experiment (e.g. exp1 shown here, amplicon chloro96) exhibit the
same curve shape and are called as a single group. If there is an editing site within the amplicon, the curve of the experiment will be different from
the control [as shown in exp2; rps14 (37161) within the chloro72 amplicon] and two groups of curves will be called. The differences in the curves are
easily visualized by plotting the difference in signal between control and experiment (shown at the bottom of the panel). (b) To quantify editing in a
sample, primers are designed to generate small amplicons flanking the editing site. Editing standards are produced by cloning amplicons from
genomic DNA for the unedited standard (0%) and from an edited cDNA sample (100%) and by mixing unedited and edited plasmids with
increments depending on the required degree of quantification accuracy. The derivative (�dF/dT) of the fluorescence signal is plotted to show the
melting peak. The shape of the melting peak of a cDNA sample is compared to the shape of the melting peak of the standards, giving an estimate of
the extent of editing in the sample (here around 50%).
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Table 1. Editing sites in A. thaliana plastid genes

Locus (transcript) Primer pair HRM Genome position coding or
non-coding

Codon AA change EST

AtCg00040 (matK) Chloro 260 Yes 2931 CDS 236 Cau H>Y Yes
AtCg00130 (atpF) Chloro 27 Yes 12707 CDS 31 cCa P>L Yes
AtCg00180 (rpoC1) Chloro 39F-21861R yes 21806� CDS 170 uCA S>L Yes

AtCg00170 (rpoB) 23581F-24093R Yes 23898 CDS 811 uCa S>L No
AtCg00170 (rpoB) Chloro 45 yes 25779 CDS 184 uCa S>L No
AtCg00170 (rpoB) Chloro 45 yes 25992 CDS 113 uCu S>L Yes
AtCg00300 (psbZ) Chloro 68 yes 35800� CDS 17 uCa S>L Yes

AtCg00330 (rps14) Rps14.AT.rev-chloro71R yes 37092 CDS 50 cCa P>L Yes
AtCg00330 (rps14) Chloro 72 yes 37161 CDS 27 uCa S>L Yes
AtCg00500 (accD) Chloro 112 yes 57868 CDS 265 uCg S>L No
AtCg00500 (accD) Chloro 113 yes 58642 3’UTR No
AtCg00570 (psbF) Chloro 125 yes 63985 CDS 26 uCu S>F Yes
AtCg00580 (psbE) Chloro 126 yes 64109 CDS 72 Ccu P>S Yes
AtCg00590) petL Chloro 130 yes 65716 CDS 2 cCu P>L Yes
AtCg00065 (rps12) Chloro 140 yes 69553 intron Yes
AtCg00670 (clpP) Chloro 141 yes 69942 CDS 187 Cau H>Y Yes
AtCg00740 (rpoA) Chloro 159, 286 yes 78691

�
CDS 67 uCu S>F Yes

AtCg00840 (rpl23) Chloro 178 yes 86056 CDS 30 uCa S>L Yes

AtCg00890 (ndhB) Chloro 185 yes 94999 CDS 494 cCa P>L No
AtCg00890 (ndhB) Chloro 186 yes 95225 CDS 419 Cau H>Y No
AtCg00890 (ndhB) Chloro 187 yes 95608 CDS 291 uCa S>L No
AtCg00890 (ndhB) Chloro 187 yes 95644 CDS 279 uCa S>L No
AtCg00890 (ndhB) Chloro 187 yes 95650 CDS 277 uCa S>L No
AtCg00890 (ndhB) Chloro 189 yes 96419 CDS 249 uCu S>F No
AtCg00890 (ndhB) Chloro 189 yes 96579 CDS 196 Cau H>Y No
AtCg00890 (ndhB) Chloro 189 yes 96698 CDS 156 cCa P>L No
AtCg00890 (ndhB) Chloro 190 yes 97016 CDS 50 uCa S>L No
AtCg01010 (ndhF) Chloro 204 yes 112349 CDS 97 uCa S>L No
AtCg01050 (ndhD) Chloro 212 yes 116281 CDS 296 cCc P>L No
AtCg01050 (ndhD) Chloro 212 yes 116290 CDS 293 uCa S>L Yes
AtCg01050 (ndhD) Chloro 212 yes 116494 CDS 225 uCa S>L No
AtCg01050 (ndhD) Chloro 213 yes 116785 CDS 128 uCa S>L Yes
AtCg01050 (ndhD) Chloro 214 yes 117166 CDS 1 aCg >M No
AtCg01080 (ndhG) Chloro 218 yes 118858 CDS 17 uCc S>F No

The current list of editing sites in Arabidopsis chloroplast transcripts. The transcript affected is given in the first column, and for each site the primers
used to amplify the cDNA sequence containing the editing site are given. All 34 sites could be detected reproducibly by HRM, including the six
new sites shown in Figure 2 and indicated in bold here. Asterisk indicates an editing site reported in other species [orchids (28) or pea (29)].

Figure 2. HRM screening of Arabidopsis chloroplast transcripts. Six new sites were identified by a high-throughput screen of all chloroplast
transcripts. The duplicate fluorescence difference melting curves of controls (genomic DNA) and experiments (mix of gDNA and cDNA) are shown
for the six new sites.
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Figure 4. Comparative quantification of editing by HRM and PPE. (a) Standards used for the quantification: melting peaks (�dF/dT) of amplicons
containing the sequence surrounding the editing site in ndhG (genome position 118858) with an increasing ratio of T as compared to C at the editing
site (0–100%). (b) Determination of the extent of editing of ndhG (118858) in WT rosette and roots. The percentage of edited molecules is determined
by comparison of the shape of the melting peak with the standards. It is given as a range between the values for the two standard curves on either
side of the sample curve. (c) Poisoned primer extension assay to quantify editing of ndhG (118858). An RT-PCR is done with primers surrounding
the editing site which then serves as a template for the extension reaction of a fluorescent oligonucleotide binding near the editing site. The extension
is stopped by the incorporation of ddGTP at the editing site if the molecule is not edited or at the next C if it is edited. The extent of editing is
determined by the ratios of fluorescence intensity between the two extension products in the gel.

Figure 3. HRM screening of the Arabidopsis clb19 mutant. The clb19 mutant is altered in the editing of two sites: rpoA (genome position 78691) and
clpP (genome position 69942). In both cases, the melting curve corresponding to clb19 has the same shape as the unedited genomic control, indicating
no detectable editing. A site from rpoC1 is shown as a control where clb19 and wild-type samples have similar curves.



measured by PPE (Table 2). In the cases where the two
approaches gave different values, the values were reason-
ably close, generally within 10%.

DISCUSSION

Following optimization of the procedures, we employed
HRM to analyze chloroplast transcripts from A. thaliana,
already extensively analyzed by previous groups (20,27).
This screen covered a total of 126 kb of Arabidopsis
chloroplast transcripts in four amplification plates and
took only 4 days to complete. The screen detected 34
editing sites in total, including all 28 known sites, whilst
discovering 6 new editing sites (Figure 2 and Table 1).
Four of these sites in are coding sequences (rpoA, rpoC1,
psbZ, rpl23) and change the protein sequence translated
from these mRNAs. The other two sites are the first to be
identified in Arabidopsis chloroplast non-coding sequences
(in the 30 UTR of accD and the intron of rps12). Despite
the sensitivity of the screen, only 11 false candidates
needed to be eliminated (a false positive rate of 11/292
or 3.8%), and 5 of those could be ruled out simply by
electrophoresis of the amplicons. This high sensitivity
coupled with a low false positive rate, the simplicity of use
and the affordability of the approach (6 times cheaper per
data point than bulk sequencing of RT-PCR products)
make HRM screening an extremely attractive new tool for
studying RNA editing. We demonstrated that this method
is highly suitable for systematically screening mutants for
a defect in editing by discovering that the Arabidopsis
mutant clb19 fails to edit two sites, in clpP and rpoA.

Furthermore, using small amplicons, HRM is sensitive
and accurate enough to detect < 2.5% editing and to
easily quantify partially edited sites, the editing extent of
which can vary in different genotypes, different organs
and different conditions. Previous quantification tech-
niques such as poisoned primer extension or

pyrosequencing were much more labor intensive, low
throughput and prohibitively expensive for large-scale
surveys.
One of the few drawbacks of the approach is that HRM

analysis alone cannot easily detect how many editing sites
are present, or where within the amplified region the
editing site is positioned. For this, sequencing of the
amplified product is required.
In conclusion, we have demonstrated that a method

originally designed to detect DNA mutations and
genotype individuals in clinical research and diagnostics
can be simply adapted to research on RNA editing.
Currently research in this area is limited by the lack of
cheap, effective approaches for screening for new editing
sites or for mutants affected in the editing process.
The approach described here can be simply and directly
applied to samples from any organism, so this break-
through should stimulate research in many laboratories.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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