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Abstract — Classical selection for increasing prolificacy in sheep leads to a concomitantincrease
in its variability, even though the objective of the breeder is to maximise the frequency of an
intermediate litter size rather than the frequency of high litter sizes. For instance, in the Lacaune
sheep breed raised in semi-intensive conditions, ewes lambing twins represent the economic
optimum. Data for this breed, obtained from the national recording scheme, were analysed.
Variance components were estimated in an infinitesimal model involving genes controlling the
mean level as well as its environmental variability. Large heritability was found for the mean
prolificacy, but a high potential for increasing the percentage of twins at lambing while reducing
the environmental variability of prolificacy is also suspected. Quantification of the response to
such a canalising selection was achieved.

canalising selection / threshold trait / heterogeneous variances / litter size / sheep

1. INTRODUCTION

Selection for increasing prolificacy in sheep, although leading to a better
average litter size in selected lines, also leads to an increase in prolificacy
variability. This phenomenon is well known for qualitative traits, where mean
and variance are linked. Extreme litters are encountered in prolific ewes
(Romanov; Finnish) with five or even more lambs per lambing, which is
obviously unacceptable for ewe and lamb viability. Breeders would like to have
litter sizes of two exactly —and not on average — or as often as possible. In many
situations twins are the most profitable (Benoit, personal communication).

Based on the example of the French Lacaune breed, the aim of this work was
to evaluate if sheep can be selected for the objective: “concentrating prolificacy

* Correspondence and reprints
E-mail: msc@toulouse.inra.fr
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on 2". For that purpose, data consisting of litter size measurements on Lacaune
sheep were analysed, using a direct adaptation to ordered categorical data of
the quantitative genetic model described by SanCristobal-Gatdy. [22]
relative to continuous traits. The hypothesis was stated that factors affect the
underlying mean and/or the underlying environmental variability. These factors
can be environmental, but also genetic. Variance components were estimated,
giving the amount of genetic control on the mean and on the environmental
variability, in a polygenic context. Prediction of the response to a selection
for twins, based on the previous genetic parameter estimates, was derived
using Monte Carlo simulation. Finally, this approach was compared with more
traditional methods.

2. GENETIC MODEL

2.1. Threshold model for polytomous data — Likelihood approach

As Gianola and Foulley [10], Foulley and Gianola [8] or SanCristobal-Gaudy
et al. [23] for example, we consider the threshold Wright model, based on an
underlying Gaussian random variable. Thresholds transform this continuous
variable into a multinomial variable withordered categories. Let us defires
cellsindexed byas combinations of levels of explanatory factors. Multinomial
data are observed:

(Niz, .., Nj, ..o Nig) ~ M (i (g, .., T, ., T)) (1)

with N; as the number of counts in celifor the jth category, andl; the
probability that an unobservable Gaussian random varigbte N (i, 0?)
lies between two thresholds_; and 7; (falls into thej™ ordered category).
Settingrp = —oo andt; = 400, the following is obtained:

M = Pltj_1 < Yi < 5| Yik ~ N (i, o), k€ {1, ..., niz}]

:(D<Tj_l/vi>_q>(fj—l_,uvi)’ )
0 o

wheren;, is the observed number of counts in ceffor all J categories:
Ny = Zj Mjj .

The underlying meang; and variances? are linear combinations of para-
meters to estimate:

wi = XB, (3)
Ino? = plé, 4)

wherex; andp; are incidence vectorg, is a vector of location parameters, and
d is a vector of dispersion parameters.



Litter size variability 251

Estimation and hypothesis testing

The estimation procedure can simply be maximum likelihood, implementing
for example a Fisher-scoring algorithm, exactly as in [8]. Moreover, the test
of Ho : K'6§ = 0vs. H = Ho, whereK is a full-rank matrix, is achieved
with the log-likelihood ratiox = —2(L£; — £o), Where Ly (resp.L£1) is
the log-likelihood of modelMq (resp..M;) corresponding tdHg (resp.Hy).
Asymptotically, the statistig. follows a chi-square distribution under the null
hypothesiHy, with degrees of freedom equal to the difference in the number
of estimated parameters between modétsand.M;.

2.2. Bayesian approach

Furthermore, the Bayesian quantitative genetic model developed by
SanCristobal-Gaudst al.[22] is based upon the underlying continuous variable
Y as follows:

i =10 =X+ Zu, ®)
Ino? = wy = pd +dv, (6)

whereti = (x{,z)" andw;, = (p, g)" are incidence vectord = (B, u’)’

are location parameters, and= (§,V)  are dispersion parameters. The
parameterg andd have flat priors, in order to mimic a mixed model structure,
while u andv represent genetic values, with a joint normal prior distribution:

2
U 2 2 ~ O.U ro'uo'v
(V) log, o0, T ~ N [O, (I‘UUG\, 05 ) ® A] , @)

where® denotes the Kronecker produét|s the relationship matrix between
the animals present in the analysi€,and 2 are additive genetic variances
relative to the location and log variance of the trait, respectively,rasdhe
correlation coefficient between genetic valuesdv. Note that the continuous
random variableY is Gaussian conditional ofu, v). Using a now common
incorrect terminology, the expressions “fixed effects”and “random effects” will
sometimes be used in the following.

Here, focus is on the genetic aspect of the modelling of multinomial data,
by the introduction of two (possibly) related groups of polygenes acting on the
trait mean and log variance respectively.

Following SanCristobal-Gaudst al.[22, 23], a sire model is written with

1
Hi = X:ﬂ + Ezuv (8)

3 , 1, 3
replacing (5) and (6). Vectorsandv are genetic values of sires, and data are

collected on their progeny.
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Model fitting
Letus denot® = (Nj)=1..1yj=1...3) as the observation? = (02, 62, 1) the

LA VA
set of variance component parameters,ard(t’, ¢, y')’' the other parameters
with T = (1j)j=1,..s as the thresholds. The logarithuhof the joint posterior

distribution reads:

L =

- 1 uA-lu uvUA~lv  VAlv
Z Njj In Hij — 2(1 — r2) |: - 2r + i|
i=1 j=1
q_ - (¢
> Ino; >
whereq denotes the number of elements in veatdor v).
Estimation of parameters via the maximisation of.£ with respect to
T, 0, y presents no theoretical difficulty when variance components are known.
A Fisher-scoring algorithm leads to extended mixed-model equations (see
Appendix).
When variance components have to be estimated, we chose to base the
inference on the mode of the log marginal posterior distribution of variance
components?:

o? 040y o2

Ino? — g In(1—r?) 4+ const (10)

02 = Argmax Inp(e?|N), (11)

by extension of the usual case?(= 0) where the previous equation leads to
REML estimates of variance components.

An EM-type algorithm was implemented as in [9,22], using an iterative
algorithm where two systems are involved. The first system consists of
BLUP-like mixed-model equations, where variance components are replaced
by their current estimates. Solutions of these equations give current estimates
of £. The second system updates the variance component estimates. When
r is set to zero, equation (11) reduces to usual REML equations. However,
numerical integration is required for multinomial data; details can be found in
the Appendix.

At convergence, maximura posteriori(MAP) estimates ot are obtained
as a by-product:

¢ = Argmax Inp(¢jo? = 02, N). (12)

3. ANALYSIS OF LITTER SIZE DATA

3.1. Data

Data were collected from Lacaune ewe lambs born over 11 years as the result
of inseminations made from 157 sires in 57 flocks. These flocks were a part
of a selection scheme implemented in the Lacaune population since 1975 for
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Table I. Significance effects of explanatory factors on the underlying mean. Reference
model iISYEAR+ SEASONt+ AGE+ HERD+ SIRE

Factor Test statistics df p-value
—YEAR 15.8 10 0.1
—SEASON 104 1 0.001
—AGE 80.2 3 0
—HERD 557.2 56 0
—SIRE 788.2 156 0

increasing prolificacy and operating on farms through a sire progeny test, as
described by Perrett al.[20]. In the experimental design, each ram offspring
averaged 25 daughters spread among five different flocks (fel&&D) and

each flock had ewe lambs of about eight different sires thus providing a suitable
sample for the estimation of genetic values. The sample used in this study was
limited to data for rams (facta8IRE) with at least 30 controlled daughters.

It considered only the first lambing after natural oestrus in ewes of 4 age
classes at mating<( 7, 7 to 11, 11 to 14> 14 months of age, factokGE),

and obtained in two lambing seasons (November-December and March-April,
factor SEASONL. This sample involved the results of 11 723 litter sizes over
11 years (facto EAR.

Litter sizes greater than 5 were grouped into the 5th and last category. The
percentages of litters with 1, 2, 3, 4 and 5 or more lambs were 41.1, 47.5, 9.8,
1.5 and 0.1 respectively. The overall prolificacy of these ewes at their first
lambing was 1.72.

3.2. Homoscedastic models

A usual homoscedastic threshold model is fitted, including the fixed effects
YEAR HERD, SEASONAGE in an additive way, and a random sire effect
(u/2), symbolically written as:

E(Y|u) = YEAR+ HERD+ SEASONt AGE + u/2 (13)

on the underlying mean, whete~ N1s7(0, 62A) is the vector of sire genetic
values and\ is the relationship matrix. Interactions were not taken into account
in the model because of non-(or bad) estimability or statistical non-significance.
The significance tests for the explanatory factors on the underlying mean are
shown in Table I.

The estimation procedure of Gianola and Foulley [10] gave an estimate of
. . ~2
heritability equal tch, = 0.39.
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Table II. Significance effects of explanatory factors on the underlying environmental
log variance.

Reference Added Test

model  factor Nin @ 1y /B © G/ Oin Stattistics  df p-value

const. +YEAR 156 1.38 1.6 20.4 10 0.026
+SEASON 5236 1.09 1.02 0.22 1 0.64
+AGE 619 1.25 1.22 3.6 3 031
+HERD 11 3.85 11.17 61.04 56 0.3
+SIRE 30 4.63 13.8 237.6 156 810°

SIRE +YEAR 1.48 16 10 0.1
+SEASON 1.01 002 1 0.89
+AGE 1.28 4.5 3 021
+HERD 62.55 714 56 0.08

@ Minimum number of observations among all levels of each factor.

® Observed ratio of highest variance over lowest variance among levels of each
factor.

3.3. Heteroscedastic models

The previous additive model for the mean was used throughout the next
analyses.

(i) First, factors that have a significant effect on the underlying trait environ-
mental variability were sought. A likelihood ratio test was implemented. The
reference model is the homoscedastic model with only fixed effects, including
a sire fixed effect (model of the form (8)-(9), withawnor v):

{E(Y) = YEAR+ HERD+ SEASONt+ AGE + SIRE
0. (14)
InVar(Y) = const.

The current model for the significance test for, say, WigARfactor, is for
example:

| E(Y) = YEAR+ HERD+ SEASONt AGE+ SIRE )
" linvarcy) = YEAR

Table Il gives the results of a forward selection procedure for the model on
log variances. It shows that only the sire (considered as a fixed effect) has a
significant effect.

(ii) Then a mixed sire model (8)-(9), with = (YEAR HERD, SEASON
AGE), u = SIREandv = SIRE is fitted in order to estimate the variance

components. This givel§, = 0.34 (se. = 0.037),62 = 0.23 (se. = 0.027)
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Figure 1. Plot of estimated andv genetic values of the 157 numbered sires, in genetic
standard deviation units.

andr = 0.19 (se. = 0.092). These variance component estimates are approx-
imately the same when the correlatidmetween the two sets of breeding values

is arbitrarily set to 042 = 0.25 andh. = 0.36, see also [23]).

The fixed effects and breeding value estimates are compared with those
obtained with the mixed homoscedastic threshold model. They are close to
each other, although the ranking is not exactly the same (not shown).

A plot of estimated breeding valu€g, V) (Fig. 1) allows to apprehend the
joint ability of the 157 sires to produce high or low litter size on averagg
with a high or low variability.

In Table IIl, two sires with a mean prolificacy of the same order of mag-
nitude are compared. The former has a high dispersion while the latter is
canalised. The heteroscedastic model detects these differences and predicts
slightly better the probabilities for the five categories. The total number of
parameters is higher in the heteroscedastic than in the homoscedastic model,
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Table Ill. Comparison of two sires. Expected probabilities correspond to an environ-
ment with average effect.

Sire Meanprol. G Vv  Model My I, Tz T TII5

raw data 0.40 0.43 0.14 0.03 0.00
44 1.80 0.738 0.283 homosc. mod. 0.48 0.42 0.08 0.01 0.00
hetero. mod. 0.46 0.36 0.13 0.04 0.01
raw data 0.34 0.59 0.07 0.00 0.00
83 1.73 0.621 —0.625 homosc. mod. 0.49 0.47 0.04 0.00 0.00
hetero. mod. 0.45 0.48 0.06 0.01 0.00

but the likelihood ratio test infers that the former better fits the Lacaune data,
accounting for the extra number of parametprgdlue= 3x 107>, see Tab. Il).

The high estimate of genetic varianeﬁ% & 0.23) and of heritability Iﬁj =
0.34) can be viewed as a great potential for the population to be canalised
toward the phenotypic optimum of two (twins are economically the best), with
areduction of the environmental variability. The next sectionis a first attempt to
guantify the expected response to such a selection, as was done for continuous
traits [22].

4. PREDICTION OF THE RESPONSE TO CANALISING
SELECTION OF PROLIFICACY IN THE LACAUNE BREED

4.1. Objective

One of the general objectives is the minimisation of discrepancies from an
optimum
Mo = (ITo1, ..., gj, ..., g 3)

of the descendence performances.

The simple example of sheep breeders who wish to maximise the proportion
of twins, first prompted this work. A single lamb and more than three lambs
are economically undesirable. The optimum is tiikp= (0, 1,0, ...,0). In
the remainder of the text, the focus will be on this particular target. Obviously,
generalisations are straightforward without any conceptual addition.

4.2. Selection schemes

Simulated selection schemes were run 1 000 times in order to have accurate
empirical responses to canalising selection. A fixed numtygrof unrelated
sires were mated ta unrelated dams each, producinglaughters per sire
family. Each daughter had one record (litter size), and the sgpefformances
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in a sire family was used to evaluate this sire. Different indices were compared
and are detailed later. For the likelihood-based indices, animals were treated
as if they were unrelated. True variance components were used (otherwise
mentioned). After sire ranking)s sires were selected and produgemales

for the next generation. The selection scheme was hence the same as in
SanCristobal-Gaudgt al. [22], except that the phenotype was not directly

n+v
y=u+u+exp<7>s

but was set tgif y lied in the intervalzj_;, 7j].

Let us denote by the sire,j the categoryIT; the probability that father
has daughters with a litter size equaltir j in the {1, 2, 3, 4, 5} set,n; the
number of daughters of siighat have 3 litter size,l (n;) the index of sird
with n; = (Ni1, ... Nig), stzl nj = n.

Two phenotypic selection indices were considered:

Ni2
Ipo(ni) = Yy (16)

the empirical estimate dfl;,, where the inde® stands for phenotypic ard
denotes on the observed scale;
if the discrete trait is treated as continuous, as in [22], the index is:

lpc(n)) = (i — Yo)* + , (17)

whereC stands for continuous (data are considered as sacapds are the
empirical mean and variance, respectivelynoandy, = 2.

Then, four selection indices were defined, using estimated breeding values
U; andv; (when an heteroscedastic model is used) ofisiva the observedd)
or underlying U) scale. The estimatéisandv; are MAP estimates of breeding
values (see paragraph 2.2, likelihood-based estimates (index

ILhomo(Ni) = @ (M) —® <T1L_UA'/2> (18)

Oe Oe

and o, = \/305/4-1- exp(n + 02/2), wherehom means that the model is
homoscedastic;

lneto(n) = [l = @ (L_“/Z) _ o (w) (19)

Oe¢ji Ogj

anddei = \/305/4 + exp(n + Vi /2 + 302/8), wherehetmeans that the model
is heteroscedastic;
lthomu(Ni) = (1 + Gi/2 = Yo)?, (20)
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with yo = 2372 and
Ithew (M) = (1 + Gi/2 = Yo) + (307 + expn + Vi /2 +307/8)),  (21)

with yp = 2322

Particular parameters were chosen in order to mimic the Lacaune population
analysed in the previous section, = 30,ns = 5, n = 30 or 100,r = O,

02 = 0.64,02 = 0.25, u andn such that the mean prolificacy equals 1.7 and
the phenotypic variance equals 0.71= 0.311,7, = 2.193, 73 = 3.456, and
T4 = 4.637.

Data were also generated with = 0.001 and likelihood calculations were
performed witho? = 0.25 and vice versa, to apprehend the impact of using a
wrong model on selection efficiency.

Moreover, the model was slightly complicated by adding a fixed effect
with two levels, say /dERD factor. Each sire was given at generationa
proportionw;; (resp. - «aj) of daughtersin herd 1 (resp. 2), with drawn from
a uniform distributiom (0, 1). The following parameterisation was adopted:
the two levels had effects equal goand —a, respectively. The particular
value 22 = 1.5 was used in the simulations. It corresponds to a large effect
encountered in the analysis of the Lacaune data.

At this point the following question arises: how can one introduce fixed
effects in the index of selection when the relation between breeding values and
phenotype (or index) is nonlinear? In the traditional linear case, let us denote
4 + Ui the estimated index of animiain environmenk. Evidently, the ranks
of these indices do not depend on the environments. This is not the case in the
threshold model since the ranks of

A 7 — i — Ui 71— i — G
Moix=2> (72 lfk I) - (71 iLk I) (22)
Oik Oik

do depend on environmekt In our particular case, the aim was to select sires
giving the maximum of twins whatever the herd. The chosen index was

1 1
[Lheto = énz,i,kzl + Enz,i,kzz (23)
since each sire has a probability gf2lof having a daughter in herd 1, by con-
struction. More generally, each likelihood-based intlgxof equations (18),
(19), (20), and (21) is replaced by

1 1

—| Lk ke =1 k2. 24
2L,k1+2|_,k2 (24)

The effect of the herd was not taken into account in the phenotypic inBioes
andPC.
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4.3. Results

The six selection indices are compared in terms of mean prolificacy (Fig. 2),
phenotypic standard deviation (Fig. 3) with the corresponding genetic progress
forv(Fig. 4), and percentage of twins (Fig. 5) during 20 generations of selection,
andn = 100 daughters per sire. The shape of thgenetic progress is the
same as the shape of the phenotypic mean in Figure 2 (not shown). Similarly,
the percentage of quintuplets (not shown) behaves like the phenotypic standard
deviation (Fig. 3). More importantly, the equivalence of indices corresponding
to the same model, no matter the scale in which it is calculated (Observed or
Underlying), is to be mentionedchomObehaves like_.homU, andLhetOlike
LhetU.

The phenotypic variance and the percentage of quintuplets are stabilised
by the PO index, while the phenotypic mean tends very slowly towards the
optimum. ThePC index shows no progress in the mean prolificacy. This can
be explained by the fact that the strong effect of the environment is not taken
into account; this omission increases the residual variance and hence drastically
decreases the heritability. The selection is consequently quite inefficient in
moving the mean towards the target. The selection is nevertheless very efficient
in decreasing the variance. In contrast the likelihood-based indices show a fast
increase in the main criterion, that is the twin percentage and consequently the
mean prolificacy. Because of the discrete nature of the data, the strong increase
in the mean is accompanied by an increase in phenotypic variance. As soon as
the population has reached the optimum on average, the phenotypic variance
decreases provided that a heteroscedastic model is used (ihtiet3and
LhetU). If not, the variance and the percentage of quintuplets are maintained
at a high and constant level. Note that #€ index, also leading to a high
genetic progress farbut with a lower mean than thdnetOandLhetUindices,
shows a reduction in phenotypic variance.

Since data are discrete, the link between the mean and variance is so strong
that the underlying genetic progressvinwhich is indeed high for thehetO
andLhetU indices (one genetic standard deviation gain in 10 generations of
selection), is not visible on the phenotypic scale until the mean stops increasing.
Itis however possible to slow down the genetic progressmbrder to privilege
the genetic progress @fand its phenotypic expression. This can be achieved
by putting different weights in the index, like:

Ihetu(N) = Wy (i + Gi/2 — Yo)* + W, (307 + exp(n + Vi /2 + 305/8)) . (25)

For Figure 6, the particular values; = 1 andw, = 50 were chosen.
Compared to thePO index (Fig. 6), the mean evolves faster towards the
optimum, while the variance decreases, showing that the weightedliheti

has the highest performances whatever the point of view (mean or variance
evolution).
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Figure 2. Evolution of phenotypic means for the six indices of selection. Simulations
were performed witi, = 30,ns = 5, n = 100,r = 0, 02 = 0.64, 02 = 0.25,
n=0.61,n=-0.6,a=15,1; =0.311,1p = 2.193,73 = 3.456, andr, = 4.637.
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Figure 3. Evolution of phenotypic standard deviations for the six indices of selection.
Simulation parameters as for Figure 2.
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Figure 4. Genetic progress of v expressed in genetic standard deviation units. Simu-
lation parameters as for Figure 2.
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Figure 5. Evolution of twin percentages for the six indices of selection. Simulation
parameters as for Figure 2.
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Figure 6. Joint evolution of phenotypic mean and standard deviation. In@#Gesnd

LhetU with weights 1 and 50 on mean and variance. Simulation parameters as for
Figure 2.

When a parameter? is set to 0.252 in the heteroscedastic model, while its
true value is O, then the selection based on the heteroscedastic it &or
LhetUacts as if the genetic varianag was already nulli.e. the indiced_hetO
or LhetU are quite equivalent to indicahomOor LhomU in this case. For
example, the mean prolificacy is only 3% lower with heteroscedastic than with
homoscedastic models, while the phenotypic standard deviation is also 2%
lower after three generations of selection. This means that the heteroscedastic
approach does not slow down the efficiency of the selection if a higher genetic
variance inv is wrongly put in the model.

The previous figures aimed at understanding the global long-term behaviour
of some canalising selection indices. In practice, for the particular Lacaune
breed, the short-term response to selection is given in Table IV in terms of
mean prolificacy, phenotypic standard deviation, underlying genetic progress
and percentages of single, twin, triplets, quadruplets and quintuplets or more.
In this casen = 30 progeny per sire is assumed.

5. DISCUSSION

The first aim of this work was the analysis of the genetic components of
litter size in the Lacaune sheep breed. A liability model was chosen, as is
often done for the analysis of polytomous data in animal genetics. A high
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Table IV. Performances of six selection indices= 30,02 = 0.252.

Gen. Index Average prolificacy Standard deviatidi; IT, T3 II5 IIs

Phen. u Phen. Y,
0 1.71 0 0.71 0 42.4 457 10.3 1.4 0.12
PC 1.72 0 0.71 0 415 46.4 106 1.4 0.11
PO 1.74 0 0.72 0 40.6 46.7 11.0 1.6 0.13
LhomO 1.84 0 0.75 0 35.3 48.7 135 2.2 0.21
LhetO 1.82 0 0.75 0 35.4 48.7 13.2 2.1 0.19
LhomU 1.83 0 0.75 0 35.5 48.6 13.4 2.3 0.20
LhetU 1.82 0 0.75 0 36.0 48.6 13.1 2.1 0.20

5 PC 1.76 0.09 0.71 —-0.14 39.1 479 11.3 15 0.12
PO 1.82 0.19 0.74 —-0.10 35.9 48.9 13.1 2.0 0.17

LhomO 2.02 0.58 0.80 0.02 26.0 50.8 18.8 4.0 0.45
LhetO 2.00 0.55 0.78 —0.10 26.1 51.5 18.5 3.6 0.34
LhomU 2.02 0.58 0.80 0.02 26.1 50.7 18.8 4.0 0.46

Lhetu 2.00 0.55 078 —-009 26.1 515 18.5 3.6 0.35

heritability estimatehﬁ = 0.34 on the underlying scale) was found for mean
prolificacy. This value is greater than estimates generally found in the literature
but it was observed before in this particular sheep population by Badin[1].
Although the structure of the data seems suitable for giving unbiased heritability
estimates, according to Engatlal. [5] and Engel and Buist [6], some authors
like Matoset al. [15] remark higher heritability estimates with a sire model
than with an animal model for litter size. Other estimation procedures could
have been chosen such as the quasi-score used by Jafteaic[12], or
MCMC techniques. The only advantages of an EM approach are the certainty
of convergence of the algorithm to a local minimum of the function to optimise,
and the slight modification of the traditional REML equations. But the need
for a MC step in the EM algorithm leads to heavy computations, which may
tell in favour of full MCMC techniques.

The infinitesimal model proposed by SanCristobal-Gaatal. [22] for
continuous traits was extended here to polytomous tra#tsa continuous
underlying variable, allowing the modelling of the environmental variability as
is usually done for the mean. The year, herd, season and age have no significant
effects on the variability of litter size in the Lacaune population, but the sire
factor has an important influence. The inclusion of the relationship matrix
allows the interpretation of the sire variangg of the log residual variances
in the underlying scale as an additive genetic variance. The estimate of this
parameter was found equalrfé = 0.23; it corresponds to a maximum value
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of the ratio of sire variances on the underlying scale equalltg/o2,, =
eXp(Vmax — Vmin) =~ €Xp(6oy) ~ 18, which is pretty high. At present, this value,
however, has no comparison in the literature.

The second aim of this work was the prediction of the response to a selection
for homogenising litter size around the target of two lambs per lambing. This
problem is already complicated in standard situations, due to nonlinearity.
An immediate extension of the work of Im and Gianola [11] shows that the
parent-offspring regression is nonlinear for polytomous data with more than
two categories. Some of the heritability estimates proposed by Magnussen
and Kremer [13] cannot be extended to multiple-category data. Analytical
expressions for the selection response of a binary trait given by Foulley [7] are
unfortunately not feasible when a multiplicative model is set on the underlying
environmental variance. The simulations performed in the previous section
were imposed by these analytical complications.

Quantitatively, canalising selection is less efficient here than for continuous
traits, due to the relationship between phenotypic mean and variance for discrete
traits. The Lacaune situation is particularly difficult since one aspect of the
objective is the increase of mean prolificacy, whose consequence (the increase
of phenotypic variance) has an opposite action on the other aspect of the
objective (reduction of the environmental variance). Despite a high genetic
progress on the underlying environmental variance, only a small part of this is
reproduced on the observed scale.

In fact, the model assumes a constant genetic variance in the mean value of
the underlying variable’ and fixed threshold values that define a limit to the
possible reduction in phenotypic variance, corresponding to the case in which
Var(Y) = 2. At the limit, the expected proportions of litter sizes are equal
to 0.12, 0.76, 0.11, 0.003 and 1) in increasing order. No reduction in the
genetic variance was envisaged for this theoretical limit. More flexible models,
derived from a physiological analysis (as in the work of Mariahal. [14]),
or involving the effects of QTLs or major genes on mean prolificacy, might
probably be required to make such mid- and long-term predictions of the
response to canalising selection more realistic.

Quialitatively, the analysed indices can be ranked on the basis of their related
selection responses. In every case, the indices based on a heteroscedastic
model LhetOandLhetU) gave the best results for this criterion. A gain in the
selection of categorical traits based on a threshold model over a linear model
was already pointed out by Meuwissenal.[17]. Moreover, the omission of
an environmental factor with large effect, like tHERDin the simulations, has
disastrous consequences on the selection, stressed by the nonlinearity between
breeding values and index. Long-term figures were givenin order to understand
the global dynamics of certain canalising selections. So far, the selection
objective had been the increase of twin proportion for the next generation.
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In practice however, short- or mid-term figures are interesting for breeders.
Then, generation-dependent weights in the selection indices can be envisaged,
generalising the use of weights as in index (25):

Wi + Gi/2 — Yo)? + Wo (305 + exp(n + Vi/2+ 302/8))  (26)

or
D Gl (27)

j=1,J

for generationt, these weights should be chosen optimally to maximise a
selection objective over generations:

Z Z Co,j tI1o,jt- (28)

t=1Tj=1J

To be fully comprehensive, the quantitl ; in equation 27 must be calculated
over all the possible levels of environmédeds in (23):

> Pl i, (29)
k

wherep ; is the incidence of levédin the whole population. Economic studies
will estimate weightgg ; ; (Benoit, personal communication).

One must note that the Lacaune population analysed in this paper has been
selected for increasing the mean litter size. The observed high heterogeneity
in sire variances may be due to the presence of polygenes controlling the
residual variance (sensitivity to the environment), as was done in this paper.
Heteroscedasticity may also be due to a major gene controlling the mean and
segregating in the population, with the progeny of homozygote sires being less
variable than heterozygotes. A canalising selection will favour homozygotes
by reducing the variability, and pertaining polygenes will move the population
mean to the optimum. The existence of such a major gene is currently being
tested by Bodiret al. [3]. However, the genetics of reproduction traits is
difficult (see for example Bodiet al. [2]), and no tool is currently available
for fully understanding the genetic determinism of litter size variability.
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APPENDIX

This appendix is devoted to the parameter estimation for multinomial data.
In order to shorten algebraic expressions, we define the following notations:

T — Mi
Ol” == )
o]
o = P(ajj),
3 2
exp \Nily + éav
£ = for a sire model (30)

of

1 for an individual model

1
(x{, —4) for a sire model

t = 2 (31)
(X, Z) for an individual model
= for a sire model

(pl, ) for an individual model
whereg is the density function of the standardised normal variable.

The maximisation of£ with respect t@ can be achievedaa Fisher-scoring
iterative algorithm. Each iteratidrconsists in solving a linear system:

g2t Al Alt=1] gL
] @-e=[E] @

whereE denotes expectation.
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Here and in the followingeiogio andaij¢i; are replaced by their limit in
790 —> —oo andr; —> +oo respectivelyj.e. by 0.

The Fisher-scoring algorithm requires the information matrix, which can be
obtained from the Hessian matrix and the fact that (equation (1))

ENj = ni+l'lij. (34)

Elements of the gradient of are equal to:

|
%ZZJ<E—M) forj=1,...J—1
a‘L'j ; gj Hij Hi,j+1 ’ ’ ’

DL 1gh ¢y —djs 1 o
—=—) ti— Njj —— — Qo—r—Qy|,
a0 L o Z ! IT;; 1—r2 |: ¢ oy y}’:|

| J
0L 1 aiidi — i j_1Pi -1 1 _ oy _
=3 Wi E N;j e e 112 ny—r—u§290 ,

Iy i—1 =1 I Ov
(35)
whereQ2~ denotes a generalised inversefwith
00
2= (3.3 @)
and
00

The results presented in [8] are a special case of these equations with
andr = 0.

We present hereafter the elements of the inverse of the Fisher information
matrix:
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32L .

—E =0 forj #k—1,k k+1,
8‘L’jatk

E 92.L _ Ztl I+¢I] ¢i,j+1 - ¢ij _ ¢ij - ¢i,j71 ’
9700 i j1 I

2L 1 Pi
—E =) Wn.&—
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(38)

Link to the Gaussian case

As in Gianola and Foulley [10], terms appearing in the derivatives of log-
likelihood .£ have some link to the terms of the Gaussian case. For example,

the parallel between
2
Yi—miy _
(F")

(equation (14b) in Foullegt al.[9]) and

aijdij — ot j—1Pi,j—1
- 2N

Y
= ZnijE[( Iko__ MI) |tj—l < Yk < ‘Ej:| — Nit
i

j

in 9.L/dy is interesting to highlight.
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Similarly, in 82.£/062,
1 (P — bi.j-1)> i — i j—1Pi -1
o? Z " |: I * Ij;

| j=1
=Z—IJ2{1+E2|: tk MI|Tj1<Yik<Tj:|

Yik — Wi 2
—E[( L ) |r,-_1<Yik<rj”
Oj

corresponds t85 in the continuous case, and
I

J
}Zn_ (tijBij — ot j—16hi.j-1)> _ ij¢ij — aij-1dij1 n O‘ﬁ‘ﬁij - “fjflqbi,kl
41_1 : Hﬁ I ITj;

1 Yie — i\
= ZZnij 2E p | Tj—1 < Yik < Tj
i i

o (Yo — i\ Yic— i \*
+E P a— 1 <Yk <7 |—E . |71 < Yik < Tj
I I

to the simpler expressioﬁ‘;ﬁ# in the 3%.£/dy? equation for the continuous
case (equation (14d) in [9]).

Variance component estimation

The first system (33) gives updated location parameters to solve the Fisher-
scoring equations.

The second system is relative to the dispersion parameters. Newton-Raphson
equations are:

~ [82 In p(az|N)i|[t_l] (aﬁm ~ aAzn_u> _ [a In p(02|N)i|[t_1]

9(0?)2 902 (39)

It can be proven, as in [9], that the previous system can be written as
92.L aLT Y sy gL
o o 902

whereE. and Var. denote expectation and variance respectively, relative to
o A [t=1] o .
the distribution of¢|[N, 02 . A usual large sample approximation of this
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distribution is given by

Alt=1] At alt]
N o e (84,61), (41)

wherefm is the solution of the system (33) aéa] the inverse of the coefficient
matrix of the same system.

The first order derivative and the second order derivative of (40) have already
been calculated (see (35) and (38)). However, their conditional expectation and
variance have no explicit expressions, so that numerical integration is needed to
calculate the right-hand side and the coefficient matrix oftbguations (40),
and is clarified in the following.

Svalues are randomly drawn from the normal distribution

;~N(;t Cm) s=1...S (42)

and used to get approximations

AL 1 0L
Eeor 5 2 52 &
2L .
3(0-2)2 SZ 3(0-2)2(;5)

2
L .1 3L 1 |1 0L
Varg— == — -2y = . 43
e S;[W@] [S;w@g} (43)
Another possible and simpler systenvihtakes only account of

2L

Eca(orZ)2
in the coefficient matrix of (40). This produces an EM-type algorithm ([9]).

Throughout the algorithm, in order to avoid numerical problems due to null
extreme categories, null probabiliti€k; were set to a minimum value (0.01
here) like in Misztakt al.[18].

Programmes are written in fortran 77 using the NAG library [19] and are
available on request.



