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Prediction of Confidence Limits for Diacetyl Concentration 
During Beer Fermentation 

Ioan Cristian Trelea,1 Sophie Landaud, Eric Latrille, and Georges Corrieu, Unité mixte de recherche de Génie et 
Microbiologie des Procédés Alimentaires, Institut National Agronomique Paris—Grignon, Institut National de la 
Recherche Agronomique, BP 01, 78850 Thiverval-Grignon, France 

ABSTRACT 

J. Am. Soc. Brew. Chem. 59(2):77-87, 2001 

A dynamic model for diacetyl production and reduction was developed 
based on experimental data from 14 laboratory-scale (15-L) lager beer 
fermentations carried out in various conditions of temperature (10–16°C), 
top pressure (50−850 mbar), initial yeast concentration (5−20 million 
cells per milliliter) and initial wort gravity (1,036−1,099 g/L). Uncertain-
ties due to measurement errors, model parameters, and batch-to-batch 
variability were described in a probabilistic framework. The model pre-
dicts a probability distribution for the final diacetyl concentration from 
which a median value and an upper boundary, at a specified confidence 
level, are derived. It is demonstrated that in-line diacetyl measurements at 
early stages of fermentation greatly reduce the uncertainty about the final 
diacetyl level in each specific batch. 

Keywords: Alcoholic fermentation, Carbon dioxide production, 
Dynamic model, Probability distribution 

RESUMEN 

Predicción de los Límites de Confianza para la Concentración de 
Diacetilo en Cerveza Durante la Fermentación 

Se desarrolló un modelo dinámico para la producción y reducción de 
diacetilo durante la fermentación, basado en datos experimentales de 14 
fermentaciones en el laboratorio (15 L) con cerveza lager; estas 
fermentaciones se realizaron en diferentes condiciones de temperatura 
(10-16°C), sobrepresión (50–850 mbar), concentración inicial de levadura 
(5–20 millones de células por mililitro) y densidad inicial del mosto 
(1,036–1,099 g/L). Las incertidumbres debido a los errores de medición, 
los parámetros del modelo y la variabilidad de lote a lote, fueron descritas 
en un marco probabilístico. El modelo pronostica una distribución de 
probabilidad para la concentración final del diacetilo, de cual se deriva un 
valor de la mediana y del límite superior de la concentración, a un nivel 
de confianza especificada. Se demuestra que las mediciones de diacetilo 
en línea en las fases iniciales de la fermentación reducen de manera 
significativa la incertidumbre de la concentración final de diacetilo de 
cada lote. 

Palabras claves: Fermentación alcohólica, Producción de gas 
carbónico, Modelo dinámico, Distribución de probabilidad 

In most lager beers, diacetyl gives an undesired buttery flavor if 
present in concentrations above 0.05–0.1 mg/L. Usually, diacetyl 
is removed either during the dedicated “diacetyl rest” phase or the 
beer maturation phase. The length and conditions (e.g., tempera-
ture) of these phases are greatly influenced by the amount of 
diacetyl present at the end of the main fermentation. For efficient 
production scheduling, it is important to predict this concentration 
as early and as accurately as possible. 

Several mathematical models for diacetyl concentration are 
available in the literature. They are all based on the well-estab-

lished fact that diacetyl is simultaneously produced and reduced 
during the fermentation process. The mechanisms they assume or 
imply are very different, however, and are not always satisfactory 
from a biochemical point of view. This is probably due to the fact 
that the production and reduction rates could not be measured 
separately. In the model proposed by Engasser et al (6), the 
diacetyl production is proportional to the alcoholic fermentation 
rate, with a constant yield, while the reduction rate is proportional 
to the concentration of the reactant in the limiting reaction step. 
Garcia et al (7) established a model in which the diacetyl 
production rate depends on the alcoholic fermentation rate, on the 
biomass concentration, and on the valine consumption rate. The 
reduction rate involves cell concentration corrected by a cell-
aging factor. This is not entirely satisfactory because 1) no 
predictive formula is given for the valine concentration and 2) a 
rate-limiting step that was shown to be nonenzymatic (18) was 
assumed to depend on the cell concentration. Gee and Ramirez 
(8) model the total vicinal diketone concentration, i.e., diacetyl 
plus 2,3-pentanedione. The drawback of this approach is that the 
organoleptic threshold of 2,3-pentanedione is at least six times 
higher than that of the diacetyl (11), while in our experiments 
the two concentrations are similar. The total concentration can 
thus hardly be representative of the beer flavor. In the model 
(8), the diketone production rate is proportional to the specific 
growth rate and to the cell concentration. The reduction rate is 
proportional to the total diketone and to the cell concentrations, 
an assumption that does not correspond to current biochemical 
knowledge as explained above. Andres-Toro et al (1) divide the 
biomass into several compartments, only one of which (the 
active biomass) is involved in diacetyl synthesis. In their 
model, the diacetyl synthesis rate is proportional to the 
fermentable sugar concentration and the reduction rate to the 
ethanol concentration, which is biochemically rather sur-
prising. 

The model proposed in the present work was meant to be 
useful from a process engineering perspective. It has several 
features. First, it is based on a predictive model for the 
alcoholic fermentation (17). The progress of the alcoholic 
fermentation is routinely monitored in the brewery, via gravity 
and possibly evolved CO2 and/or refractive index mea-
surements (5,13). In case of discrepancies, the model can be 
easily adapted for each particular batch (4). Second, it does 
not involve quantities usually unmeasured in industry such as 
valine concentration, active yeast concentration, or specific 
growth rate. Third, it does not try to describe the intricacy of 
the diacetyl production mechanism but is compatible with the 
current understanding of biochemical pathways. Fourth, 
special emphasis is placed on the reliability of the predictions, 
on the sources of uncertainty, and of the ways to reduce them 
through in-line measurements. Fifth, the model was validated 
in a wide range of operating conditions: fermentation tem-
peratures between 10 and 16°C, top pressures between 50 and 
850 mbar, initial cell concentrations between 5 and 20 million 
cells per milliliter, and initial wort densities between 1,036 
and 1,099 kg/m3. 

1 Corresponding author. E-mail: trelea@grignon.inra.fr  
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EXPERIMENTAL 

Experiments were carried out in 15-L, 0.5-m-high stainless 
steel tanks (LSL Biolafitte, St. Germain-en-Laye, France) under 
gentle agitation at 100 rpm. Preliminary experiments showed that 
mechanical agitation was needed to compensate for the absence 
of the natural agitation that occurs in large-scale brewing (10-m-
high tanks or higher) due to CO2 release. The lager wort and the 
industrial yeast strain, Saccharomyces cerevisiae var. uvarum, 
were provided by the Institut Français de Brasserie et Malterie 
(Vandoeurvre-les-Nancy, France). Run R12 was carried out with a 
different wort, “Cedarex light hopped wort” provided by Munton 
and Fison, Stowmarket, UK. Starter cultures were grown at 20°C 
in 5 L of wort for three days. The temperature was decreased to 
fermentation temperature one day before inoculation, and the 
starter cultures were centrifuged three times (4,000 rpm) in 
physiological saline. The conditions of the experimental runs 
were selected according to a 23 experimental design, as indicated 
in Table I. The factors were the fermentation temperature, the top 
pressure, and the initial yeast concentration. Runs R01–R04 and 
R06–R09 were performed under extreme operating conditions, 
while runs R05 and R13–R15 were intended to be repetitions of 
the central point of the experimental design and R11 a repetition 
of R03. Run R10 was atypical because of its very high initial wort 
gravity and run R12 because of the different wort. Due to 
experimental uncertainty, the initial cell concentration, the initial 
wort gravity, and the lowest top pressure could not be replicated 
exactly. The actual (measured) values of these factors are 
indicated in Table I. 

The concentrations of diacetyl and of its precursor, α-acetolac-
tate, were determined by gas chromatography coupled with mass 
spectrometry (9). The ethanol concentration was determined 
using a gas chromatograph (5300, Carlo Erba, Nanterre, France) 
equipped with a stainless steel column (200 mm, ∅0.3 mm) 
coated with Chromosorb 101 (SGE, Courtaboeuf, France). The 
concentration of fermentable sugar (the sum of the concentrations 
of fructose, glucose, maltose, and maltotriose) was determined 
using a high-performance liquid chromatography system (Waters, 
Millford, MA) with a 300-mm, ∅7.8-mm column (Aminex HPX-
87C, BioRad) at 85°C. The density of the filtered and degassed 
wort was determined with a 10-ml pycnometer. The refractive 
index was measured with a refractometer (ATAGO, Illkirch, 
France). The evolved CO2 was recorded with a gas meter 
(Schlumberger, Colombes, France), delivering a pulse for every 
liter of gas. Taking into account the amounts of CO2 produced in 
the considered experiments, the resolution of this measurement 

was better than 0.5%. The measurements describing the alcoholic 
fermentation (ethanol, density, CO2 production, refractive index, 
and fermentable sugar) were reconciled using well-established 
stoichiometric relationships (16). The yeast cell concentration 
was determined with a particle counter (Coulter Z1, Coultronics, 
Gagny, France). Three counts were performed at 3 and 3.5 µm, 
and the logarithmic average of the six counts was taken. 

Biochemical Background of the Dynamic Model 
Relevant pathways involved in diacetyl synthesis and degrada-

tion are schematically represented in Figure 1. Quantitatively, 
the main mass flow is from fermentable sugars (in beer 
fermentation, these are mainly maltose and glucose) to ethanol 
and CO2. About 94% of the carbon flows through this pathway, 
called “alcoholic fermentation” in this article. An intermediate 
product, important for many cell functions including diacetyl 
synthesis, is pyruvate. In our experiments, the carbon flow rate 
from pyruvate to α-acetolactate was about three orders of 
magnitude lower than from pyruvate to ethanol and CO2. The 
actual rate is the result of complex interactions and internal cell 
regulation. The reaction step from α-acetolactate to diacetyl is 
purely chemical (nonenzymatic). Diacetyl is transformed 
enzymatically into 2,3-butanediol, whose contribution to the 
beer flavor is negligible. 

From this simplified picture of the biological reality, plausible 
modeling assumptions can be formulated. First, since the rate of 
the alcoholic fermentation is an important indicator of cell meta-

TABLE I  
Experimental Conditionsa 

Experimental Run Temperature (°C) Top Pressure (mbar) Initial Yeast Concentration (106 cells ml–1) Initial Wort Density (g L–1) 

R01 10 (L) 800 (H) 40 (H) 1,070 
R02 10 (L) 60 (L) 19 (H) 1,037 
R03 10 (L) 50 (L) 6 (L) 1,049 
R04 10 (L) 800 (H) 5 (L) 1,050 
R05 13 (C) 450 (C) 10 (C) 1,049 
R06 16 (H) 50 (L) 20 (H) 1,047 
R07 16 (H) 800 (H) 22 (H) 1,051 
R08 16 (H) 790 (H) 5 (L) 1,051 
R09 16 (H) 40 (L) 4 (L) 1,047 
R10* 10 (L) 800 (H) 33 (H) 1,099 
R11 10 (L) 70 (L) 6 (L) 1,048 
R12** 13 (C) 450 (C) 10 (C) 1,046 
R13 13 (C) 450 (C) 14 (C) 1,051 
R14 13 (C) 450 (C) 10 (C) 1,050 
R15 13 (C) 390 (C) 9 (C) 1,049 
a L = Low value in the experimental design, H = high value in the experimental design, C = central value in the experimental design, * = atypical run: higher 

initial wort density, and ** = atypical run: different wort. 

 

Fig. 1. Main biochemical pathways involved in diacetyl synthesis and 
reduction. 
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bolism, the α-acetolactate production rate should be closely 
related to it. However, the fraction of the carbon flow diverted 
through this pathway is not necessarily constant. Second, because 
the reaction steps from diacetyl to 2,3-butanediol are much faster 
than from α-acetolactate to diacetyl, the concentration of the 
diacetyl during the alcoholic fermentation is negligible compared 
with that of α-acetolactate (9,10). After complete yeast removal 
by filtration, however, diacetyl cannot be reduced further and may 
accumulate in the finished beer if α-acetolactate is still present. 
So, what is actually important for the finished beer flavor is the 
total concentration of diacetyl plus equivalent α-acetolactate, also 
called “total” or “potential” diacetyl. It is this total concentration 
that is modeled in this article, and it is called “diacetyl” for brev-
ity. Third, in the presence of yeast, the rate of removal of the 
“total” diacetyl is given by the limiting rate of the chemical reac-
tion step from α-acetolactate to diacetyl and thus is independent 
of the yeast concentration. This is the case for the model of 
Engasser et al (6) but not for the other models discussed above 
(1,7,8). 

Alcoholic Fermentation Model 
The dynamic model for the alcoholic fermentation was devel-

oped previously (15,17) and is briefly recalled here for complete-
ness. It was constructed by analogy with classical microbial 
growth kinetics with substrate limitation and product inhibition 
(Appendix I). Terms are defined in Appendix II. 
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In Equation 1, the rate of the alcoholic fermentation was 
described by the rate of CO2 production dCp/dt. Simultaneously, 
ethanol (E) is produced and fermentable sugars (S) are consumed, 
with constant yields (equations 2 and 3). The initial fermentation 
rate, when Cp = 0, is taken proportional to the initial yeast 
concentration X0. The “specific” fermentation rate ν is given by: 

( )[ ]00)(exp),( ddCd CCKKKC −−−= ννθν θθθν               (4) 

For small temperature variations (±3 K) compared to the typi-
cal absolute fermentation temperature (286 K), Equation 4 is a 
close approximation of the Arrhenius law. A similar dependence 
was assumed for the dissolved CO2 (Cd). For modeling purposes, 
it was assumed that the produced CO2 (Cp) was dissolved in the 
wort until saturation (Csat), and released afterwards (Cr): 

{ }) ,(  ),(min)( pCtCtC satpd θ=                               (5) 

( ){ }pCtCtC satpr  ,)(  ,0max)( θ−=                            (6) 

The wort saturation with CO2 was determined using an empiri-
cal formula, based on tables of experimental values provided by 
the Institut Français de Brasserie et Malterie: 

( ) ( )pHpCsat θθ =  ,                                    (7) 

( ) ( ) ( )θθθ 210 exp1 KKKH −+=                              (8) 

In applications, model predictions should be compared with 
available measurements and model adaptation steps possibly 
taken (4). Equation 6 assumed that the released CO2 was meas-
ured. If the measured quantity was the wort density (D) or the 
refractive index (R), the following equations should be used 
instead: 

)()( /0 tCYDtD pCD−=                                    (9) 

( ) )(/0 tCYRtR pCR−=                                   (10) 

Numerical values for the coefficients involved in the alcoholic 
fermentation model are reported in Table II. They were either 
taken from literature or determined from available experimental 
data. Runs R01–R04 and R06–R09 were used for parameter 
identification and the other runs for model validation. The model 
parameters were determined using a standard maximum likeli-
hood method, based on ethanol, fermentable sugar, wort density, 
and wort refractive index measurements simultaneously. This is 
equivalent to a nonlinear least-squares model fitting provided that 
each measurement is weighted by the inverse of the standard 
deviation of its measurement error (16). Numerical computations 
were performed using the Levenberg-Marquardt minimization 
method for nonlinear sums of squares implemented in the Matlab 
software package (3). Reasonable initial values for the model 

TABLE II  
Numerical Values of the Coefficients in the Alcoholic Fermentation Modela 

  Value with 95% Confidence Limits   

Symbol Units Min. Median Max. Distributionb Source 

θ0 °C NA 13 NA None Central condition of the experimental design 
Cd0 g⋅L–1 NA 2.76 NA None Central condition of the experimental design 
Kν hr–1 0.0415 0.0450 0.0488 Log-normal Determined from runs R1–R4 and R6–R9 with a 

maximum likelihood method 
Kνθ °C–1 0.118 0.125 0.131 Normal Idem 
KνC g–1⋅L 0.020 0.055 0.090 Normal Idem 
KE g⋅L–1 20.7 22.6 24.7 Log-normal Idem 
KS g⋅L–1 ND 3 ND None References (1,7,8) 
KX g⋅L–1 ⋅ (106 cells)–1 0.120 0.143 0.173 Log-normal Determined from runs R1–R4 and R6–R9 with a 

maximum likelihood method 
K0 g⋅L–1⋅mbar–1 ND 2.83⋅10–5 ND None Regression with experimental data from tables used 

by professional brewers 
K1 °C–1 ND 3.66⋅10–3 ND None Idem 
K2 °C–1 ND 3.35⋅10–2 ND None Idem 
YD/C g⋅g–1 NA 1 NA None Reference (16) 
YE/C g⋅g–1 1.013 1.028 1.043 Normal Idem 
YR/C g–1⋅L 2.440⋅10–4 2.494⋅10–4 2.548⋅10–4 Normal Idem 
YS/C g⋅g–1 1.834 1.884 1.934 Normal Idem 
a ND = not determined and NA = not applicable. 
b Assumed distribution for the estimator. 
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parameters were determined by repeated simulation and graphical 
comparison of experimental and predicted data. 

Diacetyl Production and Removal 
As discussed previously, in presence of the yeast, the “total” 

diacetyl concentration is almost equal to the α-acetolactate 
concentration (A). The rate of its conversion to 2,3-butanediol is 
limited by a nonenzymatic reaction step and hence should depend 
on the current α-acetolactate concentration, on temperature, and 
on the characteristics of the medium (composition, pH, redox 
potential, etc.). The rate of α-acetolactate production was 
assumed to depend on the overall metabolic activity of the yeast, 
described by the rate of the alcoholic fermentation dCp /dt: 

( )[ ] )( exp
)(

)(
)( 

0 / tAKK
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The characteristics of the microorganism and of the medium 
are included in the model through the numerical values of the 
diacetyl yield (YA/C), the diacetyl reduction constant (KA), and the 
temperature sensitivity constant (KAθ). These values are thus 
specific for each yeast strain-wort type couple. The model of 
Engasser et al (6) has the same form as equation 11, with the 
sugar consumption rate replacing the CO2 production rate (which 
is equivalent, as the ratio of the two rates is nearly constant) and 
with a constant yield YA/C. When trying to fit equation 11 to 
experimental data from any of the runs R01–R15, however, it 
turned out that the constant-yield hypothesis implied that, as soon 
as the active fermentation phase was over (sugar depletion), the 
acetolactate concentration should almost immediately fall to zero. 
This sharp fall was not observed. Rather, even after complete 
sugar exhaustion, the acetolactate concentration continued to 
decline slowly. Because the prediction of diacetyl level after the 
end of the alcoholic fermentation was of the highest practical 
importance, the model based on the constant-yield hypothesis was 
judged unsatisfactory. Data presented by Engasser et al (6) stop 
before the end of the main fermentation so that the above-
mentioned discrepancy in their model could not be assessed. The 
failure of the constant-yield model to describe the data can be 
explained as follows. The maximum of the α-acetolactate concen-
tration appears nearly at the same time as the maximum of the 
alcoholic fermentation rate. To describe this, a constant-yield 
model needs high values for both YA/C and KA, meaning that the α-
acetolactate is reduced almost immediately after being produced. 

The experimental data could be described by equation 11 by 
supposing a variable yield: YA/C should be maximum at the begin-
ning of the fermentation and fall to zero well before the ferment-
able sugar depletion. Resulting numeric values for YA/C and KA 
were much less than in the constant-yield case, meaning that α-
acetolactate was produced during the first half of the fermenta-
tion, accumulated into the medium, and then declined slowly. The 
following empirical equation was found to describe the yield 
variation adequately: 
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Again, the alcoholic fermentation rate dCp/dt was used to 
describe the intensity of the metabolic activity. It should be 
emphasized that, while equation 11 is based on biochemical 
insight, equation 12 is purely descriptive. The cell regulation 
mechanisms that make the acetolactate production stop well 
before fermentable sugar exhaustion were not investigated in this 
work. It is worth noting that linking diacetyl production to cell 
growth instead of progress in alcoholic fermentation would result 
(for the considered database) in an equivalent model since propor-

tionality between yeast growth and alcoholic fermentation pro-
gress was observed (Appendix I). Proportionality does not neces-
sarily hold in general (e.g., due to yeast settling in naturally 
agitated tanks) but does often hold in the early stages of the 
fermentation, when diacetyl is produced. 

Sources of Uncertainty in Model Parameter Estimation 
To obtain practically useful predictions of the total diacetyl 

concentration during alcoholic fermentation, numerical values for 
the parameters appearing in equations 11 and 12 had to be found 
using some experimental runs, and the validity of the predictions 
had to be checked using the remaining runs. Mathematical predic-
tions of physical reality are always subject to some uncertainty, 
but in the present study, the uncertainties were found to be large 
enough to be worth detailed study. 

Diacetyl measurement error. The usual concentrations of diace-
tyl in beer are less than 1 mg/L, and their determination required 
complex experimental work (9). The results were affected by 
unavoidable experimental error traditionally described by a Gaus-
sian probability distribution with zero mean and unknown stan-
dard deviation σA. Let I denote the set of runs used for model 
parameter identification, ni the number of diacetyl measurements, 
and Y0i the initial diacetyl yield in run i. Let w be the vector of the 
unknown model parameters in equations 11 and 12: 

[ ] IiYYKKKw T
iYAA ∈=    ,log      log   log      log 001 KKθ     (13) 

The logarithms of the unknown scale parameters were deter-
mined instead of the parameters themselves. From a practical 
perspective, this ensured positiveness and increased numerical 
robustness and accuracy. The theory also states that, if the order 
of magnitude is a priori unknown, parameters should be located 
uniformly on a logarithmic scale (12). 

If aij is the measured total diacetyl concentration in sample j of 
the experiment i and Aij(w) is the value predicted by the model 
with unknown parameters set to w, then the probability density of 
observing the given set of measurements, also called the likeli-
hood of the sample, is given by (2): 
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Here n = ∑ in

Iiε
is the total number of available measurements.  

The value w*, which maximizes the likelihood, is called the 
maximum likelihood estimator of the unknown model 
parameters. It is mathematically equivalent, but numerically 
more convenient, to minimize the minus logarithm of the 
likelihood function L(w): 
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The sum of squares M(w) is independent of σA and was mini-
mized numerically using a Levenberg-Marquardt algorithm (3), 
giving: 

( )wMw min  arg* =                                 (17) 

Initial values of the parameters required by the numerical mini-
mization algorithm were determined by repeated simulation and 
graphical comparison of the predicted and measured values. 
Differentiating equation 15 with respect to σA and setting the 
derivative to zero yields a slightly biased estimator of the 
measurement standard deviation. The related, but unbiased, 
version of this estimator is (2): 
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( )
w

A nn
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−
= *σ                                           (18) 

where nw is the number of the parameters to be estimated and n – 
nw is the number of degrees of freedom. 

Model parameter uncertainty. Dynamic model parameters can 
be determined with finite accuracy only from equation 17 due to 
the presence of measurement noise. When the number of degrees 
of freedom is sufficiently large (larger than for example 50, which 
was the case in this study) the maximum likelihood estimator w* 
of the unknown parameter vector w is unbiased and has an 
approximately normal sampling distribution with a covariance 
matrix V that can be calculated numerically as the inverse of the 
local information matrix (2): 
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Batch to batch variation of the initial diacetyl yield. Equation 
13 indicates that the model parameters KA, KAθ,, and KY were 
supposed common to all runs, i.e., constant for a given combina-
tion of wort and yeast strain, while the initial diacetyl yields Y0i 
were determined specifically for each run. A common diacetyl 
yield for all runs, or a model based on measured quantities, could 
not be determined. Repetitions of the same run (within 
experimental error: e.g., R03–R11, R13–R15) exhibited differ-
ences in diacetyl level as large as 1:2 (see the Results and Discus-
sion section below). Such variations, in otherwise similar 
fermentation runs, were also observed by other authors (e.g., Figs. 
2 and 3 in ref. 14). Exact causes could not be determined. After 
careful examination across all runs, particularly low or high 
diacetyl levels could not be correlated satisfactorily with any of 
the following measurements: temperature, top pressure, initial 
yeast concentration, yeast growth rate, initial dissolved oxygen 
concentration, evolution of pH, redox potential and electrical 
conductivity during the batch, alcoholic fermentation rate, or 
amino acid uptake. It should be noted that the observed variations 
in the initial diacetyl yield were far larger than the uncertainties 
due to measurement errors. 

In the absence of a satisfactory deterministic model, the batch-
to-batch variations of the initial diacetyl yields were described by 
a probability distribution. Among the various distributions tested 
(normal, log-normal, exponential, and gamma), the log-normal 
distribution was the most plausible in the light of the data (initial 
yields determined for runs R01–R11 and R13–R15). In particular, 
the normal distribution predicted overly low probabilities for the 
highest yields; they wouldn’t have a reasonable chance of appear-
ing in a sample of 14 runs. The choice of a log-normal distribu-
tion is consistent with equation 13 and can be interpreted in the 
light of a central limit theorem: the value of the diacetyl yield in a 
particular run is influenced by a large number of multiplicative 
causes. The probability density function of the log-normal 
distribution is (2): 
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A log-normal distribution for Y0 means that log Y0 is distributed 
normally. The parameter µ represents the expected value of log 
Y0, and λ represents its standard deviation. However, some care is 
needed when transposing results from the normal to the log-
normal distribution because of its asymmetric shape. For a normal 
distribution, the mean (expected value), the median (value below 
and above which 50% of the random samples fall), and the mode 
(most probable value) are all the same. For a log-normal distrib-
uted variable, the median is still exp(µ), but the mean is exp(µ + 
0.5⋅λ2) and the mode is exp(µ – λ2). In order to avoid confusion, 
results will be presented in terms of the median value. 

The maximum likelihood estimator for µ is unbiased, with 
minimum variance (2): 
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where nr is the number of runs used for statistical parameter esti-
mation. The unbiased version of the estimator for λ is: 
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Determination of the initial diacetyl yield for a specific batch. 
Equations 13–19 are useful in the model identification step when 
one uses data from several runs to determine fixed-model parame-
ters KA, KAθ ,  KY, and σA. In doing so, however, one also has to 
determine initial yields for those runs. Equations 20–22 apply 
when one wishes to determine a priori plausible values for the 
diacetyl yield for a given wort and yeast strain combination. 
Another intermediate situation is likely to appear in practice: one 
already knows the constant-model parameters KA, KAθ ,  and KY but 
wishes to determine the diacetyl yield for a specific batch using 
available measurements performed with known accuracy σA. In 
this case, equation 13 reduces to: 

[ ]0logYw =                                          (23) 

Equations 14–17 and 19 remain valid for this particular case of 
a single unknown parameter. 

Prediction of the Diacetyl Concentration in the Presence 
of Uncertainty 

The time evolution of the diacetyl concentration was predicted 
by the dynamic model consisting of equations 1–12. The alco-
holic fermentation model (equations 1–10) turned out to be at 
least an order of magnitude more accurate than the diacetyl model 
(equations 11 and 12). The alcoholic fermentation model was 
considered deterministic, and the corresponding uncertainty was 
neglected throughout this study. Other sources of uncertainty 
were taken into account selectively, depending on the model 
usage and on the information at hand. 

Prediction without in-line diacetyl concentration measure-
ments. To predict the diacetyl concentration in a run where no 
diacetyl measurements would be performed, it was assumed that 
1) constant-model parameters log KA, KAθ, and log KY• (equation 
13) have a joint normal probability distribution with mean w* 
(equation 17) and covariance V (equation 19); 2) in the absence 
of any information for that specific batch, the logarithm of the 
initial diacetyl yield log Y0 has a normal probability distribution 
(equation 20) with mean µ and standard deviation λ (equations 
21 and 22); and 3) the measurement error has a normal 
probability distribution with zero mean and standard deviation 
σA (equation 18). 

Let A(t,w*) be the diacetyl concentration predicted by the 
model (equations 11 and 12) for time t, with model parameters set 
to w*. The actual (or true) diacetyl concentration in a given run is 
generally different from the predicted one because the model 
parameters cannot be determined exactly. To state the accuracy of 
the model predictions rigorously, confidence limits for the true 
diacetyl concentration were calculated with the “error propaga-
tion” formula: 
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Here A(t) and �(t) are the lower and upper boundaries, respec-
tively, for the true diacetyl concentration at the confidence level 
α. Stated another way, the true (and generally unknown) diacetyl 
concentration has the (small) probability α of being either less 
than A(t) or greater than �(t). U is the cumulative distribution 
function of the standard normal distribution (zero mean and unit 
variance). It should be noted that the first three elements of the 
vector w (log KA, KAθ ,  and log KY), and the corresponding three-
by-three block in matrix V were determined in the preliminary 
model identification step using runs included in the identification 
set I. The fourth element of w is the expected value for log Y0, that 
is µ, and the corresponding diagonal (4,4) element in V is the 
estimation of its variance, that is, λ2. The remaining one-by-three 
and three-by-one blocks in V, representing covariances between 
log Y0 on one hand and log KA, KAθ ,  and log KY on the other hand, 
are set to zero since they are determined separately. 

If diacetyl concentration measurements are performed, the 
measured concentration a(t) is generally different from the actual 
(or true) one due to unavoidable measurement errors. The confi-
dence limits given by equations 24 and 25 are not appropriate for 
the measured values because they do not take into account the 
measurement error. Lower and upper confidence limits, a(t) and 
–a (t), respectively, of the measured diacetyl concentration were 
determined as: 
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with the standard the assumption of independent normally distrib-
uted measurement noise. 

Prediction with in-line diacetyl concentration measurements. If 
diacetyl measurements could be performed during the fermenta-
tion, information would be gained about the diacetyl yield for 
each specific batch. For such cases, the following assumptions 
were made: 1) the constant model parameters log KA, KAθ ,  and 
log KY  (equation 13) have the same joint normal probability 
distribution as above, estimated from previous runs and fixed; 2) 
the logarithm of the initial diacetyl yield log Y0 is estimated in 
real-time from in-line data and has an independent normal prob-
ability distribution with mean given by equation 17 and variance 
given by equation 19, both reduced to the single-parameter case 
(equation 23); and 3) the measurement error has a normal 
probability distribution with zero mean and standard deviation σA 
determined from previous runs and fixed. 

Confidence limits for the predicted diacetyl concentration were 
calculated as before (equations 24–27), except that the fourth 
element of the parameter vector w was given by equations 17 and 
23 instead of µ, and the (4,4) element of the covariance matrix V 
was given by equations 19 and 23 instead of λ2. 

RESULTS AND DISCUSSION 

Diacetyl Model Identification and Validation 
The parameters of the dynamic diacetyl model (KA, KAθ ,  and 

KY) as well as the experimental spread of the measurement of the 
diacetyl concentration (σA) were determined using eight runs, 
namely R01–R04 and R06–R09, performed under extreme condi-
tions of temperature, top pressure, and initial yeast concentration 
(Table I). The median values and the confidence intervals are 
reported in Table III. 

The prediction of the diacetyl concentration using this model is 
illustrated in Figure 2. The initial CO2 evolution rate is zero, since 
the CO2 is first dissolved in the wort. This is confirmed by the 
measured evolution rate. However, the initial simulated CO2 
production rate is nonzero and equals 0.23 g⋅L–1⋅hr–1 in the 
considered run. During the first 20 hr, the diacetyl production rate 
(not shown) is high and nearly constant, the acceleration in the 
alcoholic fermentation rate being compensated for by the 
decrease in the diacetyl yield. The maximum of the diacetyl con-
centration is reached when the production rate equals the reduc-
tion rate. After 35 hr, the diacetyl yield is so low that the diacetyl 
production rate becomes negligible compared to the reduction 
rate, and the predicted diacetyl concentration decreases exponen-
tially. 

Verification of the Statistical Hypothesis 
Several statistical assumptions have been made concerning the 

diacetyl measurement error and the batch-to-batch variation of the 
diacetyl yield. These assumptions must be verified in light of the 
data before conclusions can be drawn about the uncertainty in the 
model parameters and its effect on the prediction of the diacetyl 
concentration. 

The confidence interval for the mean of the model residuals was 
[–0.031 0.015] g⋅L–1; hence the mean was not significantly different 
from zero. The normality of the residuals was tested using the 
modified Anderson-Darling statistic (2). The normality hypothesis 
could not be rejected at a 0.05 significance level. Additional 
assurance about the normality hypothesis was provided by the 
statistical plot in Figure 3A. Thus, the assumption about the zero-
mean normal distribution of the measurement noise was satisfied, 
meaning that the assumption about the multinormal distribution of 
the model parameter vector w was acceptable. 

The hypothesis of the log-normal distribution of the initial 
diacetyl versus CO2 yield (Y0) was also verified using the modi-
fied Anderson-Darling statistic (2). The hypothesis could not be 
rejected at a 0.05 significance level. A graphical verification was 
provided by the statistical plot in Figure 3B. The parameters of 
the log-normal distribution of the initial diacetyl yield (λ and µ) 
are reported in Table III together with their confidence intervals. 

Comparison of Various Sources of Uncertainty 
When predicting the diacetyl concentration for a new fermenta-

tion run, three sources of uncertainty were considered: the mea-

TABLE III  
Numerical Values of the Coefficients in the Diacetyl Concentration Model 

  Value with 95% Confidence Limits    

Symbol Units Min. Median Max. Distributiona df Source 

KA hr–1 8.3 × 10–3 10.2 × 10–3 12.4 × 10–3 Log-normal 75 Determined from runs R01-R04 and R06-R09 using equation 17 
KAθ °C–1 0.129 0.176 0.222 Normal 75 Idem 
KY g–1⋅L 0.162 0.203 0.255 Log-normal 75 Idem 
λ None 0.24 0.34 0.54 χ2 13 Determined from runs R01-R11 and R13-R15 using equation 22 
µ None –1.78 –1.59 –1.39 Student 13 Determined from runs R01-R11 and R13-R15 using equation 21 
σA mg⋅L–1 0.092 0.106 0.125 χ2 75 Determined from runs R01-R04 and R06-R09 using equation 18 
a Assumed distribution for the estimator. 
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surement noise, the imperfect knowledge of the model 
parameters, and the batch-to-batch variation of the initial diacetyl 
versus CO2 yield (Y0). As far as the initial diacetyl yield was 
concerned, two practical situations have been distinguished: 1) 
the diacetyl concentration was not measured and the a priori 
distribution of the yield had to be considered; and 2) in-line 
diacetyl measurements were performed and an initial yield could 
be determined for each specific run, thus reducing the uncertainty. 
In the following, the effect of each source of uncertainty is 
examined separately in order to state its relative importance. 

The effect of the measurement noise is illustrated in Figure 
4A. The scatter of the experimental data is particularly obvious 
between 150 and 250 hr. Confidence intervals bracket experimen-
tal data tightly in this region. After 300 hr, experimental data are 
smoother and in good agreement with model simulations. Large 
confidence intervals are maintained, however, due to the hypothe-
sis of constant variance of the measurement noise. The first two 
measurements suggest a lag in the diacetyl formation. This lag 
was not observed systematically and was not included in the 
present model but might become significant for fermentations 
performed without mechanical stirring. 

The effect of the model parameter uncertainty (KA, KAθ ,  and 
KY) is illustrated in Figure 4B. The first part of the fermentation 
(25 hr) is not affected by these three parameters. The sensitivity to 
the mentioned parameters, which enter the diacetyl reduction 
model and the descriptive yield dynamic, is mostly apparent 
around the maximum of the diacetyl concentration and after-
wards. Unlike the preceding case, this is an uncertainty affecting 
the true (rather than measured) concentration. 

When in-line diacetyl measurements are not performed, the 
uncertainty on the initial diacetyl yield must be taken into account 
through its a priori probability distribution. The very large confi-
dence interval shown in Figure 4C should include the true diace-
tyl concentration for most runs. For many runs, however, these 
limits are quite conservative. For example, run R11 (Figure 4C) 
has one of the lowest yields, and decisions based on the upper 
limit of the confidence interval, such as the duration of the diace-
tyl rest phase, would be substantially in error. 

A way to determine tighter confidence limits is to perform 
in-line diacetyl measurements soon after the beginning of the 
alcoholic fermentation. Even a limited number of mea-
surements significantly improve the estimation of the yield for 
that specific batch. In the same run, R11 (Fig. 4D), two 
measurements were considered, at 10 and 20% of the total 
CO2 produced (or, equivalently, of the total consumed fer-
mentable sugar). The upper limit of the confidence interval is 
reduced by a factor of almost 2 compared to that in Figure 4C. 
By chance, the two selected measurements are rather high and 
the diacetyl concentration still appears slightly overestimated. 
If the number of measurements taken into account is 
increased, the confidence interval shrinks further and the 
overestimation disappears. 

 

Fig 2. Prediction of the diacetyl concentration in a typical fermentation 
experiment. Measured diacetyl concentration (o), simulated diacetyl 
concentration (), measured CO2 evolution rate (•••), simulated CO2

evolution rate (− −), and simulated diacetyl versus CO2 yield (− ⋅ −). The
residual (unexplained) variance in the measured diacetyl concentration 
represents 6% of the total variance. 

Fig 3. Graphical verification of the main statistical assumptions. 
Experimental (o) and theoretical () probability distributions. 
Probability scales are nonlinear, such as to make the theoretical 
cumulative distribution functions linear. A, diacetyl model residuals 
(measurement noise) are likely to come from a normal probability 
distribution. B, initial diacetyl yield (Y0) is reasonably well described by 
a log-normal probability distribution. 
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Fig 4. Effect of the various sources of uncertainty, taken separately, on the prediction of the diacetyl concentration. Experimental data (o), median 
concentration (), 95% confidence limits for the true concentration (− −), and 95% confidence limits for the measured concentration (⋅⋅⋅⋅⋅⋅). A, 
uncertainty due to measurement errors. B, uncertainty due to the model parameters KA, KAθ, and KY. C, uncertainty due to the batch-to-batch variation of 
the initial diacetyl versus CO2 yield (Y0). D, uncertainty due to the initial diacetyl versus CO2 yield (Y0), estimated specifically for the considered batch 
using the measurements marked by squares ( ). 

 

Fig 5. Prediction of the diacetyl concentration, taking into account the various sources of uncertainty simultaneously. Experimental data (o), median 
concentration (), 95% confidence limits for the true concentration (− −), and 95% confidence limits for the measured concentration (⋅⋅⋅⋅⋅⋅). A, If no 
real-time diacetyl measurements were performed, the a priori distribution for the initial diacetyl yield (Y0) had to be taken into account. B, If 
diacetyl measurements marked by squares ( ) were available, a batch-specific yield and tighter confidence limits for the true concentration could be 
determined. 
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Prediction of Plausible Ranges of Diacetyl Concentration 
In practice, all sources of uncertainty must be accounted for 

simultaneously. It appeared from the previous discussion and from 
Figure 4 that the uncertainty due to the initial diacetyl yield was 
dominant but could be substantially reduced by one or two real-
time measurements. Hence, it is worth distinguishing between the 
cases in which diacetyl measurements are and are not available. In 
Figure 5A, the combined effect of all uncertainties is shown, 
supposing that no in-line diacetyl measurements were performed. It 
happened that, in this particular run, the initial diacetyl yield had a 
typical value and the median prediction was representative of the 

true concentration. However, the use of the a priori probability 
distribution for the diacetyl yield produced quite large confidence 
intervals. In Figure 5B, the initial diacetyl yield was estimated 
specifically for the considered run using two measurements. The 
confidence limits for the true concentration are much tighter. 

Model Adaptation to a Different Wort 
The possibility of applying the diacetyl model to the concen-

trated Cedarex wort was investigated in run R12 (Fig. 6). In the 
alcoholic fermentation model, a correction had to be made by 
modifying the “specific” fermentation rate parameter Kν from 
0.0474 (Table II) to 0.0600 hr–1, reflecting a slight overall 
acceleration of the alcoholic fermentation in otherwise similar 
operating conditions. Dependence of the fermentation rate on the 
wort composition is well known in brewing practice and is gener-
ally explained by differences in concentrations of growth factors 
and/or unsaturated fatty acids. All other parameters listed in Table 
II remained unchanged. No significant difference in the biomass 
growth was observed in this run compared to the other runs in the 
database (Fig. 7). The diacetyl model had to be modified, how-
ever, by allowing diacetyl to be produced later during the alco-
holic fermentation, i.e., slowing down the yield decrease: the 
determined value of the parameter KY (using equation 17) was 
0.028 instead of 0.203 g–1⋅L. Parameters KA and KAθ were left 
unchanged (Table III). Thus, the high maximum diacetyl concen-
tration in this run (2 mg⋅L–1 instead of an average of 0.7 mg⋅L–1 in 
the other runs) was due to a longer production period rather than 
to a higher yield. The estimated initial diacetyl yield for run R12 
was 0.13 mg⋅g–1, one of the lowest among all runs. The parame-
ters λ and µ, describing the probability distribution of the initial 
yield, are expected to change for the Cedarex wort, but this could 
be confirmed only if more (at least 10) runs were available. 

In the light of the data provided by run R12, it can be specu-
lated that the constant-yield model of Engasser et al (6) might 
indeed be appropriate for some sorts of wort and/or yeast strains, 
but this would be a very special case and needs further 
experimental verification. 

 

Fig 6. Prediction of the diacetyl concentration for the Cedarex wort. 
Experimental data (o), median concentration (), 95% confidence limits 
for the true concentration (− −), and 95% confidence limits for the 
measured concentration (⋅⋅⋅⋅⋅⋅). 

 

Fig 7. Relationship between the biomass concentration and the alcoholic fermentation progress. Data is plotted for released CO2 comprised between 0.01 
and 0.95 of the total amount in order to avoid distortions due to dissolved CO2 and inaccurate biomass measurements after yeast flocculation. Within the 
accuracy of the biomass measurement, the relationship between the biomass concentration and the alcoholic fermentation progress appears linear. 
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CONCLUSION 

A dynamic model predicting the diacetyl concentration during 
alcoholic fermentation of beer has been established. In spite of 
high experimental variability, not explained by measured operat-
ing conditions and routinely measured wort composition, a prob-
abilistic framework was adopted. The effects of the measurement 
errors, of the uncertainty in the model parameters, and of the 
batch-to-batch variability were examined separately and in 
combination. It was demonstrated that the effect of the batch-to-
batch variability was dominant. This effect could be substantially 
reduced for each specific batch, however, by a limited number of 
in-line diacetyl measurements during the early stages of the alco-
holic fermentation. 

The model did not attempt to explain the intricacy of the meta-
bolic pathways leading to diacetyl formation but was intended to be 
useful from a process engineering perspective. It was based on the 
dynamic of alcoholic fermentation, which is relatively well known 
and routinely measured in industry. The probabilistic framework 
provided realistic confidence intervals for the diacetyl con-
centration. The upper boundary of such a confidence interval could 
be used for making well-informed decisions concerning the 
required “diacetyl rest” and beer production scheduling in general. 

The adaptation of the developed model to a new sort of wort 
required the modification of a limited number of coefficient values. 
Investigation of the effects of the wort composition, the yeast strain, 
and the tank geometry and agitation is the subject of future work. 
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APPENDIX I. RELATIONSHIP BETWEEN ALCOHOLIC FERMENTATION AND CELL GROWTH 

The mathematical form of equation 1 was suggested by the 
classical microbial growth kinetic with substrate limitation and 
product inhibition: 

( ) )(,,,
)(

tXESC
dt

tdX
dθµ=                     (A1) 

In the considered experiments, near proportionality was 
observed between cell growth and the progress of the alcoholic 
fermentation as described by the CO2 release (Fig. 7): 

[ ]0/ )()( XtXYtC XCp −=                          (A2) 
Strict proportionality implies a constant yield YC/X. Equation 1 

can be obtained by substituting X(t) from equation A2 into equa-
tion A1 and using the notation: 
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Strict proportionality between yeast growth and alcoholic fer-
mentation progress is not expected to hold in all cases. For 
example, the substrate limitation and the product (ethanol and 
dissolved CO2) inhibition constants are not necessarily the same 
for alcoholic fermentation and growth. Yeast settling in 
naturally (as opposed to mechanically) agitated tanks may also 
invalidate equation A2. This is why equation 1 is said to be 
constructed only by analogy with the growth kinetic (equation 
A1) and not derived from it. Equation 1 is still expected to 
remain valid (with suitably chosen limitation and inhibition 
constants) even if the proportionality expressed by equation A2 
does not hold. 
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APPENDIX II. NOMENCLATURE 

Symbol Units Significance 

A mg⋅L–1 “Total” or “potential” diacetyl concentration = diacetyl + equivalent α-acetolactate 
Aij mg⋅L–1 Predicted total diacetyl concentration for sample j of run i 
A mg⋅L–1 Lower predicted boundary for the true total diacetyl concentration, at a specified confidence level 
? mg⋅L–1 Upper predicted boundary for the true total diacetyl concentration, at a specified confidence level 
aij mg⋅L–1 Measured total diacetyl concentration in sample j of run i 

–a mg⋅L–1 Lower predicted boundary for the measured total diacetyl concentration, at a specified confidence level 
–a mg⋅L–1 Upper predicted boundary for the measured total diacetyl concentration, at a specified confidence level 
Cd g⋅L–1 Carbon dioxide dissolved in the wort 
Cd0 g⋅L–1 Dissolved carbon dioxide concentration at the operating conditions of the central point of the experimental design 
Cp g⋅L–1 Carbon dioxide produced in the alcoholic fermentation, per liter of wort 
Cr g⋅L–1 Carbon dioxide released during alcoholic fermentation, per liter of wort 
Csat g⋅L–1 Dissolved carbon dioxide concentration at saturation 
D g⋅L–1 Wort density 
D0 g⋅L–1 Initial wort density 
E g⋅L–1 Ethanol concentration 
H g⋅L–1⋅mbar–1 Solubility of the carbon dioxide in the wort 
I None Set of experimental runs used for model parameter identification 
i None Index of an experimental run in set I 
j None Index of a sample in an experimental run 
Kν hr–1 Maximum “specific” fermentation rate at the operating conditions of the central point of the experimental design 
Kνθ °C–1 Temperature effect on the alcoholic fermentation rate constant 
KνC g–1⋅L Dissolved carbon dioxide effect on the alcoholic fermentation rate constant 
K0 g⋅L–1⋅mbar–1 Solubility of the carbon dioxide in the wort at 0°C 
K1,K2 °C–1 Temperature effect on the carbon dioxide solubility constants 
KA hr–1 Diacetyl reduction rate constant 
KAθ °C–1 Temperature effect on diacetyl reduction rate constant 
KE g⋅L–1 Ethanol inhibition constant 
KS g⋅L–1 Substrate saturation constant 
KX g⋅L–1 Initial cell concentration constant 
 (106 cells)–1  
KY g–1⋅L Diacetyl versus carbon dioxide yield dynamic constant 
L None Minus logarithm of the parameter likelihood function  
M mg2⋅L–2 Sum of squares of the errors between predicted and measured diacetyl concentrations 
n None Total number of diacetyl measurements used for model parameter identification 
ni None Number of diacetyl measurements from run i used for model parameter identification 
nr None Number of runs used for the estimation of the parameters λ and µ 
nw None Number of elements in vector w 
p mbar Top pressure in the fermentation tank 
R none Wort refractive index 
R0 none Initial wort refractive index 
S g⋅L–1 Fermentable sugar concentration 
S0 g⋅L–1 Initial fermentable sugar concentration 
t hr Time since yeast pitching 
Ua None Inverse cumulative probability function for a standard normal distribution, at level α. Value below which a fraction α of the 

possible values falls 
V NAa Estimated covariance matrix of w* 
w NA Vector of unknown model parameters 
w* NA Vector of most-probable model parameters 
X 106 cells ⋅ ml–1 Yeast concentration 
X0 106 cells ⋅ ml–1 Initial yeast concentration 
Y0 mg⋅g–1 Initial diacetyl versus carbon dioxide yield 
Y0i mg⋅g–1 Initial diacetyl versus carbon dioxide yield in experimental run i 
YA/C mg⋅g–1 Diacetyl versus carbon dioxide yield 
YD/C g⋅g–1 Density versus carbon dioxide yield 
YE/C g⋅g–1 Ethanol versus carbon dioxide yield 
YR/C g–1⋅L Wort refractive index versus carbon dioxide yield 
YS/C g⋅g–1 Fermentable sugar versus carbon dioxide yield 
θ °C Wort temperature 
θ0 °C Fermentation temperature the central point of the experimental design 
λ None Standard deviation of the logarithm of Y0 

µ None Mean value of the logarithm of Y0 

µ hr–1 Specific cell growth rate 
ν hr–1 “Specific” rate of the alcoholic fermentation 
σA mg⋅L–1 Measurement standard deviation of the diacetyl concentration 

a Not applicable. 
 


