
HAL Id: hal-02671417
https://hal.inrae.fr/hal-02671417

Submitted on 31 May 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bayes factors for detection of quantitative trait Loci
L. Varona, L.A. García-Cortés

To cite this version:
L. Varona, L.A. García-Cortés. Bayes factors for detection of quantitative trait Loci. Genetics Selec-
tion Evolution, 2001, 33 (2), pp.133-152. �hal-02671417�

https://hal.inrae.fr/hal-02671417
https://hal.archives-ouvertes.fr


Genet. Sel. Evol. 33 (2001) 133–152 133
© INRA, EDP Sciences, 2001

Original article

Bayes factors for detection
of Quantitative Trait Loci

Luis VARONAa,∗, Luis Alberto GARCÍA-CORTÉSb,
Miguel PÉREZ-ENCISOa

a Area de Producció Animal, Centre UdL-IRTA, c/ Rovira Roure 177,
25198 Lleida, Spain

b Unidad de Genética Cuantitativa y Mejora Animal,
Universidad de Zaragoza, 50013 Zaragoza, Spain

(Received 8 November 1999; accepted 24 October 2000)

Abstract – A fundamental issue in quantitative trait locus (QTL) mapping is to determine the
plausibility of the presence of a QTL at a given genome location. Bayesian analysis offers
an attractive way of testing alternative models (here, QTL vs. no-QTL) via the Bayes factor.
There have been several numerical approaches to computing the Bayes factor, mostly based on
Markov Chain Monte Carlo (MCMC), but these strategies are subject to numerical or stability
problems. We propose a simple and stable approach to calculating the Bayes factor between
nested models. The procedure is based on a reparameterization of a variance component model
in terms of intra-class correlation. The Bayes factor can then be easily calculated from the
output of a MCMC scheme by averaging conditional densities at the null intra-class correlation.
We studied the performance of the method using simulation. We applied this approach to QTL
analysis in an outbred population. We also compared it with the Likelihood Ratio Test and we
analyzed its stability. Simulation results were very similar to the simulated parameters. The
posterior probability of the QTL model increases as the QTL effect does. The location of the
QTL was also correctly obtained. The use of meta-analysis is suggested from the properties of
the Bayes factor.

Bayes factor / Quantitative Trait Loci / hypothesis testing / Markov Chain Monte Carlo

1. INTRODUCTION

Mapping of quantitative trait loci (QTLs) is a rapidly evolving topic in
Statistical Genomics. Several procedures have been described for mapping
QTLs in experimental crosses [10,20,21] and in outbred populations [1,14,
33]. In all these settings, hypothesis testing is one of the most delicate and
controversial issues.

∗ Correspondence and reprints
E-mail: Luis.varona@irta.es
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From a Bayesian perspective, a procedure was described by Hoeschele
and van Raden [16,17]. It allows the estimation of QTL effects, and it
has been implemented using Monte Carlo methods in crosses [27,29] and
in outbred populations [18,28]. In a Bayesian setting, QTL detection involves
the calculation of the Bayes factor (BF) or the posterior probability of the
models [19,22]. The Bayes factor provides a rigorous framework for model
testing in terms of probability, and it does not require assuming any asymptotic
property as it does for the Likelihood Ratio Test (LRT). Unfortunately, the exact
calculation of general BF is not feasible for relatively complex models [19]. For
this reason, Monte Carlo methods, such as the Harmonic Mean Estimation [24]
or the Monte Carlo marginal likelihood [3], have been developed, as reviewed
by Gelman and Meng [7] and Han and Carlin [11]. Moreover, some other
alternatives for providing posterior probabilities have been suggested [4,8].
Among these methods, the Reversible Jump Markov Chain Monte Carlo [8]
has been used in the scope of QTL detection [13,18,28,30,32]. This method
provides a useful tool for calculating the posterior probability of each model,
although it becomes more difficult as the complexity of the models increases
(multiple markers or multiple alleles at the QTL).

Following the point null Bayes factor approach [2], García-Cortés et al. [6]
described a procedure to compare nested variance component models from the
perspective of a Dirac Delta approach. The objective of the present paper is
to describe a point null approach to calculate the Bayes factor using a Markov
Chain Monte Carlo method. The method was compared with LRT and its
performance and stability in QTL mapping.

2. MATERIAL AND METHODS

2.1. Theory

We compare models that only differ by the presence of a QTL. These are
considered as nested models because the parameters of the simple model (ω)
are a subset of the parameters of the complex model (θ,ω). Following the
procedure described in the Appendix, if we compare two nested models, one
complete (A), and one reduced (B), BF can be calculated from the following
simple expression:

BF = pA (θ = 0)

pA (θ = 0|y) (1)

where pA (θ = 0) and pA (θ = 0|y) are the prior and posterior densities of θ.
First, we will apply this procedure to a simple QTL model, and, later on, we

will analyze a mixed QTL model which also includes polygenic effects.
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2.1.1. Simple QTL model

Calculation of Bayes factor

Now, we present the Bayes factor for a model containing a QTL effect over
a no-QTL model. Consider the following model (model 1):

y = µ+ Zq+ e

where y contains the phenotypic records, µ is the overall mean, Z is the
incidence matrix relating observations to QTL effects (q) and e is the vector of
residuals, q and e are assumed to be normally distributed:

q ∼ N(0,Qσ2
q)

e ∼ N(0, Iσ2
e )

with σ2
q being the variance explained by the QTL, σ2

e , the residual variance, and
Q, the relationship matrix between QTL effects. Model 1 can be reparameter-
ized as:

y = µ+ e∗

where:

e∗ = Zq+ e.

Consequently,

e∗ ∼ N(0,V)

V = ZQZ′σ2
q + Iσ2

e = σ2
p

[
ZQZ′h2

q + I(1− h2
q)

]

where h2
q = σ2

q/σ
2
p is the proportion of phenotypic variation explained by the

QTL, and σ2
p =

(
σ2

q + σ2
e

)
is the phenotypic variance.

The joint distribution of all variables in model 1 is:

p1(y,µ, σ2
p, h2

q) = p1(y|µ, σ2
p, h2

q)p1(µ)p1(σ
2
p)p1(h

2
q)

where:
p1(y|µ, σ2

p, h2
q) ∼ N(µ,V)

p1(µ) = k1 if µ ∈
[
− 1

2k1
,

1

2k1

]
and 0 otherwise, (2)

p1(h
2
q) = 1 if h2

q ∈ [0, 1] and 0 otherwise,

p1(σ
2
p) = k2 if σ2

p ∈
[

0,
1

k2

]
and otherwise, (3)



136 L. Varona et al.

where k1 and k2 are two small enough values to ensure a flat distribution over
the parametric space.

The null hypothesis model is the no-QTL model (model 2):

y = µ+ e
where:

e ∼ N(0, Iσ2
p).

Then, the joint distribution of records and parameters is:

p2(y,µ, σ2
p) = p2(y|µ, σ2

p)p2(µ)p2(σ
2
p)

where we can assume that prior distributions p2(µ) and p2(σ
2
p) are identical to

equations (2) and (3), respectively, and

p2(y|µ, σ2
p) ∼ N(µ, Iσ2

p).

From equation (1):

BF12 =
p1(h2

q = 0)

p1(h2
q = 0

∣∣ y)
= 1

p1(h2
q = 0

∣∣ y)
(4)

because p1(h2
q = 0) = 1.

2.1.2. Mixed QTL model

Let us now consider a mixed inheritance model (model 3) that includes
polygenic effects (u):

y = µ+ Z1u+ Z2q+ e

where u ∼ N(0,Aσ2
u), A being the polygenic relationship matrix and σ2

u the
polygenic genetic variance, Z1 and Z2 are incidence matrices. Notation and
distribution of random QTL effects (q) and residuals (e) are assumed to be the
same as in model 1.

This model can again be reparameterized as:

y = µ+ e∗

where:

e∗ = Z1u+ Z2q+ e,

consequently,

e∗ ∼ N(0,V)

V = Z1QZ′1σ
2
q + Z2AZ′2σ

2
u + Iσ2

e

= σ2
p

(
Z1QZ′1h2

q + Z2AZ′2h2
u + I(1− h2

q − h2
u)

)
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where h2
u = σ2

u/σ
2
p is the proportion of phenotypic variation explained by

polygenes and σ2
p is the phenotypic variance

(
σ2

u + σ2
q + σ2

e

)
.

Records and parameters are jointly distributed as:

p3(y,µ, σ2
p, h2

q, h2
u) ∝ p3(y|µ, σ2

p, h2
q, h2

u)p3(µ)p3(σ
2
p)p3(h

2
q, h2

u)

where:

p3(µ) = k1 if µ ∈
[
− 1

2k1
,

1

2k1

]
and 0 otherwise, (5)

p3(h
2
q, h2

u) = 2 if h2
q + h2

u ∈ [0, 1] and 0 otherwise,

p3(σ
2
p) = k2 if σ2

p ∈
[

0,
1

k2

]
and otherwise. (6)

Note that, assuming prior independence, marginal priors of h2
q and h2

u are:

p3(h
2
q) = 2− 2h2

q = Beta(1, 2)

p3(h
2
u) = 2− 2h2

u = Beta(1, 2).

Model 3 will be compared to the following null hypothesis model (model 4):

y = µ+ Z1u+ e

which reduces to:
y = µ+ e∗

where:
e∗ = Z1u+ e,

consequently

e∗ ∼ N(0,V)

V = Z1AZ′1σ
2
u + Iσ2

e = σ2
p

(
Z1AZ′1h2

u + I(1− h2
u)

)

p4(y,µ, σ2
p, h2

u) ∝ p4(y|µ, σ2
p, h2

u)p4(µ)p4(σ
2
p)p4(h

2
u)

where priors for µ and σ2
p are the same as in model 3, equations (5) and (6),

respectively. Prior distribution for h2
u is

p4
(
h2

u

) = U (0, 1) = p3
(
h2

u|h2
q = 0

)
.

U denotes a uniform distribution. As before, model 4 is a particular case of
model 3 when h2

q = 0.
The BF of model 3 versus model 4:

BF34 =
p3(h2

q = 0)

p3(h2
q = 0

∣∣ y)
= 2

p3(h2
q = 0

∣∣ y)

as p3(h2
q = 0) = 2.
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Table I. Cases of simulation for the simple and mixed QTL models.

QTL variance Polygenic variance ∗ Location

Case I 0 50 –
Case II 10 40 30
Case III 20 30 30
Case IV 20 30 10
∗ In the simple QTL model polygenic variance was always set to 0.

2.2. Simulation

2.2.1. Simple QTL model

a) Simulation

A two-generation pedigree was simulated, 15 sires were mated to 5 dams
each, with 5 offspring per dam. Four different cases were simulated as
described in Table I, with different heritabilities and locations of the QTL.
A single chromosome of 60 cM in length was simulated with four completely
informative markers located at 0, 20, 40 and 60 cM. Phenotypes and marker
genotypes were assumed to be known in all animals. Simulation of phenotypic
records was performed by an overall mean (µ), a random QTL effect (q) and
a residual (e). Twenty replicates were run per case, except in case II, where
1 000 replicates were run to compare BF with the Likelihood Ratio Test (LRT).

b) Calculation of the Marker Relationship Matrix (Q)

The (co)variance matrix (Q) at the candidate QTL position was obtained
as the probabilities for individuals of sharing alleles identical by descent [23].
The genetic origin of marker alleles was unambiguously known. In this case,
the probability of identity by descent was easy to calculate by comparing
the haplotypes of the flanking markers between both half- and full-sibs. In
these cases, the relationship matrix between sibs (i and j) at position x can be
calculated from:

q(i, j) = 1

2

2∑

Hi=1

2∑

Hj=1

δHiHj(x)

where δHiHj(x) is the probability for chromosomes Hi and Hj of sharing a
replicate of the allele at position x.

Several cases can be considered in relation to the structure of markers
between parents and offspring, where λ is the genetic distance between markers.
Probabilities of identity by descent at position x are:
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1. Both haplotypes present the same alleles at the flanking markers and in the
same phase as their parents

δHiHj(x) =
[
(1− rx)

2 (1− rλ−x)
2 + (rxrλ−x)

2
]

(1− rλ)
2

where rx, rλ−x, rλ are the recombination fraction between the right marker
and position x, between the x and the left marker and between both markers,
respectively.

2. Both haplotypes share both markers but in a different phase to their parents

δHiHj(x) =
[
(1− rx)

2 r2
λ−x + (1− rλ−x)

2 r2
x

]

r2
λ

·

3. Both haplotypes do not share any markers and the haplotypes are in the same
phase as their parents

δHiHj(x) =
[
2 (1− rx)

2 r2
λ−x (1− rλ−x)

2 r2
x

]

(1− rλ)
2 ·

4. Both haplotypes do not share any markers but they are in a different phase
to their parents

δHiHj(x) =
[
2 (1− rx)

2 r2
λ−x (1− rλ−x)

2 r2
x

]

r2
λ

·

5. Both haplotypes only share the right marker

δHiHj(x) =
[
(1− rx)

2 (1− rλ−x) rλ−x + r2
x (1− rλ−x) rλ−x

]

(1− rλ) rλ

·

6. Both haplotypes only share the left marker

δHiHj(x) =
[
(1− rλ−x)

2 (1− rx) rx + r2
λ−x (1− rx) rx

]

(1− rλ) rλ

·

The coefficient of relationship between parents and progeny is always 0.5.
Relationship matrices in cases involving more complicated pedigrees or non-
informative markers can be calculated after an explicit analysis [15,31] or
numerically by using MCMC [9,25].
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c) Calculation of the Bayes factor

Density p1(h2
q = 0

∣∣ y) suffices to obtain BF (equation (4)). This value can
be obtained from the Gibbs sampler output by averaging the full conditional
densities of each cycle at h2

q = 0 using the Rao-Blackwell argument. The
Gibbs sampler algorithm involves updating samples from the full conditional
distributions, which are:

f (µ| y, h2, σ2
p) ∼ N

[
(1′V−11)−11′V−1y, (1′V−11)−1

]

f (σ2
p

∣∣ y, h2,µ) = χ−2
[(
(y− µ)′V−1(y− µ), n− 2

)]

f (h2
q

∣∣µ, y, σ2
p) =

1

(2π)
n
2 |V| 12

exp

{
−(y− µ)′V−1(y− µ)

2

}

where n is the number of records.
Note that h2

q is involved in the structure of V, and this is not a standard
probability distribution. Thus, a Metropolis-Hastings step [12] within each
Gibbs sampling cycle was performed. The length of the Gibbs sampler was
10 000 cycles after discarding the first 1 000 iterations. A genomic scan was
performed, in which, BF was computed every cM.

d) Meta-analysis

From the definition of BF

PO = BF× PrO

where PO is the Posterior odds between models and PrO is the Prior odds.
Let us consider the successive simulated replicates (n different data sets) as a
sequential number of experiments. Then, the joint posterior odds is

PO =
n∏

i

BFi × PrO

where BFi is the Bayes factor calculated from the ith replicate.

e) Likelihood Ratio Test

In case II of simulation (10% of phenotypic variation explained by a QTL),
1 000 replicates were simulated. In every replicate, BF and LRT were calcu-
lated. LRT was computed according to the following expression:

LRT =
L1

(
µ̂, ĥ

2

q , σ
2
p

)

L2
(
µ̂, σ̂ 2

p

)
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where L1

(
µ̂, ĥ

2

q , σ
2
p

)
is the likelihood under the model 1 at maximum likeli-

hood estimates
(
µ̂, ĥ

2

q , σ
2
p

)
and L2

(
µ̂, σ̂ 2

p

)
is the likelihood under the model 2

at maximum likelihood estimates under this model. Maximum likelihood
estimates were obtained through a simplex algorithm [26].

Twice the logarithm of the Likelihood Ratio Test (LLRT) was calculated
to compare with limits of significance with a chi square distribution of 1 and
2 degrees of freedom as suggested by Grignola et al. (1996). Later on, LLRT
was compared to the logarithm of the Bayes factor (LBF).

2.2.2. Mixed QTL model

The population structure was as in the previous model with the simulation
parameters given in Table I. The simulation model included a random polygenic
effect, and in all cases σ2

q + σ2
u = 0.5σ2

p . Bayes factors were calculated at
positions of 10, 30 and 50 cM. The Bayes factor was computed from the
output of a Gibbs Sampler using the argument of Rao-Blackwell, as before.
The calculation of Q matrix was performed as in the previous chapter. The
numerator relationship matrix (A) between polygenic effects was calculated
from the pedigree information [23].

Conditional distributions involved are the same as in model 1, except that
here

V = σ2
p

[
ZQZ′h2

q + ZAZ′h2
u + I(1− h2

q − h2
u)

]
,

and the conditional sampling for h2
u requires an extra Metropolis-Hastings step

at every iteration. Twenty replicates were performed for each of the four
different cases of simulation.

Stability Analysis

Two replicates of case II (10% of variation was located on the QTL) were
analyzed 1 000 times with Monte Carlo chains of 20, 100, 500, 2 500 and
10 000 iterations. Means and variances of BF and posterior probability were
calculated for every case.

3. RESULTS

3.1. Simple QTL model

The results of the single QTL model are presented in Table II for the four
different cases of simulation. Following Kass and Raftery [19], values of
the Bayes factors were classified into five categories according to posterior
probability: a) smaller than 0.5 (BF < 1), b) between 0.5 and 0.762 (1 <
BF < 3.2), c) between 0.762 and 0.909 (3.2 < BF < 10), d) between 0.909 and
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Table II. Average posterior mean estimates of heritabilities and posterior probability
of QTL model, and distribution of number of replicates in categories of BF in the
simple QTL model.

I (0%) II (30 cM-10%) III (30 cM-20%) IV (10 cM-20%)

Position 0.32± 0.18 0.29± 0.15 0.25± 0.11 0.12± 0.09
h2

q 0.11± 0.04 0.14± 0.04 0.19± 0.05 0.18± 0.04
P(QTL) 0.11± 0.14 0.72± 0.28 0.96± 0.07 0.96± 0.07
BF < 1 20 4 0 0
1 < BF < 3.2 0 6 1 1
3.2 < BF < 10 0 3 4 3
10 < BF < 100 0 4 3 1
BF > 100 0 3 12 15

0.990 (10 < BF < 100), and e) greater than 0.990 (BF > 100). The posterior
probability of the presence of a QTL depended on its effect rather than on its
relative position on the chromosome, because the simulation assumed equally-
informative and spaced markers. In case I (h2

q = 0), the no-QTL model had a
higher probability than the QTL model in all replicates, and the percentage of
replicates, when the QTL model was more likely, increased with the effect of
the QTL (cases II, III and IV).

In the context of the simulation study, the properties of posterior estimates
by repeated sampling are also presented in Table II. It is interesting to note that
both the average of posterior mean estimates of h2

q and the position were close
to the simulated values, especially as the QTL effect increased. The posterior
mean estimates of h2

q were biased upwards when the QTL effects were small,
because of the effect of the lower bound of the parametric space. The average
position at the maximum Bayes factor was close to the simulated value, and the
average posterior probability of the QTL model increased to 0.96 in cases III
and IV (h2

q = 0.20).
Meta-analysis results from the joint analysis of the 20 replicates are presented

in Figures 1 to 4. Conclusive evidence for a QTL together with an accurate
estimation of its location were observed in cases II, III and IV. In case I, when
the no-QTL effect was simulated, the maximum PO was 2 × 10−25, and the
no-QTL model was far more likely than the QTL model.

Finally, we compared the log-likelihood criteria (LLRT) with the logarithm
of BF (LBF) in 1 000 replicates of case II (h2

q = 0.10). As can be observed in
Figure 5, both criteria were strongly related. In replicates, the correlation coef-
ficient between these two criteria was higher than 0.99. An LLRT greater than
5.99 is exhibited by 62.1% of replicates which represented the 5% of the first
type error, when chi-square with 2 degrees of freedom was assumed. Moreover,
78.4% of replicates presented an LLRT greater than 3.84, corresponding to the
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Figure 1. Genomic scan with total posterior odds for case I of simulation for the
simple QTL model.
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Figure 2. Genomic scan with total posterior odds for case II of simulation for the
simple QTL model.
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Figure 3. Genomic scan with total posterior odds for case III of simulation for the
simple QTL model.



144 L. Varona et al.

0

5E+59

1E+60

1.5E+60

2E+60

2.5E+60

0 0.1 0.2 0.3 0.4 0.5 0.6
�����������	��


�
��
��
�
�

�
��

Figure 4. Genomic scan with total posterior odds for case IV of simulation for the
simple QTL model.
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Figure 5. Relationship between LLRT and LBF in 1 000 replicates in case II of
simulation for the simple QTL model.

same level of significance with a chi-square with 1 degree of freedom. For BF,
66.3% of replicates provided a positive LBT, implying a greater probability of
the QTL model than of the no-QTL model.

3.2. Mixed QTL model

Table III shows the results obtained for cases without QTLs. In these cases,
the most probable model was the “no-QTL” model in almost all replicates.
Nevertheless, in 3 out of 60 replicates, the model including QTL effects
had larger posterior probabilities than the “no-QTL” model. The presence
of polygenic genetic variance may lead to wrong estimates of the QTL effect,
because of similarity of relationship matrices.
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Table III. Average posterior mean estimates of heritabilities and posterior probability
of QTL model, distribution of number of replicates in categories of BF in the simple
QTL model, and results of the meta-analysis in case I of the mixed QTL model.

Location

0.1 0.3 0.5

h2
q 0.10± 0.04 0.12± 0.05 0.13± 0.04

h2
u 0.38± 0.08 0.36± 0.08 0.33± 0.08

P(QTL) 0.14± 0.14 0.19± 0.28 0.20± 0.17
BF < 1 20 18 19

1 < BF < 3.2 0 0 0
3.2 < BF < 10 0 2 1

10 < BF < 100 0 0 0
BF > 100 0 0 0

POST. ODDS 2.87× 10−20 5.64× 10−18 4.65× 10−15

P(QTL) TOTAL 0.000 0.000 0.000

It can also be observed that a spurious estimate of σ2
q appeared when the

mixed inheritance model was used. As in likelihood procedures, variances in
Bayesian methods were constrained within the positive values, but

(
σ2

q + σ2
u

)

was accurately estimated.
The most sensible action is to test whether the probability of presence of

a QTL is small enough to justify the use of the simple infinitesimal model.
The Meta-analysis shows that evidence against a QTL is conclusive along the
chromosome.

Consider the second case of simulation (Tab. IV). It can be observed that
the probability of the presence of a QTL was smaller than in the equivalent
simulation case when σ2

u = 0. The power of the analysis decreased because of
the complexity of the model, with the presence of two genetics effects (QTL
and polygenic). However, when all replicates were analyzed jointly via the
meta-analysis, the posterior probability of QTL presence is almost 1. As in
Table III, the posterior mean estimates of σ2

q were still greater than the simulated
values, but the difference between simulated and estimated values was smaller.

Results of the third and fourth cases of simulation are presented in Tables V
and VI, respectively. In these cases, the probability of the presence of a
QTL was greater than 0.5 at the true position of the QTL, and the probab-
ility decreased as the distance between the true position of the QTL and the
position being analyzed increased. If the replicate estimates were pooled in a
meta-analysis, the position of the QTL was estimated accurately, although the
posterior mean estimates were still greater than the corresponding simulated
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Table IV. Average posterior mean estimates of heritabilities and posterior probability
of QTL model, distribution of number of replicates in categories of BF in the simple
QTL model, and results of the meta-analysis in case II of the mixed QTL model.

Location

0.1 0.3 0.5

h2
q 0.17± 0.06 0.17± 0.07 0.16± 0.07

h2
u 0.33± 0.09 0.34± 0.10 0.34± 0.09

P(QTL) 0.51± 0.33 0.52± 0.37 0.43± 0.31
BF < 1 9 11 11

1 < BF < 3.2 5 1 6
3.2 < BF < 10 2 4 2

10 < BF < 100 3 2 1
BF > 100 1 2 0

POST. ODDS 575.90 78 748.59 7.11× 10−4

P(QTL) TOTAL 0.998 1.000 0.001

Table V. Average posterior mean estimates of heritabilities and posterior probability
of QTL model, distribution of number of replicates in categories of BF in the simple
QTL model, and results of the meta-analysis in case III of the mixed QTL model.

Location

0.1 0.3 0.5

h2
q 0.17± 0.06 0.20± 0.06 0.18± 0.05

h2
u 0.30± 0.08 0.29± 0.08 0.29± 0.09

P(QTL) 0.53± 0.33 0.70± 0.29 0.54± 0.31

BF < 1 10 5 9
1 < BF < 3.2 3 4 4

3.2 < BF < 10 3 5 4

10 < BF < 100 3 3 2
BF > 100 1 3 1

POST. ODDS 4.46× 105 1.71× 1014 1.48× 106

P(QTL) TOTAL 1.000 1.000 1.000

values. If the QTL was located in a centromeric position, then any scanned
position along the chromosome suggested its presence (Tab. V). In contrast,
if the QTL was located in a telomeric position, then distant positions did not
support the existence of a QTL (Tab. VI).



Bayes factors for QTL detection 147

Table VI. Average posterior mean estimates of heritabilities and posterior probability
of QTL model, distribution of number of replicates in categories of BF in the simple
QTL model, and results of the meta-analysis in case IV of the mixed QTL model.

Location

0.1 0.3 0.5

h2
q 0.19± 0.05 0.16± 0.05 0.14± 0.04

h2
u 0.29± 0.10 0.34± 0.10 0.33± 0.10

P(QTL) 0.64± 0.32 0.48± 0.36 0.35± 0.25
BF < 1 7 12 13

1 < BF < 3.2 5 2 6
3.2 < BF < 10 1 0 0

10 < BF < 100 4 6 1
BF > 100 3 0 0

POST. ODDS 2.03× 1013 33.336 3.47× 10−8

P(QTL) TOTAL 1.000 0.971 0.000

Finally, a stability analysis was performed with two replicates of case II
with the mixed QTL model. As can be observed in Table VII, the Monte
Carlo approach described here is stable and accurate to estimate the Bayes
factor or posterior probability, when the number of iterations is moderately
large (2 500 or greater). Estimates of Bayes factor are unbiased, even when a
small number of iterations are considered. Posterior probabilities are slightly
biased with a small number of iterations, because of the range limits between 0
and 1. In the present study, all replicates were analyzed with 10 000 iterations
after discarding the first 1 000. Thus we can conclude that the Bayes factor or
posterior probabilities are accurately estimated.

4. DISCUSSION

We have developed a stable procedure to calculate the Bayes factor in a QTL
analysis framework. The percentage of replicates that assigns strong evidence
of QTL presence increases with the QTL effect. BF also allows to determine
the position of the QTL.

Equation (1) avoids the instability of other MCMC approaches to obtaining
the BF. The BF estimate from (1) is stable and can be computed with a relatively
short chain, as shown in Table VII. The results are consistent with the rapid
mixing of the variables observed by García-Cortés et al. [6], after integrating
out the random effects. This fact represents a great advantage over other
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Table VII. Mean (Standard Deviation) of 1 000 replicates of case II in two cases of
the mixed QTL model.

Case I Case II

BF Prob. BF Prob.

True 9.16 0.901 1.86 0.650
20 9.16 (5.14) 0.843 (0.163) 1.86 (2.45) 0.413 (0.335)
100 9.16 (3.05) 0.884 (0.078) 1.86 (1.31) 0.567 (0.210)
500 9.16 (1.61) 0.898 (0.023) 1.86 (0.62) 0.633 (0.084)
2 500 9.16 (0.70) 0.901 (0.008) 1.86 (0.28) 0.648 (0.034)
12 500 9.16 (0.36) 0.901 (0.004) 1.86 (0.13) 0.650 (0.016)

numerical approximations to the Bayes factor or posterior probabilities such as
the harmonic mean [24] or the Reversible Jump Markov Chain Monte Carlo [8].
However, the procedure is not general in the sense that it can be used only in
the context of nested models. This is not a serious disadvantage in QTL
studies, where the interest is usually centered in ascertaining whether a QTL
is segregating at a given position. Comparison of nested models (QTL vs. no-
QTL models) is required. This approach cannot be generally applied to other
situations, i.e., testing a non-linear model vs. a linear model.

In relation to other procedures, such as the Likelihood Ratio Test [9,34], the
Bayes factor provides a rigorous and clear framework to compare competing
models. Its results can be expressed in terms of probability. It means that the
calculation of significance levels either with simulation [5] or with theoretical
approximations are unnecessary. In the scope of the simulation study, the
correlation between both criteria was very high, and the power of the test was
similar to LRT, when a 5% type I error was considered. However, the Bayes
factor does not depend on the asymptotic properties and it can be used safely
even with small samples. The classical hypothesis tests try to discard the
null hypothesis in favour of an alternative hypothesis, while the Bayes factor
provides a ratio of probabilities between models, without any requirement to
define the null or the alternative model.

Another important property when using meta-analysis with different sources
of information is to calculate the overall posterior odds by multiplication of
BFs from different experiments, in contrast with alternative procedures, in
which the only way to combine information is to jointly analyze all data. A
strong concordance between simulation and results from meta-analysis was
observed. It must be noticed that each meta-analysis was carried out using
300 sire families and a total of 9 300 records. However, it must be taken into
account that meta-analysis can only be carried out when the conditions for trait
measurements in all the experiments are similar.
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Certain aspects need to be highlighted in relation to the use of the Bayes
factor. First, the Bayes factor strongly depends on the prior distributions
assumed for all the parameters in the model. For that reason, some caution
must be practiced and a sensitivity analysis is fully recommended. In this
study, we considered flat priors for h2

q for the simple QTL model and a flat prior
for the pair (h2

q, h2
u) in the mixed QTL model. However, the procedure can be

applied to any other prior distribution on intraclass correlations. It must also be
highlighted that for simplicity purposes it is necessary to assume independent
prior distributions for heritabilities and phenotypic variances in calculating the
Bayes factor.

In this study, we compared the model with and without a QTL at a given
location. If we are interested in testing the QTL at any position along the
chromosome, the following approach can be considered. Let

BF = p(QTL| l)
p (no-QTL)

be the BF of presence of a QTL at a given location l, then the BFc of the
presence of a QTL at any position of the chromosome over the non-presence
of a QTL is obtained by computing the following integral along its parametric
space (Ωl):

BFc = p(QTL)

p (no-QTL)
=

∫

Ωl

p(QTL| l)
p (no-QTL)

p(l)

over any predetermined prior distribution of location of the QTL (p(l)), such
as uniform distribution along the chromosome or any other distribution defined
by the density of candidate genes or other criteria.

An alternative approach is to include the location of the QTL in the model
as an extra variable, and the marginal posterior distribution of the location will
also be obtained. This approach is equivalent to calculating the above integral
over marginal distribution. In practice, more or less dense genotyping along
the genome is available, and the question arise whether a given chromosome
contains QTLs above a prefixed effect. In this case a series of BFs can be
formulated, i.e., a model in which a set of chromosomes contains QTLs vs. a
model in which only a subset of these chromosomes contains QTLs. This does
not require any novel theoretical developments.

In conclusion, the proposed method is able to split σ2
p into σ2

q and σ2
e and

correctly identifies whether a particular location substantially contributes to
covariance between individuals. The ability to detect QTLs in individual
experiments is relatively low, thus meta-analysis will be necessary for practical
purposes. The proposed procedure allows us to easily combine information
from different experiments.
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APPENDIX

Following the Bayesian framework, the marginal probability of the data in
each model, complete (A) and reduced (B), is related to the prior information,
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likelihood and posterior probability via

pA (y) = pA (y|ω, θ) pA (ω, θ)

pA (ω, θ|y)
and

pB (y) = pB (y|ω) pB (ω)

pB (ω|y) ·

The Bayes factor is then

BF = pA (y)
pB (y)

=
pA (y|ω, θ) pA (ω, θ)

pA (ω, θ|y)
pB (y|ω) pB (ω)

pB (ω|y)
·

Note that the last three formulae hold for any value of ω and θ, and we can fix
them at convenient values. We will choose θ to easily obtain the pA (y) /pB (y)
ratio. Consider the point θ = 0, where pA(y|ω, θ = 0) = pB (y|ω) and
pB (ω) = pA (ω|θ = 0). Now

BF = pA (y)
pB (y)

=
pA (y|ω, θ = 0) pA (ω, θ = 0)

pA (ω, θ = 0|y)
pB (y|ω) pB (ω)

pB (ω|y)

BF = pA (y)
pB (y)

=
pA (ω|θ = 0) pA (θ = 0)

pA (ω, θ = 0|y)
pB (ω)

pB (ω|y)
= pB (ω|y) pA (θ = 0)

pA (ω, θ = 0|y) ·

As pA (ω, θ = 0|y) = pA (ω|θ = 0, y) pA (θ = 0|y), then

BF = pA (θ = 0)

pA (θ = 0|y) ·

The Bayes factor only requires the calculation of the density at zero of the
marginal posterior distribution of the complete model (A).




