N. Bansal, M. J. Germann, L. Lazar, C. R. Malloy, and A. D. Sherry, In vivo Na-23 MR imaging and spectroscopy of rat brain during TmDOTP 5 -infusion, J. Magn. Reson. Imaging, vol.2, pp.385-391, 1992.

D. R. Caldwell and R. F. Hudson, Sodium, an obligate growth requirement for predominant rumen bacteria, Appl. Microbiol, vol.27, pp.549-552, 1974.

A. M. Castle, R. M. Macnab, and R. G. Shulman, Coupling between the sodium and proton gradients in respiring Escherichia coli cells measured by 23 Na and 31 P nuclear magnetic resonance, J. Biol. Chem, vol.261, pp.7797-7806, 1986.

A. M. Castle, R. M. Macnab, and R. G. Shulman, Measurement of intracellular sodium concentration and sodium transport in Escherichia coli by 23 Na nuclear magnetic resonance, J. Biol. Chem, vol.261, pp.3288-3294, 1986.

J. M. Chow and J. B. Russell, Effect of pH and monensin on glucose transport by Fibrobacter succinogenes, a cellulolytic ruminal bacterium, Appl. Environ. Microbiol, vol.58, pp.1115-1120, 1992.

P. Dimroth, Bacterial sodium ion-coupled energetics, Antonie Leeuwenhoek, vol.65, pp.381-395, 1994.

C. V. Franklund and T. L. Glass, Glucose uptake by the cellulolytic ruminal anaerobe Bacteroides succinogenes, J. Bacteriol, vol.169, pp.500-506, 1987.

G. Gaudet, E. Forano, G. Dauphin, and A. M. Delort, Futile cycling of glycogen in Fibrobacter succinogenes as shown by in situ 1 H-NMR and 13 C-NMR investigation, Eur. J. Biochem, vol.207, pp.155-162, 1992.
URL : https://hal.archives-ouvertes.fr/hal-02701703

H. Gilboa, M. Kogut, S. Chalamish, R. Regev, Y. Avi-dor et al., Use of 23 Na nuclear magnetic resonance spectroscopy to determine the true intracellular concentration of free sodium in a halophilic eubacterium, J. Bacteriol, vol.173, pp.7021-7023, 1991.

L. K. Maas and T. L. Glass, Cellobiose uptake by the cellulolytic ruminal anaerobe Fibrobacter (Bacteroides) succinogenes, Can. J. Microbiol, vol.37, pp.141-147, 1991.

C. Matheron, A. Delort, G. Gaudet, E. Forano, and T. Liptaj, 13 C and 1 H nuclear magnetic resonance study of glycogen futile cycling in strains of the genus Fibrobacter, Appl. Environ. Microbiol, vol.64, pp.74-81, 1998.
URL : https://hal.archives-ouvertes.fr/hal-02690275

S. Nagata, K. Adachi, K. Shirai, and H. Sano, 23 Na NMR spectroscopy of free Na ? in the halotolerant bacterium Brevibacterium sp. and Escherichia coli, Microbiology, vol.140, pp.729-736, 1995.

J. B. Russell, Effect of extracellular pH on growth and proton motive force of Bacteroides succinogenes, a cellulolytic ruminal bacterium, Appl. Environ. Microbiol, vol.53, pp.2379-2383, 1987.

T. Unemoto and R. A. Macleod, Capacity of the outer membrane of a gram-negative marine bacterium in the presence of cations to prevent lysis by Triton X-100, J. Bacteriol, vol.121, pp.800-806, 1975.

A. Ventosa, J. J. Nieto, and A. Oren, Biology of moderately halophilic aerobic bacteria. Microbiol. Mol. Biol. Rev, vol.62, pp.504-544, 1998.

G. E. Wisse and R. A. Macleod, Role of Na ? in growth, respiration and membrane transport in the marine bacterium Pseudomonas doudoroffii 70, Arch. Microbiol, vol.153, pp.64-71, 1989.

, vivo 13 C NMR experiments. Time-dependent changes of

C. ,

. C]succinate, triangles) during 64 mM [1-13 C]glucose utilization by F. succinogenes S85 resting cells (10 mg of protein ? ml ?1 ). Cells were washed in a buffer containing 75 mM Na ? solution (solid symbols) or a buffer lacking sodium (open symbols) and then