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Abstract
Background: Laminin (LN) is one of the most abundant extracellular matrix components of the basal lamina and
granulosa cell layers of ovarian follicles. Culture of ovine granulosa cells (GC) on LN substratum induces cell
spreading, enhances cell survival and proliferation, and promotes luteinization. Previous investigations have shown
that these effects are mostly mediated by the alpha6beta1 integrin, but its signalization pathways have not been
investigated. This study aimed to assess the importance of the cytoskeleton in the alpha6beta1 integrin-mediated
actions of laminin on survival, proliferation and steroidogenesis of ovine GC.

Methods: The relationships between morphology and functions of ovine GC cultured on substrata containing
LN or/and RGD peptides were investigated. The effects of (1) cytochalasin D, an actin cytoskeleton-disrupting
drug, (2) a specific function-blocking antibody raised against alpha6 integrin subunit (anti-alpha6 IgG), and (3) an
inhibitor of the ERK1/2 signalization pathway (PD98059) were assessed for GC shape, pyknosis and proliferation
rates, oestradiol and progesterone secretions.

Results: Cytoskeleton disruption by cytochalasin D induced cell rounding, inhibited proliferation, promoted
pyknosis, inhibited progesterone secretion and enhanced oestradiol secretion by GC cultured on LN. When GC
were cultured on various substrata containing LN and/or RGD peptides in the presence or absence of anti-alpha6
IgG, both the existence of close correlations between the percentage of round cells, and the GC proliferation
rate (r = -0.87) and pyknotic rate (r = 0.76) were established, but no relationship was found between cell shape
and steroidogenesis. Inhibition of the ERK1/2 signalization pathway by PD98059 had no effect on GC shape,
proliferation or pyknotic rates. However, it dramatically reduced progesterone secretion, expression of
cytochrome P450 cholesterol side-chain cleavage and 3beta-hydroxysteroid deshydrogenase enzymes, and
enhanced oestradiol secretion, thereby reproducing all the effects of the anti-alpha6 IgG on steroidogenesis of
GC cultured on LN.

Conclusion: LN may participate in the paracrine control of follicular development through different mechanisms.
It could enhance proliferation and survival of GC through its alpha6beta1 integrin-mediated actions on
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cytoskeleton. In contrast, its stimulating action on GC luteinization could be partly mediated by the ERK1/2
pathway, irrespective of cell shape.

Background
Follicular development is under the control of both gona-
dotropins and numerous paracrine factors that are criti-
cally involved in determining the fate of follicles, atresia
or ovulation. From the primordial to the preovulatory fol-
licular stage, the outer layer of granulosa cells (GC) lays
on a basal lamina that separates them from the theca lay-
ers and interstitial ovarian tissue [1]. This basal lamina,
consisting of extracellular matrix (ECM) components
such as laminin (LN), fibronectin, collagens and various
glycoproteins and proteoglycans, is subjected to intense
remodeling during follicular development and atresia,
changing its composition from the primordial to the pre-
ovulatory or atretic stages [2]. For example, the basal lam-
ina becomes less collagenous and more laminin-rich
during follicular development [3,4]. In antral follicles,
laminin and other ECM components are also present
within the multilayered wall of GC [5,6], particularly in
basal lamina-like material deposited as aggregates
between the GC layers, recently called focimatrix (for
focal intra-epithelial matrix) [7]. These observations indi-
cate that ECM components contribute to the microenvi-
ronment of GC, but their specific roles in follicular
development have not yet been established.

LN is one of the most abundant ECM components of the
basal lamina [2,4,5,8-12] and, as stated above, it is also
present within the granulosa layers of antral follicles. In
sheep, LN levels increase considerably in the granulosa of
antral follicles during the follicular and preovulatory
phases of the cycle [6]. In vitro experiments have shown
that LN improves GC survival (rat: [13]; sheep: [14]) and
stimulates the proliferation of GC from small antral folli-
cles [14]. In GC from large antral and preovulatory folli-
cles, LN increases progesterone secretion (rat: [13,15]; pig:
[16]; sheep:[6]) and decreases estradiol secretion [6], sug-
gesting that it might promote luteinization. Overall, these
results suggest that LN has an important regulatory effect
on GC functions throughout the terminal development of
antral follicles.

Among the different integrins that can bind LN and medi-
ate its action in various cell types, α6β1 and α6β4 have the
particular feature of being highly specific LN receptors
[17]. The α6 integrin subunit has been shown to be greatly
expressed in GC of different animal species (human: [18];
marmoset: [19,20]; pig: [21]; mouse: [22]; sheep: [6]). In
sheep, GC of healthy antral follicles express high levels of
α6β1 integrin, and when a function-blocking antibody
raised against the α6-integrin subunit is added to the

medium of GC cultured on LN, their survival, prolifera-
tion and steroidogenesis are dramatically altered [6].
These results suggest that α6β1 integrin mediates most LN
actions on GC, but the mechanisms involved in α6β1
integrin-mediated functional changes in GC are
unknown.

From previous observations, addition of the antibody
raised against the α6-integrin subunit in the GC culture
medium impairs cell-spreading on LN substratum and
induces the formation of clusters of rounded cells [6]. It
can be hypothesized that changes in cell shape might be
responsible for all or part of the functional changes
observed in survival, proliferation and steroidogenesis of
GC. It has been established in various cell models that
integrin binding to ECM components promotes changes
in the mechanical tension of the cytoskeleton and thereby
induces multiple signaling pathways [23,24]. The
cytoskeleton consists of actin microfilaments, microtu-
bules and intermediate filaments which connect to form a
three-dimensional network that runs from the plasma
membrane, and particularly from integrins, to the chro-
mosomes in the nucleus [25]. The importance of the
cytoskeleton in mediating steroidogenesis in response to
gonadotropins has been suggested [26-33]. It is likely that
cell morphology influences cell polarization and
organelle organization through the cytoskeleton, thereby
controlling steroid production and secretion [28,30,34],
but the possible role of integrin-mediated cytoskeleton
changes has not yet been established in regulating GC
steroidogenesis, survival and proliferation.

This study aimed to assess the importance of the cytoskel-
eton in the α6β1 integrin-mediated actions of LN on sur-
vival, proliferation and steroidogenesis of ovine GC. For
this purpose, different experiments were performed to
investigate the existence of coupling between cell shape
and function when α6β1 integrin activity was altered.
Firstly, the action of cytochalasin D, an actin cytoskeleton-
disrupting drug, was studied on both the shape and func-
tions of GC cultured on LN substratum. Secondly, the
action of a function-blocking antibody raised against α6
integrin subunit was studied on both the shape and func-
tions of GC cultured on substrata containing different
ratios of LN and RGD peptides that specifically recognize
the α5/ α8/ αv/ αIIb but not the α6 integrin subfamilies
[35]. Lastly, the consequences of inhibiting the ERK1/2
(Extracellular signal-Related kinase) signalization path-
way, that has been shown to transduce some of the α6β1
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integrin-mediated effects of LN [36-39], were studied on
both GC shape and functions.

Methods
Reagents and chemicals
Fluorogestone acetate sponges used to synchronize
estrous cycles were obtained from Intervet Pharma
(Angers, France). Porcine FSH (pFSH) from pituitary
extract (pFSH activity = 1.15 × activity NIH pFSH-P1) used
for animal injections was obtained from Dr. Y. Com-
barnous (Nouzilly, France). B2 medium for cell cultures
was prepared according to Menezo [40]. Rat monoclonal
antibody GoH3 raised against human α6 integrin subunit
(anti-α6 IgG) for use in cell cultures was purchased from
Serotec (Oxford, England). For western immunoblotting,
rabbit polyclonal antibody raised against cytochrome
P450 cholesterol side-chain cleavage (anti-P450scc) was
purchased from Chemicon (Euromedex, Mundolsheim,
France), rabbit polyclonal antibody raised against 3β-
hydroxysteroid deshydrogenase (anti-3βHSD) was a gift
of Dr. V. Luu-The (Quebec, Canada) and rabbit polyclo-
nal antibody raised against ERK1 and ERK2 (anti-ERK1/2)
was purchased from Santa Cruz (Le Perray-en-Yveline,
France). Rabbit polyclonal antibody raised against the
phosphorylated forms of ERK1 and ERK2 (anti-P-ERK1/2)
was purchased from Calbiochem (Meudon, France). Anti-
rabbit IgG antibody coupled to horseradish peroxidase
was purchased from Interchim (Montluçon, France). The
following reagents were purchased from Sigma (L'Isle
d'Abeau Chesnes, France): McCoy's 5a medium with
bicarbonate, penicillin/streptomycin, bovine serum albu-
min (BSA tissue culture grade) used for culture medium,
transferrin, selenium, bovine insulin, androstenedione,
LN from EHS tumor (mainly LN-1: [41]), cytochalasin D,
FITC-conjugated phalloidin, PD98059, Igepal, phenyl-
methylsulfonyl fluoride (PMSF), leupeptin, aprotinin,
sodium fluoride, sodium pyrophosphate and sodium
orthovanadate. Hepes, L-glutamine, fungizone and
trypsin were purchased from GIBCO BRL (Cergy-Ponto-
ise, France). RGD peptides (arginin – glycin – aspartic acid
sequence) were obtained from Interchim (Montluçon,
France). Sterile 96-well plates (Nunclon Delta) were
obtained from Nunc (Naperville, IL, USA) and plastic tis-
sue-culture chamber slidesfrom Poly-Labo (Strasbourg,
France). [3H]thymidine (specific activity 6.7 Ci/nmol)
was obtained from Dupont De Nemours (Les Ulis,
France) and NTB2 emulsion for autoradiography from
Integra Bioscience (Cergy-Pontoise, France). For protein
assay, the BC Assay protein kit was obtained from Uptima
Interchim (Montluçon, France). Immobilon P mem-
branes for western blots were obtained from Millipore
Corporation (Bedford, MA, USA). ECL (enhanced chemi-
luminescence) reagents were obtained from Amersham
Pharmacia Biotech (Orsay, France).

Animals
All procedures were approved by the Agricultural and Sci-
entific Research agencies (approval number A 37801) and
conducted in accordance with the guidelines for Care and
Use of Agricultural Animals in Agricultural Research and
Teaching. Experimental research was performed with the
approval of the regional ethics committee of the Région
Centre (Tours, France). During the reproductive season,
adult Romanov ewes were treated with intravaginal
sponges impregnated with progestagen (fluorogestone
acetate, 40 mg) for 15 days to mimic a luteal phase. GC
were collected from animals slaughtered in the luteal
phase of the following estrous cycle (10 days after sponge
removal), after treatment with intramuscular injections of
6 IU and 5 IU pFSH administered 24 h and 12 h prior to
slaughter respectively.

Isolation of GC
For each culture experiment, immediately after slaughter,
ovaries from 3 ewes were immersed for 15 min in isotonic
solution containing amphotericin (50 mg/ml) and antibi-
otics (2 million UI/ml penicillin and 2 g/l streptomycin).
The ovaries were placed in B2 medium, and follicles larger
than 1 mm in diameter were dissected within 1 hour of
slaughter. A total number of 50–70 small (1–3 mm in
diameter) and 10–15 large (> 4 mm in diameter) were dis-
sected from these pooled ovaries. Follicular fluid from
large follicles (> 4 mm) was aspirated with a 26-gauge
needle. Each follicle was then slit open in B2 medium,
and GC were removed by gently scraping the interior sur-
face of the follicle with a platinum loop. GC suspensions
were pooled by follicle size (small: 1–3 mm, or large: > 4
mm). The two resulting cell suspensions were centrifuged
at 300 × g for 7 min and re-suspended in culture medium
(McCoy's 5a containing bicarbonate supplemented with
20 mmol/l Hepes, 100 kUI/l penicillin, 0.1 g/l streptomy-
cin, 3 mmol/l L-glutamine, 0.1% BSA (w/v), 100 µg/l
insulin, 0.1 µmol/l androstenedione, 5 mg/l transferrin,
20 µg/l selenium). The total number of cells per suspen-
sion was estimated by counting an aliquot of each suspen-
sion using a hemocytometer under a phase-contrast
microscope. The number varied between 10 × 106 and 20
× 106 cells per suspension. Cell viability, determined after
vital staining with trypan blue dye (0.125%, final concen-
tration) varied between 60 and 80%.

GC culture
GC culture was performed according to Campbell's
method [42]. GC from small and large follicles were cul-
tured in 96-well tissue-culture plates or in tissue-culture
chamber slides coated with LN (5 µg/cm2 in distilled
water), unless specified. In the experiments using culture
substrata containing LN and/or RGD peptides, different
mixes were prepared using the LN solution described
above and an RGD peptide solution (1.67 µg/cm2 in PBS)
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to obtain different ratios of LN and RGD peptides (100%,
43%, 25%, 18%, 14%, 0% w/w % of LN in the mix used
for coating). The concentrations of the peptides had been
determined in preliminary experiments for their morpho-
logical effects on GC cultured in the presence or absence
of anti-α6 IgG (0.5 µg/ml). The different substrata were
prepared 72 h before use and allowed to dry at room
temperature.

GC suspensions from small and large follicles were seeded
at 105 viable cells/well and cultured at 37°C in a humidi-
fied atmosphere with 5% CO2, in serum-free culture
medium (see isolation of GC). The effect of cytochalasin
D, an inhibitor of actin polymerization, was tested at dif-
ferent concentrations in the 0.05 – 5 µg/ml range. The
effect of PD98059, an inhibitor of the ERK1/2 activation
pathway, was tested in the 1 – 30 µM range. The effects of
anti-α6 IgG (0.5 µg/ml) were always compared with the
effects of the inhibitors within the same culture experi-
ment. Each condition was tested in triplicate in each GC
culture from small and large follicles. Culture media were
partially replaced (175 µl out of 250 µl) every 48 h and the
spent medium was stored at -20°C until assay. At 144 h of
culture, cells were detached with trypsin and counted as
described above (see isolation of GC), or prepared for
western immunoblotting. For studies of ERK1/2 phospo-
rylation, GC were cultured on LN or plastic, with and
without inhibitors, for 24 h before western immunoblot-
ting. In preliminary experiments, this culture time was
shown to be needed for cell plating on substratum [14]
and allowed detection of early effects of LN on ERK1/2
phosporylation.

Determination of thymidine labeling index and pyknotic 
index
GC proliferation and survival were assessed by measuring
the thymidine labeling index (percentage of labeled cells)
and the pyknotic index (percentage of pyknotic cells) after
48 h of culture. This has been shown to allow the be the
optimal culture time for the study of the effects of various
factors, particularly ECM components, on both prolifera-
tion and survival of cultured ovine GC [6,14,43].

To determine the thymidine labeling index, cells were
washed with B2 medium without thymine, then incu-
bated with [3H]thymidine (0.25 µCi/ml) at 37°C for 2 h.
After 2 washes with B2 medium (with thymine), cells
were detached with 1% trypsin, pelleted and fixed in 3%
glutaraldehyde for 1.5 h at room temperature. Cells were
then smeared onto histological slides by cytocentrifuga-
tion. Smears were stained with Feulgen, dipped in NTB2
emulsion, air-dried, and exposed for autoradiography for
6 days at 4°C. The thymidine labeling index was esti-
mated by counting the number of labeled and unlabeled
cells in 20 different microscopic fields (100X objective).

To determine the pyknotic index, cells were detached by
trypsin, fixed in glutaraldehyde, cytocentrifuged, and
smears were stained with Feulgen as described above. The
pyknotic index was estimated by counting the number of
pyknotic cells, i.e. cells with condensed or fragmented
nuclear chromatin [44], and non-pyknotic cells in 20 dif-
ferent microscopic fields (100X objective). Previous
results have established that the presence of pyknotic cells
is associated with DNA fragmentation characteristic of
apoptotic process in cultured GC [14].

For both the thymidine labeling index and the pyknotic
index, calculations were made on 500–1000 cells per
slide.

Estradiol-17β and progesterone radioimmunoassays
The concentrations of estradiol and progesterone in the
culture medium of GC from large follicles were measured
after 144 h of culture. This has been shown to be the opti-
mal culture time for the study of the effects of ECM com-
ponents on steroidogenesis of cultured ovine GC [6,14].
The radioimmunoassay protocol previously described
[45-47] was adapted to measure steroids in cell culture
media directly. The estradiol detection limit was 1.5 pg/
tube (7.5 pg/well) and the intra- and inter-assay coeffi-
cients of variation were less than 7% and 9% respectively.
The progesterone detection limit was 12 pg/tube (60 pg/
well), and the intra- and inter-assay coefficients of varia-
tion were less than 10% and 11% respectively. Results
were expressed as the amount of steroids secreted between
96 h and 144 h of culture per 50,000 cells recovered at the
end of the culture period.

Western immunoblotting
GC whole extracts were obtained by resuspension in 100
µl cell lysis buffer [150 mM NaCl, 50 mM Tris-HCl (pH
7.5), 1% Igepal, 0.5% sodium deoxycholate, 0.1% SDS]
containing several protease inhibitors (10 mM PMSF, 1
µg/ml leupeptin, 1 µg/ml aprotinin) and phosphatase
inhibitors (100 mM sodium fluoride, 10 mM sodium
pyrophosphate, 2 mM sodium orthovanadate) at 4 °C for
20 min. Cell lysates were centrifuged at 20,000 × g for 20
min, and the protein concentration in the supernatants
was determined by the BC Assay protein kit following the
manufacturer's protocol. Aliquots (5 to10 µg, correspond-
ing to 5 × 104 to 105 GC) were subjected to 10% SDS-
PAGE under reducing conditions, then the proteins were
electrophoretically transferred from the gels onto Immo-
bilon P membranes. These membranes were incubated for
1 h at room temperature with 20 mM Tris-buffered saline
(TBS, pH 7.6), containing 3% BSA and 0.1% Tween-20 to
saturate nonspecific sites. They were then incubated for 1
h at room temperature with anti-P-ERK1/2, or anti-ERK1/
2, or anti-P450scc, or anti-3βHSD (final dilutions 1:1000)
in TBS containing 1% BSA and 0.1% Tween-20. After
Page 4 of 17
(page number not for citation purposes)



Reproductive Biology and Endocrinology 2005, 3:19 http://www.rbej.com/content/3/1/19
Effect of anti-α6 IgG on morphology and functions of GC cultured on LN substratumFigure 1
Effect of anti-α6 IgG on morphology and functions of GC cultured on LN substratum. GC were cultured up to 144 h on LN 
with (b and solid bars in c, d, e and f) or without (a and empty bars in c, d, e and f) anti-α6 IgG (0.5 µg/ml) in culture medium. 
(a) and (b): representative microscopical fields of cultured GC throughout the culture period; (c): proliferation rates of GC 
from small follicles, assessed by thymidine labelling at 48 h of culture; (d): pyknotic rates of GC from large follicles at 48 h of 
culture; (e): progesterone (P4) secretion by GC from large follicles between 96 h and 144 h of culture; (f): estradiol (E2) secre-
tion by GC from large follicles between 96 h and 144 h of culture. Data represent mean ± SEM of 5 independent experiments. 
* : p < 0.01, with vs. without anti-α6 IgG.
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Effect of cytochalasin D on morphology of GC cultured on LN substratumFigure 2
Effect of cytochalasin D on morphology of GC cultured on LN substratum. GC from small and large follicles were cultured for 
48 h on LN with or without (control) cytochalasin D at different concentrations (between 0.05 and 5 µg/ml) in culture 
medium, and then actin was stained with FITC-conjugated phalloidin. (a): representative microscopical fields of cultured GC; 
GC spread on LN in control or in presence of low concentrations of cytochalasin D; most cells adopted a spindle-shaped mor-
phology at 0.5 µg/ml of cychochalasin D, then rounded up at higher doses. (b) and (c): percentages of unspread cells, i.e. spin-
dle-shaped (dashed line) and round (solid line) GC from small (b) and large (c) follicles; empty bars: percentages of round cells 
in control; solid bars: percentages of round cells with anti-α6 IgG (0.5 µg/ml) in culture medium. Data represent mean ± SEM 
of 3 independent experiments. In each graph, different letters indicate significant differences (p < 0.001); *** : p < 0.001, with 
vs. without anti-α6 IgG.
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washing in TBS containing 0.1% Tween-20, the mem-
branes were incubated for 1 h at room temperature with
horseradish peroxidase-conjugated anti-rabbit IgG (final
dilution 1:10,000) in TBS containing 0.01% Tween-20,
and the signal was visualized using ECL system followed
by autoradiography. The autoradiograms were quantified
using a videodensitometer (VDS-CL, Amersham Pharma-
cia Biotech).

Actin staining and fluorescence microscopy
After culture in chamber slides, GC were fixed for 15 min
with 4% paraformaldehyde in PBS. Cells were then

washed with PBS and left in 0.1 M glycine in PBS for 15
min. After an additional wash, the cells were permabilized
with 0.2% Triton X-100 (w/v) in PBS containing 1% BSA
for 10 min, and nonspecific binding sites were blocked in
2% BSA. Cells were then treated for 30 min with 0.5 µM
FITC-conjugated phalloidin. All the above incubations
were performed at room temperature. After washing, cells
were mounted in Mowiol and were studied under fluores-
cence microscopy. The percentage of the different mor-
phological states of GC (spread cells, spindle-shaped cells,
round cells) was established by counting 1000 to 1500
cells per culture well.

Effect of cytochalasin D on cell numbers, proliferation and pyknotic rates of GC cultured on LN substratumFigure 3
Effect of cytochalasin D on cell numbers, proliferation and pyknotic rates of GC cultured on LN substratum. GC from small (a, 
c) and large follicles (b, d) were cultured for 144 h on LN as described in legend of Figure 2. (a) and (b): numbers of cells at 144 
h of culture; (c): proliferation rates of GC from small follicles at 48 h of culture; (d): pyknotic rates of GC from large follicles at 
48 h of culture. Empty bars: control; solid bars: with anti-α6 IgG (0.5 µg/ml) in culture medium. Data represent mean ± SEM of 
6 independent experiments. In each graph, different letters indicate significant differences (p < 0.05); * : p < 0.05, *** : p < 
0.001, with vs. without anti-α6 IgG.
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Effect of cytochalasin D on steroidogenesis of GC from large follicles cultured on LN substratumFigure 4
Effect of cytochalasin D on steroidogenesis of GC from large follicles cultured on LN substratum. GC from large follicles were 
cultured for 144 h on LN as described in legend of Figure 2. (a) and (b): estradiol (E2) and progesterone (P4) secretions 
between 96 h and 144 h of culture; data are expressed as percentages of control (100%, empty bars, corresponding to 0.40 ± 
0.17 ng/50 × 105 cells/48 h for E2 and 700 ± 176 ng/50 × 105 cells/48 h for P4) and represent mean ± SEM of 5 independent 
experiments; solid bars: with anti-α6 IgG (0.5 µg/ml) in culture medium; in each graph, different letters indicate significant dif-
ferences (p < 0.05); *** : p < 0.001, compared to control. (c) and (d): expression of P450scc and 3βHSD enzymes in GC at 144 
h of culture, in control or in the presence of anti-α6 IgG or cytochalasin D (0.5 µg/ml) in culture medium; results show repre-
sentative western immunoblotting experiments performed on 5 µg of GC extracts; data correspond to quantification of auto-
radiograms in arbitrary units (control mean = 100) and represent mean ± SEM of 5 independent experiments; * : p < 0.05, ** : 
p < 0.01, treated vs. control.
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Effect of anti-α6 IgG on morphology of GC cultured on substrata containing different ratios of LN and RGD peptidesFigure 5
Effect of anti-α6 IgG on morphology of GC cultured on substrata containing different ratios of LN and RGD peptides. GC 
were cultured for 48 h on substrata containing percentages of LN varying between 100% (0% RGD peptides) and 0% (100% 
RGD peptides) in the mix, with or without anti-α6 IgG (0.5 µg/ml) in culture medium, and then actin was stained with FITC-
conjugated phalloidin. (a) and (b): representative microscopic fields of cultured GC from small (a) and large (b) follicles. (c) and 
(d): percentages of round GC from small (c) and large (d) follicles; empty bars: control; solid bars: with anti-α6 IgG in culture 
medium; data represent mean ± SEM of 5 independent experiments; * : p < 0.05, ** : p < 0.01, *** : p < 0.001, with vs. without 
anti-α6 IgG.
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Statistical analysis
All experimental data are presented as the mean ± SEM.
Data were fitted to sigmoidal dose – response curves or
Gaussian distributions with GraphPrad PRISM software
(San Diego, CA, USA). The effects of increasing doses of
inhibitors (cytochalasin D or PD98059) on cell numbers,
percentages of round cells, thymidine labeling index and
pyknotic index were analyzed using a one-way ANOVA for
repeated measures followed by Tukey-Kramer tests. For a
given substratum, the effects of the addition of anti-α6
IgG on cell numbers, percentages of round cells, thymi-
dine labeling index and pyknotic index were analyzed
using a paired t test. The effects of anti-α6 IgG or inhibitors
(cytochalasin D or PD98059) on GC steroidogenesis were
analyzed using a two-way ANOVA in order to assess the
effects of treatment as well as of culture resulting from var-
iations between both animals and the quality of the ovar-
ian follicles dissected for each culture. Results from
western immunoblotting analysis were analyzed by a
paired t test. Comparisons with p > 0.05 were not consid-
ered significant.

Results and discussion
Consequences of α6β1 integrin activation by LN on GC 
shape and functions
Previous results have shown that LN, used as a culture
substratum of ovine GC, induces cell spreading, enhances
proliferation and survival rates, stimulates progesterone
and reduces estradiol secretion by GC and that these
effects are the consequence of α6β1 integrin activation by
LN [6,14]. Accordingly, addition of anti-α6 IgG to the
medium of GC cultured on LN induced dramatic cell
rounding and important functional changes such as a
decrease in proliferation rate and an increase in pyknotic
rate of GC, as well as a decrease in progesterone and an
increase in estradiol secretion (p < 0.01 for all parameters,
Fig. 1). These effects were highly specific to the presence of
LN in the culture substratum [6].

Effects of cytoskeleton disruption by cytochalasin D on GC 
cultured on LN substratum
To assess whether all or part of these functional changes
might be the consequence of cell rounding, the action of
cytochalasin D, an inhibitor of actin polymerization, was
studied on GC cultured on LN substratum. Addition of
cytochalasin D to the culture medium of GC from small
and large follicles reduced the formation of actin stress
fibers and impeded cell spreading on LN, inducing the
formation of spindle-shaped cells at doses higher than 0.1
µg/ml, and of round cells at doses higher than 0.5 µg/ml
(p < 0.001 for GC from both small and large follicles, Fig.
2 a, b and 2 c). In GC from both small and large follicles,
cytochalasin D treatment induced a clear dose-dependent
decrease in cell numbers (p < 0.001 for GC from both
small and large follicles, Fig. 3 a and 3 b). In cultures of

Effect of anti-α6 IgG on cell numbers, proliferation and pyknotic rates of GC from small follicles cultured on sub-strata containing different ratios of LN and RGD peptidesFigure 6
Effect of anti-α6 IgG on cell numbers, proliferation and 
pyknotic rates of GC from small follicles cultured on sub-
strata containing different ratios of LN and RGD peptides. 
GC from small follicles were cultured for 144 h as described 
in legend of Figure 5. (a): numbers of cells at 144 h of culture; 
(b): proliferation rates of GC at 48 h of culture; (c): pyknotic 
rates of GC at 48 h of culture. Empty bars: control; solid 
bars: with anti-α6 IgG in culture medium. Data represent 
mean ± SEM of 6 independent experiments. * : p < 0.05, ** : 
p < 0.01, *** : p < 0.001, with vs. without anti-α6 IgG.
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GC from small follicles with a high proliferative activity,
this decrease in cell number was associated with a dose-
dependent decrease in cell proliferation rate (p < 0.001,
Fig. 3 c). In cultures of GC from both small and large fol-
licles, cytochalasin D also induced an increase in pyknotic
rate at the 5 µg/ml dose (p < 0.05, Fig. 3 d). In cultures of
GC from large follicles with a high steroidogenic activity,
cytochalasin D induced a dose-dependent increase (p <

0.001) and decrease (p < 0.01) in secretion of estradiol
and progesterone respectively (Fig. 4 a and 4 b). In accord-
ance with the drop in progesterone secretion, a clear
decrease in expression of the key steroidogenic enzymes
P450scc (p < 0.05) and 3βHSD (p < 0.01) was also
observed in cytochalasin-treated GC (Fig. 4 c and 4 d). All
these effects of cytochalasin D on GC functions mimicked
the actions of the anti-α6 IgG on GC cultured on LN sub-

Effect of anti-α6 IgG on cell numbers, pyknotic rates and steroidogenesis of GC from large follicles cultured on substrata con-taining different ratios of LN and RGD peptidesFigure 7
Effect of anti-α6 IgG on cell numbers, pyknotic rates and steroidogenesis of GC from large follicles cultured on substrata con-
taining different ratios of LN and RGD peptides. GC from large follicles were cultured for 144 h as described in legend of Fig-
ure 5. (a): numbers of cells at 144 h of culture; (b): pyknotic rates of GC at 48 h of culture. (c) and (d): estradiol and 
progesterone secretions between 96 h and 144 h of culture. Empty bars: control; solid bars: with anti-α6 IgG in culture 
medium. Data represent mean ± SEM of 6 to 8 independent experiments. * : p < 0.05, ** : p < 0.01, *** : p < 0.001, with vs. 
without anti-α6 IgG.
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stratum (Fig. 2, 3 and 4). Overall, cell rounding was asso-
ciated with dramatic functional changes in GC. However,
changes in proliferation rate and estradiol secretion were
observed at cytochalasin D doses lower than 0.1 µg/ml,
which did not induce observable changes in cell
morphology.

From our results, cytochalasin D impeded ovine GC
spreading on LN and induced cell rounding. These
changes in cell shape were associated with a decrease in
proliferation rate, an increase in cell death, a decrease in
progesterone secretion and an increase in estradiol secre-
tion. Previous investigations using inhibitors of actin
microfilament polymerization, such as cytochalasin B or
D, have shown the importance of actin cytoskeleton in
GC functions. In GC, cytochalasin decreases actin and tro-
pomyosin synthesis [29], causes the disorganization of
microfilaments, intermediary filaments and microtubules
[48] and induces cell rounding. These effects have been
reported to mimick to some extent the effects of gonado-
tropins on the cytoskeleton [28,32,34]. To our knowl-
edge, our study is the first report of the effects of
cytochalasin on GC proliferation rate and cell death. In
various cell models, such as kidney epithelial cells [49],
hepatocytes [50] or carcinoma cells [51], cytochalasin has
been shown to induce cell detachment from the substra-
tum, to promote apoptosis and to inhibit cell prolifera-
tion. However, cytochalasin-induced changes in
steroidogenesis are still a subject of controversy. Cytocha-
lasin has been shown either to enhance (rat: [28,33,52])
or inhibit (hamster: [53], pig: [54], sheep: present study)
progesterone secretion by GC and to inhibit it by luteal
cells (cow: [55], pig: [56]). From the few data available
concerning estradiol secretion, cytochalasin B is observed
to block aromatase activity of hamsters GC [53] but to
enhance it in immature rat Sertoli cells [57]. Whether
these differences are the consequence of differences in cell
types, animal species, or culture conditions is unknown.
In any case, the functional effects of a disrupting drug such
as cytochalasin must be considered with caution owing to
its overall actions on cell metabolism and ion membrane
exchanges. Moreover, experiments with cytochalasin have
not allowed the specific role of LN-induced cytoskeleton
changes on GC functions to be assessed. In our experi-
ments, the observed effects of cytochalasin were likely to
be the consequence of both cytoskeleton disruption and
loss of interaction between cells and LN accompanying
their detachment from the substratum.

Effects of specific inactivation of the α6β1 integrin 
signalization pathway on GC cultured on LN and/ or RGD 
peptide substratum
To further investigate the existence of a relationship
between GC shape and function, an experiment was
designed with the purpose of inactivating specifically the

Relationships between percentages of round cells and prolif-eration rates, pyknotic rates or steroidogenesis of GC cul-tured on substrata containing different ratios of LN and RGD peptidesFigure 8
Relationships between percentages of round cells and prolif-
eration rates, pyknotic rates or steroidogenesis of GC cul-
tured on substrata containing different ratios of LN and RGD 
peptides. GC were cultured for 144 h as described in legend 
of Figure 5. (a): proliferation rates of GC from small follicles 
at 48 h of culture. (b): pyknotic rates of GC from small (solid 
circles) and large (empty circles) follicles at 48 h of culture. 
(c): steroid secretion by GC from large follicles between 96 h 
and 144 h; solid triangles: estradiol secretion, expressed in 
pg/50 × 103 cells/48 h, solid squares: progesterone secretion, 
expressed in ng/50 × 103 cells/48 h. Each data point is the 
mean of 7 independent experiments.
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α6β1 integrin signalization pathway without changing
GC shape. When cultured on substrata containing differ-
ent ratios of LN and RGD peptides (varying between
100% and 0% LN), GC spread on all these different sub-
strata (Fig. 5a and 5b). Addition of anti-α6 IgG in culture
medium induced significant cell rounding only when the
substratum contained at least 43% LN for cultures of GC
from small follicles (p < 0.01), and 14% LN for cultures of
GC from large follicles (p < 0.05) (Fig. 5 c and 5 d). In cul-
tures of GC from small follicles, cell rounding induced by
addition of anti-α6 IgG was associated with a decrease in
cell number (p < 0.01 for cells cultured on a substratum

containing at least 43% LN), a decrease in proliferation
rate (p < 0.01 for cells cultured on a substratum contain-
ing at least 43% LN) and an increase in pyknotic rate (p <
0.05, only for cells cultured on 100% LN) (Fig. 6 a, b and
6 c). In cultures of GC from large follicles, cell rounding
induced by addition of anti-α6 IgG was associated with a
decrease in cell number (p < 0.01), an increase in pyknotic
rate (p < 0.05), an increase in estradiol secretion (p <
0.001) and a decrease in progesterone secretion (p <
0.05), for cells cultured on a substratum containing at
least 14% LN (Fig. 7 a, b, c and 7 d). Overall analysis of
results of this experiment showed the existence of signifi-
cant correlations between the percentage of round cells
and the proliferation rate of GC from small follicles (r = -
0.87, p < 0.001) on the one hand (Fig. 8a), and the
pyknotic rate of GC from small follicles (r = 0.76, p <
0.05) and large follicles (r = 0.75, p < 0.05) on the other
(Fig. 8b). In contrast, no significant correlation was found
between the percentage of round cells and the amount of
estradiol or progesterone secreted by GC from large folli-
cles (Fig. 8c). These results support the existence of uncou-
pling of GC shape and steroidogenesis and suggest that
mechanisms independent of cytoskeleton reorganization
are also involved in α6β1 integrin-mediated LN actions
on GC.

When GC spread on LN, cell proliferation and survival are
clearly enhanced [13,14]. From our results, both
proliferation and survival of GC cultured on LN, unlike
steroidogenesis, were closely associated with cell shape
and cytoskeleton organization. In other cell models, it has
been established that cell spreading on ECM and associ-
ated changes in the actin cytoskeleton are necessary for
progression through G1 and entry into the S phase of the
cycle [50], and that signals elicited by the cytoskeleton act
independently of ERK1/2 signals to drive the cell cycle
machinery through the G1/S boundary and, hence to pro-
mote cell proliferation [58]. Interestingly, recent work has
shown that the cytoskeleton orients the cell metabolic and
signal transduction machinery, and that mechanical dis-
tortion of cells and the cytoskeleton through surface
integrin receptors can switch cells between distinct gene
programs (e.g. proliferation, differentiation and apopto-
sis) [59-61]. In ovarian follicles, GC lying directly on the
basal lamina containing ECM adopt a columnar shape,
whereas GC located in the follicular wall near the antral
cavity are generally round [62-64]. These different cell
morphologies are associated with different distributions
of intracellular actin [65]. It can be hypothesized that
these different cell shapes, resulting from cell interactions
with ECM through integrin receptors, can directly influ-
ence GC functions. In particular, they could be responsi-
ble for establishing the gradient of survival and
proliferation existing between the basal and the antral
zone of the granulosa wall in ovarian follicles [64,66-68].

Expression and phosphorylation of ERK1/2 in GC cultured on LN or on plastic substratumFigure 9
Expression and phosphorylation of ERK1/2 in GC cultured 
on LN or on plastic substratum. GC were cultured for 24 h 
on plastic (Pl) or on LN in the presence or absence of anti-
α6 IgG (0.5 µg/ml), PD98059 (30 µM) or cytochalasin D (0.5 
µg/ml) in culture medium. (a): representative western immu-
noblotting experiment performed on 10 µg of GC extracts. 
P-ERK1/2: phosphorylated ERK1/2. (b): ratio P-ERK1/2 / 
ERK1/2, obtained by quantification of autoradiograms in arbi-
trary units ; data are expressed as percentages of LN condi-
tion (100%, empty bar) and represent mean ± SEM of 6 
independent experiments. **: p < 0.01, vs. LN.
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Effect of PD98059 on morphology, proliferation rates, pyknotic rates and steroidogenesis of GC cultured on LNFigure 10
Effect of PD98059 on morphology, proliferation rates, pyknotic rates and steroidogenesis of GC cultured on LN. GC from 
small (a, c) and large (b, d, e, f, g, h) follicles were cultured for 144 h on LN in the presence or absence (control) of PD98059 
at different concentrations (between 1 and 30 µM) in culture medium, and with or without anti-α6 IgG (0.5 µg/ml). (a, b): per-
centages of round cells at 48 h of culture; *** : p < 0.001, with anti-α6 IgG vs. control and PD98059-treated cells (30 µM). (c, 
d): proliferation rates and pyknotic rates of GC at 48 h of culture; empty bars: control; solid bars: with anti-α6 IgG in culture 
medium; in each graph, different letters indicate significant differences (p < 0.05); ** : p < 0.01, with vs. without anti-α6 IgG. (e, 
f): estradiol and progesterone secretions between 96 h and 144 h of culture; solid bars: with anti-α6 IgG in culture medium; 
data are expressed as percentages of control (100%, empty bars); in each graph, different letters indicate significant differences 
(p < 0.05) ; *** : p < 0.001 compared to control. (g, h): expression of P450scc (g) and 3βHSD (h) enzymes in GC at 144 h of 
culture, in control or in the presence of anti-α6 IgG or PD98059 (30 µM) in culture medium; results show representative 
western immunoblotting experiments performed on 5 µg of GC extracts; data correspond to quantification of autoradiograms 
in arbitrary units (control mean = 100); * : p < 0.05, ** : p < 0.01, treated vs. control. Data of the Figure represent mean ± SEM 
of 4 to 8 independent experiments.
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Effects of specific inactivation of the ERK1/2 signalization 
pathway on GC cultured on LN
To further study the mechanisms of action of LN on GC,
we tested the importance of the ERK1/2 signalization
pathway, which has been shown to transduce some of the
α6β1 integrin-mediated effects of LN [36-39], in regulat-
ing both GC shape and functions. At 24 h of culture,
phosphorylation of ERK1 and ERK2 was higher in cells
cultured on LN than on the plastic substratum, indicating
that LN might activate the ERK1/2 pathway in GC (p <
0.01, Fig. 9). Addition of PD98059, a specific inhibitor of
the ERK1/2 activation pathway, inhibited ERK1/2 phos-
phorylation in GC cultured on LN substratum (p < 0.01)
as expected, but the anti-α6 IgG and cytochalasin D had
no effect (Fig. 9). The absence of effect of the function-
blocking antibody raised against α6 subunit on ERK1/2
phosphorylation in GC cultured on LN was unexpected. It
could be explained by the existence of other subunit
integrins such as α3 and αv that are also able to bind LN
[41] and have been shown to be present on GC ([19,69]
and our unpublished observations). Whether these
integrins participate in activation of the ERK1/2 signaliza-
tion pathway when GC are attached to LN substratum
remains to be studied. Alternatively, the ERK1/2 signaliza-
tion pathway might respond poorly to α6β1 integrin
activation, or the western immunoblotting method might
not be sensitive enough to detect small quantitative
changes in ERK1/2 phosphorylation.

In cultures of GC from both small and large follicles,
PD98059 induced no significant change in GC spreading
on LN (Fig. 10 a and 10 b) or in the pyknotic rate of GC,
and had only a weak inhibiting effect on GC proliferation
rate, acting at the highest dose of 30 µM (p < 0.05, Fig 10
c and 10 d). In contrast, PD98059 strongly increased
estradiol secretion (p < 0.001) and decreased
progesterone secretion (p < 0.001) as well as P450scc (p <
0.05) and 3βHSD (p < 0.05) expression in GC from large
follicles cultured on LN (Fig. 10 e, f, g and 10 h). These
effects were not observed when GC were cultured on plas-
tic (data not shown). Overall, these results suggest that the
ERK1/2 signalization pathway might be involved in LN
actions on GC steroidogenesis, independently of LN
actions on cell shape. In contrast, GC survival and prolif-
eration are probably closely associated with cell shape and
cytoskeleton organization.

In previous investigations, the ERK1/2 signalization path-
way has been shown to be involved in the regulation of
GC steroidogenesis, but its activation has either inhibiting
or stimulating effects depending on the stimulus [70]. For
example, ERK1/2 activation by gonadotropins inhibits
Star protein expression and progesterone secretion,
thereby contributing to desensitization mechanisms of
hormonal action [71,72]. Likewise, prostaglandin

F2alpha- or adenosine triphosphate-induced ERK1/2 acti-
vation inhibits hCG-stimulated progesterone secretion
[73,74], whereas IGF-I- or melatonin-induced ERK1/2
activation increases it [75,76] and IGF-I-induced ERK1/2
activation enhances LDL receptor expression [77].
Interestingly, ERK1/2 have been shown to be intracellular
signaling molecules that differentially regulate FSH-
induced progesterone and estradiol synthesis in GC [78].
Thus, the divergent regulation of LN-induced progester-
one and estradiol secretion by PD98059 observed in
ovine GC supports the hypothesis that ERK1/2 is an
important signalization pathway in the regulation of ster-
oidogenesis by LN in GC.

Conclusion
The results of this study emphasize the role of cytoskele-
ton and cell shape in controlling GC proliferation and sur-
vival. In GC, as in many other cell types,
mechanotransduction processes strongly control these
basic cell functions [60]. From our results, LN participates
in this control by its α6β1 integrin-mediated actions on
GC cytoskeleton. In contrast, steroidogenesis is a specific
function of fully differentiated GC which is under the con-
trol of various signalization pathways of which the
cytoskeleton would be of minor importance compared to
the cAMP or ERK1/2 pathways. It is suggested that changes
in cytoskeleton and cell shape induced by actions of gona-
dotropins, growth factors or ECM components would
accompany rather than cause changes in steroidogenesis.
Interestingly, the ERK1/2 pathway could play an impor-
tant role in mediating the action of LN on GC
luteinization.
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