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Abstract — Forty-three batches of cereals (10 of wheat, 10 of triticale, 5 of barley, 5 of rye, 7 of maize
and 6 of sorghum) were analysed and studied for their nitrogen (N) and amino acid (AA) ileal
digestibility. Each batch was tested on four castrated male pigs, weighing between 30 and 90 kg, and
fitted with an end-to-end ileo-rectal anastomosis. Ileal true digestibility (TD) of AA was calculated
by correcting ileal apparent digestibility (AD) for basal endogenous AA losses, measured by means
of a protein-free diet. Ileal real digestibility (RD) of AA was calculated by correcting AD for total
endogenous AA losses, estimated by a multiple regression model. TD of N and most AA decreased
(P < 0.001) from wheat, triticale and maize, to barley and sorghum and to rye (90.3, 88.7, 89.9,
85.4, 83.7 and 80.1%, respectively, for the sum of all AA). Estimates of endogenous N losses
decreased (P < 0.001) from triticale, sorghum and wheat, to maize, barley and rye (on average 3.10,
2.93, 2.63, 2.43, 2.27 and 2.16 g N.kg–1 DM ingested, respectively). Barley excluded, there was a trend
toward increasing endogenous AA losses with increasing dietary acid detergent fibre (ADF) con-
centration (r = 0.57, P < 0.001). Barley caused low endogenous N losses relative to its ADF
concentration. 

cereal / ileal digestibility / endogenous losses / nitrogen / amino acid / pig

Résumé — Digestibilité iléale des acides aminés et estimation des pertes azotées endogènes
chez le porc en croissance alimenté à base de blé, de triticale, de seigle, d’orge, de maïs ou de
sorgho. Quarante-trois lots de céréales (10 de blé, 10 de triticale, 5 de seigle, 5 d’orge, 7 de maïs et
6 de sorgho) ont fait l’objet d’une analyse chimique et d’une mesure de la digestibilité iléale de



C. Jondreville et al.120

1. INTRODUCTION

Nitrogen (N) and amino acid (AA) ileal
digestibility in cereals for pigs has been
widely previously studied by many authors
[19, 20, 22, 35, 38, 53]. Data are expressed
as ileal apparent, true or real digestibility.
Ileal apparent digestibility (AD) values may
be strongly biased by the N and AA con-
tent of the experimental diet [17]. The cal-
culation of ileal true digestibility (TD), by
correcting AD for basal endogenous losses,
is necessary to overcome this methodolog-
ical problem and to get additive values of
digestible AA supply [20, 59]. The resulting
ileal standardised or true digestibility (TD)
values have been tabulated for use in prac-
tical feed formulation [10, 48, 52, 55]. How-
ever, there is evidence that total largely
exceed basal endogenous gut N losses. Even
corrected for basal endogenous N losses,
ileal N thus contains variable amounts of
specific endogenous N, depending on the
characteristics of the feedstuff [12]. Cor-
rection of AD for total endogenous losses
leads to ileal real digestibility (RD) accord-
ing to the terminology proposed by Low
[40].

Because 70 to 80% of gut endogenous
secretions are digested and re-absorbed,

they largely exceed the observed ileal losses.
Moreover, it is established that production of
endogenous gut N involves additional
energy and AA costs [49, 59]. In this respect,
the evaluation of dietary factors affecting
endogenous N losses have recently received
considerable attention. However, only few
authors reported such information for cere-
als [12, 34, 37, 49]. 

The current study is part of a more exten-
sive work on ileal digestibility of N and AA
in pig feeds [30]. The aim was to determine
TD of N and AA and to estimate endoge-
nous gut N losses in various samples of
wheat (W), triticale (T), rye (R), barley (B),
maize (M) and sorghum (S) in order to (i)
rank the cereal species and (ii) identify
dietary factors that contribute to variability
in digestibility values and endogenous gut N
losses between samples. 

2. MATERIALS AND METHODS

2.1. Feedstuffs and experimental diets 

Forty-three batches of cereals (10 of
wheat, 10 of triticale, 5 of barley, 5 of rye,
7 of maize and 6 of sorghum) were studied.
Either of pure or mixed cultivars, they were
selected in order to be representative of

l’azote (N) et des acides aminés (AA). Chaque lot a été testé sur quatre porcs, mâles, castrés, prépa-
rés en anastomose iléo-rectale termino-terminale et pesant entre 30 et 90 kg. La digestibilité iléale vraie
(DV) a été calculée en corrigeant la digestibilité iléale apparente (DA) de l’excrétion endogène
basale d’AA, mesurée au moyen d’un aliment protéiprive. La digestibilité iléale réelle (DR) a été cal-
culée en corrigeant la DA de l’excrétion endogène totale d’AA, estimée par régression multiple.
Les DV les plus élevées (P < 0,001) ont été mesurées pour le blé, le triticale et le maïs (respective-
ment 90,3, 88,7, 89,9 % pour la somme des AA) et les plus faibles pour le seigle (80,1 % pour la somme
des AA). L’orge et l’avoine présentaient des DV intermédiaires (respectivement 85,4 et 83,7 % pour
la somme des AA). Les pertes endogènes d’azote les plus élevées (P < 0,001) ont été estimées pour
le triticale, le sorgho et le blé (respectivement 3,10, 2,93 et 2,63 g N.kg–1 matière sèche ingérée
(MSI)) et les plus faibles pour le maïs, l’orge et le seigle (respectivement 2,43, 2,27 et 2,16 g N.kg–1

MSI). Orge exclue, les pertes endogènes d’N augmentaient avec la teneur en acid détergent fibre
(ADF) de l’aliment (r = 0,57, P < 0,001). L’excrétion endogène d’azote entraînée par l’ingestion
d’orge était faible par rapport à sa teneur en ADF. 

céréale / digestibilité iléale / pertes endogènes / azote / acide aminé / porc
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This combination of adaptation and collec-
tion periods was among those which allowed
the most accurate measurement of N excre-
tion by pigs fitted with an end-to-end ileo-
rectal anastomosis [42]. During the latter
period, ileal digesta were totally collected
in a plastic reservoir. Twice a day, just after
meal, digesta were withdrawn from the reser-
voir and immediately stored at 4 °C. At the
end of the collection period, ileal digesta
were pooled per animal, homogenised, and
two sub-samples were taken: one was oven-
dried (80 °C for 72 hours) for dry matter
determination, and the other one was freeze-
dried prior to analysis.

2.3. Chemical analyses

All chemical analyses were performed
in duplicate as previously described [31].
Each batch of cereal, each diet and each
pooled sample of ileal digesta were anal-
ysed for N and AA contents. The N content
was measured by the Kjeldahl method. The
AA content was determined by chromatog-
raphy in an ion exchange column, after a
23-hour hydrolysis in 6 N HCl at 110 °C.
The sulphur AA content was determined
using performic oxidation hydrolysis. Tryp-
tophan was determined by HPLC followed
by fluorometric detection, after hydrolysis in
an alkaline solution (baryum hydroxide) at
125 °C for 16 hours.

For each sample of cereal, the dry matter
(DM), ash, Neutral Detergent Fibre (NDF),
Acid Detergent Fibre (ADF) and Acid
Detergent Lignin (ADL), crude fibre (CF),
fat and starch contents were determined.
The NDF, ADF and ADL determinations
were sequentially carried out. The CF was
determined according to the Weende
method, and starch according to the Ewers
method. Crude fat was measured without
hydrolysis prior to analysis. The N content
of the NDF residue (NNDF) was evaluated
by the successive analysis of NDF and N; it
was determined for each batch of cereal
except for 5 batches of triticale. The water

cereal batches used for feed in Western
Europe. All originated from Western Europe
and most of them (thirty-seven) from France.
The cultivars are given in Table I. Feed-
stuffs were ground in a hammer mill fitted
with a 2 mm screen. Per kg, each diet con-
tained 945 g of cereal and 55 g of a mineral
and vitamin premix to compensate for elim-
inating the function of the large intestine
[64] (Tab. I). 

2.2. Animals and procedures

The experiments were conducted under
the guidelines of the French Ministry of
Agriculture for Animal Research. In total,
52 barrows of pure bred Large White or
(Large White× Landrace)× (Large White×
Pietrain) were used in this study. They were
surgically prepared with an end-to-end ileo-
rectal anastomosis [32, 51] at a body weight
(BW) of 25 to 30 kg. Pigs were allowed a
four-week recovery period following
surgery, and then entered a twelve-week
period during which digestibility measure-
ments were made. The experiments lasted
from 1990 to 1996 and involved the use of
thirteen groups of four pigs, made as similar
as possible on the basis of age and BW of
the pigs. Each batch of cereal was fed to the
four pigs of only one group and at one
period; both group and period were selected
at random. Therefore, it was assumed that
age, breed, BW, or time effects did not influ-
ence observed digestibility values. 

Animals were fed twice daily (8 am and
4 pm) a diet in meal form mixed with water
at the time of feeding (2 volumes water/
1 volume meal). Drinking water was con-
tinuously available. The feeding scale was
set at 90 g meal per kg metabolic weight
(BW0.75). Every week, the feed allowance
was individually adjusted based on weigh-
ings at four-week intervals and projected
increases in BW between weighings. 

Experimental diets were fed for seven
days [22]: an adaptation period of five days
followed by a two-day collection period.
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Table I. Analytical characteristics of the cereal grains (in g.kg–1 DM except NNDF1 and WERV2).

N Fat CF Ash NDF ADF ADL NNDF Starch Sol. AX Sol. β-gluc WERV

Wheat (n4 = 10)
m3 22.5 19.5 25.8 19.1 126.1 31.3 9.0 9.7 682.6 5.5 1.0 1.6
sd3 2.28 5.49 3.43 1.82 16.28 3.69 0.93 1.46 24.80 1.37 0.22 0.25
min3 19.9 14.4 22.4 16.1 111.6 26.5 7.3 7.3 618.1 4.0 0.6 1.2
max3 27.1 33.9 33.2 21.5 159.3 37.3 10.2 12.7 704.9 7.7 1.2 2.1

Triticale (n = 10)
m 19.0 16.0 26.5 21.1 126.3 32.3 8.6 7.7 684.7 6.1 1.1 1.9
sd 3.00 0.91 3.46 1.34 13.59 3.79 1.48 1.54 19.13 1.20 0.35 0.41
min 15.0 14.3 19.9 18.7 103.5 26.7 7.0 6.7 648.1 4.0 0.7 1.4
max 24.1 17.6 29.8 23.1 144.8 36.4 12.0 10.3 711.8 7.8 1.9 2.5

Rye (n = 5)
m 15.4 16.2 21.3 19.8 136.2 27.6 8.5 13.2 648.6 13.7 3.6 5.8
sd 1.20 1.11 1.47 0.64 9.52 3.48 0.70 0.92 11.65 1.78 0.64 0.98
min 13.9 15.1 19.6 19.1 123.9 24.1 7.9 11.7 635.9 12.4 2.9 4.9
max 16.8 17.8 23.4 20.6 150.2 32.9 9.7 13.9 663.8 16.8 4.0 7.1

Barley (n = 5)
m 21.0 25.0 47.8 26.3 184.3 53.2 8.1 8.6 569.9 4.4 17.3 5.7
sd 1.19 5.62 10.67 2.89 20.70 10.03 0.98 1.00 46.47 1.09 5.08 2.78
min 20.0 21.6 34.1 22.8 159.5 45.0 6.8 7.8 496.1 3.4 10.5 1.4
max 22.4 34.9 60.0 29.6 211.2 64.8 9.3 9.9 609.8 6.0 24.4 8.0

Maize (n = 7)
m 16.7 44.6 22.6 15.1 97.5 24.4 2.6 6.8 716.3 0.8 0.4 1.1
sd 2.39 5.49 4.44 1.46 5.91 1.77 1.30 0.99 23.35 0.10 0.21 0.04
min 13.2 39.2 18.9 12.4 89.9 22.1 0.8 5.6 693.5 0.6 0.2 1.0
max 20.2 53.4 32.3 17.3 108.6 26.8 4.2 8.0 764.3 0.9 0.8 1.1

Sorghum (n = 6)
m 17.9 35.3 22.5 15.3 83.7 28.4 4.9 9.6 763.0 2.0 0.7 1.0
sd 1.74 1.73 3.08 1.46 9.59 2.28 0.68 1.70 17.61 1.68 0.47 0.05
min 15.2 33.3 19.1 14.1 73.2 25.5 4.2 7.2 740.6 0.5 0.2 1.0
max 20.1 37.9 27.7 17.8 96.2 31.9 6.0 11.4 781.7 4.1 1.4 1.1

1 N bound to NDF (% total N in the grain).
2 Water Extract Relative Viscosity.
3 m: mean value for the cereal species; sd: standard deviation; min: minimum value; max: maximum value.
4 Number of batches – Wheat: for Sol. AX, Sol. β-gluc. and WERV (n = 9) – Triticale: for NNDF (n = 5) – Rye:
for Sol. β-gluc. (n = 2) – Barley: for CF (n = 4) – Cultivars: Wheat: four batches of mixed cultivars, one of
Thésée; one of Beaver, one of Ritmo, one of Slepjner, two of Apollo; Triticale: one batch of Dagro, one of
Aubrac, one of Magistral, one of Trimaran, two of Newton, two of Trick, two of Alamo; Rye: five batches of mixed
cultivars; Barley: two batches of mixed 2-row cultivars, one of mixed 6-row cultivars, one of Express (6-row, win-
ter), one of Magie (2-row, winter); Maize: 5 batches of mixed cultivars, one of Dea, one of Volga; Sorghum: one
batch of mixed white cultivars, one of DK 34 (red), one of DK26 (red), one of Taxus (white), two of Aralba
(white). The mineral and vitamin premix supplied per kg DM feed: 303 mg MgCl2.6H2O; 303 mg KCl; 8437 mg
NaCl; 22000 mg NaHCO3; 9548 mg CaHPO4; 10849 mg CaCO3; 512 mg; FeSO4.7H2O; 303 mg ZnSO4.1H2O;
80 mg CuSO4.5H2O; 121 mg MnSO4.1H2O; 5 mg CoCO3; 2 mg Ca(IO3)2; 27500 IU vit. A; 2200 IU vit. D3;
4070 IU vit. E; 21 mg vit. K3; 6 mg vit. B1; 14 mg vit. B2; 13 mg vit. B6; 51 mg vit. PP; 80 mg vit. C; 1 mg folic
acid; 70 mg vit. B12; 0.03 mg biotin; 30 mg vit. B3; 804 mg choline; 50 mg carbadox.
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comparable to measured values obtained
by 15N dilution using an intravenous
15N-L-Leucine infusion [57].

A combination of the n following equa-
tions was used to estimate the contributions
of various ‘reference’ proteins in digesta
protein collected from the distal ileum: 

AA1,digesta = x1 AA1,P1+ …+…+xk 
= AA1,Pk+…….+xm AA1,Pm

AAi,digesta = x1 AAi,P1+…+xk
= AAi,Pk+…….+xm AAi,Pm

AAn,digesta = x1 AAn,P1+…+xk
= AAn,Pk+…….+xm AAn,Pm

where n =16, number of assayed amino
acids; AAi,digesta = % of AAi in digesta pro-
tein; Pk = ‘reference’ protein k; AAi,Pk = %
of AAi in ‘reference’ protein k; x1, xk …. xm
= regression coefficients of the actual AA
profile when regressing digesta protein on
the ‘reference’ proteins P1…Pm.

In order to assign the same weight to each
AA, the square-root of the AA proportions
in digesta protein were considered as depen-
dent variables, the ratio of AA proportions
in ‘reference’ proteins to this square-root
being considered as independent variables.
The χ2 value, representing the extent of the
agreement between the determined and the
expected AA composition of digesta pro-
tein was calculated as follows:

χ2 = n × Σ (AAi, digesta– AAi, mixture)
2

χ2 = n × i=1
(AAi, digesta– AAi, mixture)/

2

where AAi,digesta= % of AAi in actual pro-
tein digesta; AAi,mixture = % of AAi in the
mixture of ‘reference’ proteins.

The AA compositions of the various pro-
teins were expressed as percentages of the
sum of the analysed AA contents. For the
calculations, tryptophan, not determined in
residual protein of NDF, and proline, not
determined in our AA analyses, were not
considered. The endogenous protein, whole
dietary protein and residual protein of NDF
were used as ‘reference’ proteins. The AA
composition of the endogenous protein has

extract viscosity was measured by means
of a capillary viscosimeter (AVS 310, Schott
Geräte, Germany). To get the water extract,
a suspension of ground grain in water was
centrifuged (10 minutes, 5000 g) at room
temperature. The supernatant was heated at
100 °C, centrifuged (5 minutes, 5000 g), fil-
trated over a 0.45 µm membrane and stored
at 0 °C [23]. The water extract relative vis-
cosity (WERV) was calculated as the ratio of
the cereal water extract falling time to the
de-ionised water falling time. The soluble
arabinoxylans (Sol. AX) concentration was
measured by colorimetry [54] by means of
a colorimeter (Evolution II, Alliance Instru-
ment, France). The Soluble β-glucans
(Sol. β-gluc.) content was measured after
enzymatic hydrolysis [43], by measuring
the absorbance at λ = 0.510 µm (UVIKON
930, Kontron Instrument, France). In
sorghum, tannins content determination was
based on the reaction between ferric (III)
ammonium citrate and polyphenols, after
extraction by dimethylformamide. The con-
centration was measured by spectropho-
tometry (λ = 0.525 µm) (UVIKON 930,
Kontron Instrument, France), taking tannic
acid as standard [1].

2.4. Calculations 

2.4.1. Estimates of endogenous
gut AA losses

First, the proportions of endogenous and
of dietary proteins in ileal digesta were esti-
mated according to a mathematical model.
This model allows the calculation of pro-
portions of different ‘reference’ proteins in
a mixture, from their AA profiles [14]. The
method combines a multiple regression anal-
ysis, without intercept, and the calculation of
the deviation between the observed and
expected AA composition of a mixture of
proteins by means of a chi-square (χ2) value.
It was previously used to calculate the pro-
portions of endogenous and exogenous
proteins in ileal digesta from pigs fed dif-
ferent feedstuffs and provided estimates
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been obtained from the determination of
basal endogenous AA losses (Bendo), pre-
viously performed in our laboratory (unpub-
lished results), using twenty pigs prepared
and managed according to the above
described procedure and fed a protein-free
diet made of maize starch (58%), sucrose
(30%), wood cellulose (3.5%), soya oil
(3.0%), and the mineral and vitamin premix
used for experimental diets (5.5%). The AA
composition of the protein of NDF for each
species was available in the literature [34,
41]. It was introduced in the model because
it was likely to be poorly digestible due to
the restricted access of digestive enzymes
to protein encapsulated by fibre [58].
Regression analyses were performed using
the STEPWISE procedure of the MINITAB
statistical software [45].

Total endogenous AA losses (g.kg–1

DMI) were calculated as follows:

Tendo = xEndo× Texcreted

where Tendo = estimates of total endoge-
nous AA losses (g.kg–1 DMI); xEndo= esti-
mated proportion of endogenous protein in
the digesta protein; Texcreted = total AA
excretion with digesta (g.kg–1 DMI).

2.4.2. Digestibility calculation

Ileal apparent digestibility (AD) was cal-
culated from N and AA concentrations in
diets and in ileal digesta. For ileal true
digestibility (TD) calculation, it was cor-
rected for basal endogenous AA losses
(Bendo) [40]. The assumption was made
that the basal endogenous losses were
directly related to DM intake (DMI):

TD = AD + Bendo (g.kg–1 DMI)
× 100/AA ingested (g.kg–1 DMI).

This correction of AD to TD was aimed at
reducing the effects of N and AA content
of the experimental diets on the digestibility
values [17, 59]. 

Real ileal digestibility (RD) was calcu-
lated by correcting AD for total endogenous

AA losses (Tendo) (g.kg–1 DMI) [40]:

RD = AD + Tendo (g.kg–1 DMI)
× 100/AA ingested (g.kg–1 DMI).

2.4.3. Data analysis

The effect of the batch (B) on total
endogenous AA losses (g.kg–1 DMI), as well
as on TD and RD of N and AA was first
analysed within each cereal species. An
overall analysis of variance was performed
to evaluate the effect of the species relative
to the residual variation between batches.
The overall model included the following
items: the cereal species (S) and the batch
nested within species B(S). The effect of
species (S) was tested against batch nested
within species (B(S)). A Tukey’s Studen-
tized Range test was used for comparison
of means. Analyses of variance were per-
formed using the GLM procedure of the
SAS statistical software [56].

3. RESULTS

The average BW of pigs fed wheat, rye
and sorghum were in the same range (44 to
69 kg). It was slightly lower for triticale (34
to 55 kg), higher for barley (57 to 80 kg)
and more variable for maize (39 to 85 kg).

3.1. Chemical characteristics
of the cereal batches

Both the fibre (NDF, ADF, ADL, CF)
concentration and its variability among
batches increased from sorghum and maize
to wheat, triticale and rye, and to barley
(Tab. I). The lowest N concentrations were
measured for rye, maize and sorghum. The
proportion of the total N located in the NDF
residue (NNDF) was almost two times
higher in rye than in maize (13.2 and 6.8%
of the total N, respectively). This propor-
tion was on average 9% for the other
species, with a high variability within
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rye (5.7 and 5.8, respectively). All the
sorghum batches were tannin-free (< 0.5 g
tannins per kg DM).

Tryptophan, methionine, cystine and his-
tidine were among scarce amino acids, irre-
spective of the grain (Tab. II). Glutamic
acid displayed by far the highest concen-
tration, followed, although to a lesser extent,
by leucine and aspartic acid. Leucine

species. The average soluble arabinoxylans
concentration in rye was roughly two times
higher than in wheat and triticale (13.7, 5.5
and 6.1 g.kg–1 DM, respectively). The con-
tent of soluble β-glucans in barley ranged
from 10.5 to 24.4 g.kg–1 DM. Water extract
relative viscosity increased from maize and
sorghum (1.0 to 1.1) to wheat and triticale
(1.6 and 1.9, respectively) and to barley and

125

Table II. Amino acid content of the grains (g.16 g–1 N).

ΣAA1 Lys Thr Met Cys Trp Ala Arg Asp Glu Gly His Ile Leu Phe Ser Tyr Val

Wheat (n3 = 10)
m2 82.5 3.0 2.8 1.6 2.0 1.2 3.4 4.9 5.3 27.1 3.8 2.4 3.4 6.3 4.5 4.5 2.3 4.0
sd2 3.88 0.50 0.19 0.15 0.11 0.07 0.24 0.59 0.68 2.80 0.21 0.25 0.13 0.29 0.27 0.19 0.30 0.34
min2 77.2 2.5 2.5 1.4 1.9 1.0 3.0 4.3 4.2 22.7 3.3 2.0 3.3 5.9 4.0 4.3 1.8 3.6
max2 87.0 4.1 3.1 1.8 2.2 1.2 3.7 6.0 6.6 30.4 4.0 2.7 3.7 6.7 4.8 4.9 2.7 4.5

Triticale (n = 10)
m 84.4 3.6 3.2 1.8 2.3 1.1 4.3 5.2 6.3 25.1 4.2 2.3 3.3 6.3 4.2 4.5 2.2 4.4
sd 6.22 0.45 0.30 0.19 0.28 0.14 0.55 0.66 0.79 2.10 0.47 0.23 0.19 0.47 0.20 0.15 0.29 0.39
min 72.0 2.9 2.8 1.5 1.8 0.9 3.4 4.2 5.1 21.6 3.4 1.8 3.0 5.5 3.8 4.2 1.8 3.7
max 90.3 4.2 3.6 2.1 2.7 1.3 5.0 6.1 7.4 28.2 4.8 2.6 3.5 6.8 4.5 4.7 2.6 4.8

Rye (n = 5)
m 87.2 4.1 3.3 1.8 2.3 1.1 4.7 5.9 7.8 24.3 4.6 2.3 3.4 6.0 4.4 4.4 2.0 4.6
sd 4.10 0.27 0.19 0.13 0.19 0.11 0.31 0.42 0.40 1.21 0.15 0.15 0.18 0.26 0.25 0.20 0.11 0.18
min 82.5 3.8 3.1 1.7 2.2 1.0 4.4 5.2 7.6 23.0 4.4 2.2 3.2 5.7 4.1 4.2 1.9 4.4
max 91.6 4.5 3.6 2.0 2.6 1.3 5.2 6.2 8.5 26.1 4.8 2.5 3.6 6.3 4.7 4.6 2.1 4.8

Barley (n = 5)
m 79.8 3.6 3.3 1.7 2.1 1.2 3.8 4.8 5.5 23.0 3.9 2.3 3.3 6.4 4.8 4.2 2.2 4.6
sd 2.97 0.29 0.16 0.22 0.23 0.11 0.32 0.44 0.40 1.27 0.15 0.33 0.15 0.28 0.13 0.19 0.27 0.38
min 77.8 3.3 3.2 1.6 1.8 1.1 3.4 4.2 5.1 21.6 3.7 1.8 3.2 6.1 4.7 4.0 2.0 4.2
max 84.1 4.0 3.6 2.1 2.4 1.3 4.2 5.3 6.1 24.4 4.0 2.6 3.6 6.7 5.0 4.5 2.7 5.0

Maize (n = 7)
m 86.4 3.0 3.6 2.2 2.1 0.7 7.4 4.2 6.1 18.4 3.5 2.6 3.5 11.8 4.9 4.8 3.0 4.7
sd 4.21 0.27 0.20 0.24 0.22 0.08 0.47 0.56 0.67 1.52 0.32 0.28 0.16 0.80 0.27 0.30 0.47 0.40
min 80.4 2.5 3.3 1.9 1.9 0.7 6.9 3.4 5.0 16.8 3.1 2.3 3.3 10.8 4.6 4.3 2.5 3.9
max 92.3 3.4 3.8 2.6 2.5 0.9 8.0 4.8 6.9 21.2 4.1 3.0 3.7 12.9 5.4 5.2 3.7 5.1

Sorghum (n = 6)
m 85.9 2.2 3.1 1.8 1.6 1.0 8.7 3.5 6.4 20.2 3.0 2.1 3.6 12.2 4.7 4.2 2.9 4.6
sd 1.15 0.12 0.12 0.23 0.14 0.00 0.46 0.63 0.21 0.83 0.18 0.40 0.11 0.35 0.16 0.05 0.34 0.05
min 84.5 2.1 2.9 1.4 1.3 1.0 8.3 2.2 6.0 19.1 2.7 1.5 3.4 11.8 4.5 4.2 2.7 4.5
max 87.3 2.4 3.2 2.0 1.7 1.0 9.6 3.9 6.6 21.3 3.2 2.7 3.7 12.8 4.9 4.3 3.6 4.6

1 Sum of all amino acids.
2 m: mean value for the cereal species; sd: standard deviation; min: minimum value; max: maximum value.
3 Number of batches.
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concentration was particularly high in maize
and in sorghum.

3.2. Estimates of endogenous N losses

For all the batches of cereal, except those
of sorghum, the introduction of endogenous
protein with protein bound to NDF in the
model allowed the χ2 distance between the
determined and the expected proteins to be
minimised. Except for one batch of wheat
and four batches of triticale, both endoge-
nous protein and protein bound to NDF were
introduced (P < 0.05) in the model. For these
five batches the probability for the introduc-
tion of protein bound to NDF in the model
was below 0.10 (results not shown). For the
sorghum batches, both the dietary protein
and the protein bound to NDF were intro-
duced in the model (P < 0.01 and P < 0.05,
respectively), but the χ2 distance was min-
imised with the dietary protein (χ2 = 3 to
84 vs. 45 to 131). The estimated proportion
of total endogenous protein in digesta pro-
tein reached an average of 70% for triticale,
65% for maize, 60% for wheat, 55% for
sorghum and 40% for rye and barley. 

Differences (P < 0.05) between batches
for total endogenous AA losses (g.kg–1DMI)
were observed in wheat, barley and maize
(results not shown). Clear effects (P < 0.001)
of the species were detected (Tab. III). The
highest estimates were calculated for triticale
(10.7 g.kg–1 DMI), and the lowest for maize,
barley and rye (8.44, 7.88 and 7.50 g.kg–1

DMI, respectively). Intermediate estimates
were calculated for wheat and sorghum
(9.12 and 9.83 g.kg–1 DMI, respectively). 

3.3. TD and RD of N and AA

Batches differed (P < 0.05) for TD of most
AA in all species and for RD of most AA in
all species except rye and sorghum (results
not shown). A clear effect (P < 0.001) of the
species was observed for TD and RD, irre-
spective of AA (Tabs. III and IV). Both TD

and RD of N and most AA decreased from
wheat, triticale and maize to sorghum and
barley, and to rye. In wheat, triticale and
maize, the TD and RD of the sum of all AA
were 90% and 95%, respectively. Both mea-
sures decreased by 5 percentage units in
comparison to sorghum and barley and by
5 additional percentage units to rye. 

4. DISCUSSION

4.1. Chemical characteristics

The variation in major nutrients within
whole grain cereals found in our study was
to the same extent as reported in the litera-
ture [2, 16, 19, 25, 44]. According to these
authors, in addition to variety, location, crop
husbandry and year of harvest may affect
the composition of cereals. 

In agreement with data reported in the
literature [2], soluble β-glucans were minor
constituents of wheat and maize, whereas
their concentration was slightly higher in
rye and reached the maximum level in bar-
ley. The concentration of soluble arabi-
noxylans was in the following order: maize
< wheat and barley < rye. The same order
was reported previously [2]. The ranking of
the different cereal species for water extract
relative viscosity, and the range of variabil-
ity within cereal species were in agreement
with previous observations [24]. The low
levels of tannins in the sorghum batches was
in accordance with the results obtained for
most cultivars nowadays grown in Western
Europe [25, 44]. All the cereal batches
matched globally the AA concentrations
provided in the European Amino Acid Table
[62]. 

4.2. True digestibility values and
estimates of endogenous AA losses

The manner in which the ileal digestibil-
ity measurements were obtained raises the
question of the impact of the characteristics
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acids due to bacterial fermentation in the
digesta has been reported previously [18].
Nevertheless, these changes may affect ileal
digestibility of organic matter and particu-
larly that of fibre, but not that of N and AA
[5, 18, 33]. However, endogenous N losses
(g.kg–1 DMI) may decrease with the
increase in the animal BW between 45 and
80 kg [26, 27]. Possibly, this decrease
occurred in our study and biased the ranking
of species. In particular, the average

of the groups of growing pigs on differences
between samples. However, there is no indi-
cation in the literature of factors causing
significant variation in the ileal digestibility
of the AA other than those associated with
changes in dietary components. 

The feedstuffs were tested within a rela-
tively broad range of BW. Long term effects
of end-to-end ileo-rectal anastomosis, such
as histological changes in the ileum and
increased concentration of volatile fatty
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Table III. Effect of the cereal species1 on endogenous AA losses and ileal real digestibility of N and AA.

Wheat Triticale Rye Barley Maize Sorghum

m4 se4 m se m se m se m se m se rsd5

Total endogenous AA losses (g.k–1 DMI) 2

9.12bc 0.488 10.74a 0.523 7.50c 0.297 7.88c 0.798 8.44c 0.457 9.83ab 0.300 1.46

IRD (%)

N 95.8b 0.86 97.7a 0.67 84.2e 0.66 88.2d 1.10 94.8b 0.69 91.2c 1.24 2.3
ΣAA3 95.1a 0.55 95.9a 0.53 84.6c 0.70 89.3b 1.17 95.1a 0.72 90.2b 1.03 1.9
Lys 91.4b 0.99 94.2a 0.79 78.7d 1.09 83.9c 1.15 92.9ab 1.07 91.2b 1.35 3.1
Thr 92.1ab 0.83 93.7a 0.72 79.6e 0.58 85.3d 1.64 91.3b 1.18 88.3c 1.36 2.8
Met 96.2b 0.68 98.8a 0.51 88.6d 1.67 92.2c 1.44 98.1a 1.20 94.4b 1.07 2.2
Cys 96.5ab 0.53 97.8a 0.52 90.8c 1.17 92.0c 0.59 95.4b 1.09 88.7d 1.19 2.1
Trp 95.4b 1.01 97.4a 0.68 82.2e 1.33 87.8d 0.88 92.1c 2.02 92.4c 1.07 3.0
Ala 89.1b 1.05 90.0b 0.74 74.8e 0.75 81.5d 1.45 93.8a 0.68 84.6c 2.76 2.7
Arg 92.5b 1.38 96.2a 0.71 83.6d 1.00 87.6c 2.02 96.5a 0.70 93.6b 1.48 2.4
Asp 92.5c 0.86 94.1b 0.58 82.5e 0.78 85.8d 1.02 96.0a 0.88 91.5c 0.92 2.5
Glu 97.5a 0.26 97.5a 0.29 90.9d 0.60 93.0c 0.99 96.1b 0.64 90.9d 1.01 1.4
Gly 96.9b 0.97 98.6a 1.01 80.5d 0.90 89.2c 2.14 96.1b 1.42 88.8c 1.52 2.6
His 93.9a 0.63 94.6a 0.87 82.3d 0.63 88.3b 1.30 93.1a 1.03 86.4c 1.30 2.1
Ile 95.4a 0.68 96.4a 0.73 83.8d 0.54 88.7c 1.41 95.5a 1.14 91.3b 0.94 2.4
Leu 94.5a 0.54 95.3a 0.49 82.7c 0.58 89.5b 1.23 95.8a 0.76 91.1b 1.02 2.0
Phe 95.3a 0.45 95.3a 0.47 85.4c 0.74 90.1b 1.25 95.3a 0.79 91.6b 0.98 2.0
Ser 95.3a 0.59 96.1a 0.65 83.7d 0.65 88.9c 1.19 94.8a 0.80 90.8b 1.02 2.0
Tyr 94.5ab 0.55 95.7a 0.85 80.7d 0.83 91.3c 1.07 93.7b 0.90 90.9c 1.07 2.4
Val 92.5b 0.71 94.2a 0.68 80.8d 0.60 87.2c 1.54 93.9ab 0.72 89.5c 1.00 2.4

1 The effect of the species, tested against the batch nested within the species is always highly significant (P < 0.001).
Values with different superscript in the same row differ significantly at P < 0.05.
2 Basal endogenous losses (g.kg–1 DMI) N:1.145; ΣAA: 3.969 – (% ΣAA) Lys: 6.7; Thr: 6.5; Met: 2.2; Cys: 2.7;
Ala: 7.5; Arg: 5.2; Asp: 10.6; Glu: 13.2; Gly: 10.4; His: 2.3; Ile: 5.0; Leu: 7.6; Phe: 4.2; Ser: 6.4; Tyr: 2.8; Val: 6.7.
3 Sum of all amino acids.
4 m: mean value; se: standard error.
5  rsd: residual standard deviation. 
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estimates of total endogenous AA losses for
triticale, offered to pigs of 34 to 55 kg BW,
may have been overestimated compared to
the other species.

Our method for estimating total endoge-
nous AA losses relied on the assumptions
that the AA composition of the ‘reference’
proteins we used remained unchanged up
to the terminal ileum and that the AA com-
position of the endogenous protein was con-
stant, regardless of the variable dietary fac-
tors. The protein associated to the NDF
fraction was introduced in the model
because it was likely to be recovered intact
at the end of the ileum according to the
restricted access of digestive enzymes
to protein encapsulated by fibre [58].

However, dietary factors may cause changes
not only in the amount of endogenous AA
losses, but also in their AA composition. In
particular, any change in bacterial N flow,
which contributes to 20 to 50% of ileal N
recovered at the end of the ileum of pigs fed
cereal-based diets [13, 58], may cause
changes in the AA composition of the
digesta protein [6], and therefore, bias the
estimates of endogenous losses. 

Our ranking of cereal species for TD of
AA was similar to previously reported ref-
erences [12, 19, 20, 22, 34, 35]. However, in
contradiction to our results, higher digestibil-
ity values in rye than in barley [53] and sim-
ilar or even greater digestibility values in
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T able IV. Effect of the cereal species1 on ileal true digestibility2 of N and AA.

Wheat Triticale Rye Barley Maize Sorghum

m4 se4 m se m se m se m se m se rsd5

N 88.9a 0.63 86.6b 0.64 77.3d 0.54 82.7c 1.13 86.7b 0.76 81.2c 1.10 1.8
ΣAA3 90.3a 0.40 88.7b 0.35 80.1e 0.67 85.4c 0.77 89.9a 0.83 83.7d 0.99 1.6
Lys 82.9a 0.82 83.0a 0.45 72.5c 1.12 78.0b 0.94 83.4a 1.26 74.4c 2.09 2.9
Thr 83.4a 0.45 81.5b 0.56 72.2e 0.43 79.2c 1.02 83.3a 1.41 76.7d 1.62 2.5
Met 90.8b 0.43 91.5b 0.27 83.7d 1.82 88.2c 0.82 93.5a 1.16 87.6c 1.37 2.0
Cys 91.5a 0.40 90.9ab 0.28 86.3c 1.38 88.0c 0.49 89.6b 1.00 79.4d 1.25 1.8
Trp 88.6a 0.77 86.6b 0.63 75.4e 1.41 82.4c 1.22 79.5d 1.32 81.2cd 1.05 2.5
Ala 80.8b 0.91 79.4b 0.69 68.6d 0.61 75.4c 0.95 89.2a 0.91 80.0b 2.67 2.8
Arg 88.6b 1.03 90.2a 0.45 80.4d 0.96 84.5c 1.45 91.4a 0.67 84.7c 2.79 2.0
Asp 84.7b 0.57 84.0bc 0.56 77.3e 0.94 79.9d 0.30 88.6a 1.01 82.4c 0.92 2.3
Glu 95.7a 0.28 94.4b 0.21 88.8e 0.59 91.2d 0.83 92.9c 0.71 87.4f 0.94 1.2
Gly 86.4a 0.58 84.0b 0.42 71.9d 0.71 81.0c 1.11 83.2bc 1.95 70.0d 1.41 3.1
His 90.2a 0.55 88.6b 0.72 78.6d 0.43 85.3c 1.33 89.0ab 0.95 80.2d 2.03 1.7
Ile 89.8a 0.53 87.4b 0.42 78.3d 0.56 84.3c 1.10 89.2a 0.95 83.7c 0.93 1.9
Leu 89.8b 0.44 88.1c 0.42 77.9e 0.64 85.8d 0.89 92.8a 0.77 87.7c 0.97 1.7
Phe 91.7a 0.46 89.2b 0.43 81.7d 0.62 87.3c 1.12 91.5a 0.81 86.7c 0.96 1.7
Ser 89.9a 0.43 87.6b 0.43 78.2e 0.43 84.2c 0.70 88.9a 1.06 82.6d 1.03 1.7
Tyr 89.9a 0.46 88.2bc 0.52 74.9e 1.01 87.4c 0.90 89.4ab 1.03 85.7d 1.07 2.0
Val 86.1b 0.61 85.0b 0.42 75.2d 0.60 82.7c 1.00 87.5a 0.70 81.4c 1.06 2.0

1 The effect of the species, tested against the batch nested within the species was always highly significant (P < 0.001).
Values with different superscript in the same row differ significantly at P < 0.05.
2 Expressed as percentage units. 
3 Sum of all amino acids.
4 m: mean value; se: standard error.
5 rsd: residual standard deviation.
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4.3. Dietary factors affecting ileal
digestibility and endogenous
gut losses of N and AA

The partitioning of AA in digesta pro-
tein implies that protein present in the NDF
fraction of all cereals, except sorghum, is
only partially digested and absorbed prior
to the end of the ileum. This may be caused
by the restricted access of digestive enzymes
to protein encapsulated by fibre [58]. Only
60% of N bound to NDF extracted from
wheat bran was reported to be digested at
the end of the ileum of growing pigs [58].
We calculated that on average 60% of N in
NDF was digested before the end of the
ileum in wheat and triticale, 45% in maize,
and less than 20% in rye and barley. The
high proportion of N bound to NDF in rye
(Tab. I) and the presence of three layers in
the aleurone of barley [16, 60] could be plau-
sible factors contributing to the low TD and
RD values in these species. This phe-
nomenon may also explain the overall low
TD and RD of lysine. Indeed, the functional
proteins (albumins and globulins), rich in
lysine, are located in the most fibrous part of
the grain (aleurone cells) [8]. 

Total endogenous AA losses (g.kg–1

DMI) tended to increase with increase in the
dietary concentration of ADF (g.kg–1DM) in
wheat (r = 56, P < 0.10), and were clearly
greater with increase in the dietary concen-
trations of NDF or insoluble hemicellulose
(NDF-ADF) in barley (r = 0.91, P < 0.05
and r = 0.98, P < 0.01, respectively). Except
for barley, total endogenous AA losses
increased with increase in the dietary content
of ADF (r = 0.57, P < 0.001) (Fig. 1). An
increase in endogenous N losses with
increasing dietary NDF concentration was
also observed with pigs fed semi-synthetic
diets [42, 58]. Many mechanisms may be
involved: the direct stimulation of digestive
secretion, the enhanced sloughing of epithe-
lial cells, a modification of the rate of re-
absorption or the alteration of the rate of
passage through the intestinal tract [49].
Lower endogenous N losses in pigs fed

sorghum than in maize [38, 60] were also
reported. The variability between batches
possibly encountered within a cereal species
[19, 36, 41, 60] may partly explain contra-
dictory results across the studies. 

Total endogenous N losses for the wheat,
triticale, rye, barley, maize and sorghum
based diets were estimated at 2.63, 3.10,
2.16, 2.27, 2.43 and 2.93 g.kg–1DMI, respec-
tively. By means of the same method, sim-
ilar estimates of total endogenous N losses
have been obtained for wheat, rye, barley
and maize based diets offered to growing
pigs (2.85, 2.60, 2.60 and 3.14 g.kg–1 DMI)
[34]. Using the homoarginine method, sim-
ilar total endogenous N losses (2.77 g.kg–1

DMI) in 25–49 kg pigs fed a 93% barley
diet were calculated [50]. However, clearly
higher total endogenous N losses were mea-
sured by intravenous 15N dilution using
15N-L-Leucine infusion, for pigs fed 94%
wheat and barley diets (4.38 and 4.43 g.kg–1

DMI, respectively) [12] and for pigs fed a
90% barley diet (6.4 g.kg–1 DMI) [37]. A
possible overestimation of total N endoge-
nous losses determined by the N isotope
dilution technique may explain part of these
discrepancies [37]. 

We calculated the average basal endoge-
nous N losses from 20 individual measure-
ments, which were almost two times lower
than the values reported in the literature
[63]. Nevertheless, the reported range of
variation (2.22 ± 0.88 g N.kg–1 DMI) was
not exceeded. Estimates of total endoge-
nous N and AA losses (g.kg–1 DMI) for rye
and triticale were greater than the basal
endogenous losses by 1.9 and 2.7 times,
respectively (Tab. III). This implies that
digesta of pigs fed a cereal based diet contain
specific endogenous AA in addition to basal
endogenous AA [49, 59]. As a consequence,
RD values exceeded TD values. The differ-
ence, which represents the specific endoge-
nous AA losses as percentage of the AA
content of the diet, ranged, for the sum of
all AA, between 3.9 and 7.2 units for barley
and triticale, respectively. 

129



C. Jondreville et al.

graded levels of CF from barley than from
wheat were already reported elsewhere [12].
Lignin proportion in ADF is greater for
wheat, triticale and rye than for barley (28 vs.
15% ADF) (Tab. I). Thus, fibre originating
from wheat, triticale and rye might have
been a more effective factor in increasing
the ileal endogenous flow, due to a more
pronounced mechanical effect enhancing
the cells sloughing and (or) the adsorptive
capacities of lignin, and thereby, a limited
availability of some endogenous AA for
absorption [4]. 

TD of AA and the analytical character-
istics of the diets were poorly correlated.
However, in triticale, TD of most AA
decreased as CF and ADF contents of the
diet increased (r = –0.82 (P < 0.01) and
r = –0.73 (P < 0.05) for the sum of all AA,
respectively). In wheat, TD of some AA and
CF content of the diet were clearly correlated
(r = –0.70 for the sum of all AA, P < 0.05). In
sorghum, TD of most AA decreased as the
ADL content of the diet increased (r = –0.92
for the sum of all AA, P < 0.01). This prob-
ably reflected the deleterious effect of fibre

on TD of N and AA through an increase in
total endogenous N losses and in the undi-
gested dietary fraction. However, plant fibre
consists of a number of different compo-
nents and not only the dietary fibre concen-
tration, but also its physico-chemical prop-
erties, might have affected the level of
recovery of both endogenous and dietary
AA at the terminal ileum.

In recent years, a special attention has
been paid to arabinoxylans in wheat, triti-
cale and rye, and to β-glucans in barley.
These compounds may restrict the access
to intracellular nutrients or raise the viscosity
of the luminal content, and thereby limit the
physical exposure of substrates to the diges-
tive enzymes and to the intestinal wall [7].
The greater amounts of arabinoxylans pre-
sent in rye as compared to wheat and triticale
may contribute to the low digestibility of N
and AA in this species [53]. Possibly, ara-
binoxylans in rye were involved in the
restricted access of digestive enzymes to
intracellular nutrients, causing a low
digestibility of the protein bound to NDF.
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Figure 1. Total endogenous AA1 losses (g.kg–1DM ingested) in relation to the ADF content in the cereal
based diets (g.kg–1 DM).
1 Sum of all AA.
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dietary proteins, impairing their digestibil-
ity. However, very little complexing
between wheat protein and phytate was
observed and its deleterious effect on protein
digestibility in cereals remains uncertain
[16, 61]. 

Finally, bearing in mind the TD of N and
AA we ranked the species in the following
order: wheat, maize, triticale, barley,
sorghum and rye. Differences among the
species were related to different rates of
recovery of both endogenous and dietary N.
Except in the case of barley, specific
endogenous N losses excreted by pigs fed
cereals increased with graded concentra-
tions of ADF. A part of AA “encapsulated”
in fibre represented, in most cases, the
dietary undigested fraction. However, further
studies on the effects of specific fractions
of fibre or protein intrinsic properties on the
ileal endogenous and dietary N losses would
be desirable for understanding the variabil-
ity among as well as within species. 
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