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Abstract

The Swine Genome Sequencing Consortium (SGSC) was formed in September
2003 by academic, government and industry representatives to provide international
coordination for sequencing the pig genome. The SGSC’s mission is to advance
biomedical research for animal production and health by the development of DNA-
based tools and products resulting from the sequencing of the swine genome. During
the past 2 years, the SGSC has met bi-annually to develop a strategic roadmap for
creating the required scientific resources, to integrate existing physical maps, and to
create a sequencing strategy that captured international participation and a broad
funding base. During the past year, SGSC members have integrated their respective
physical mapping data with the goal of creating a minimal tiling path (MTP)
that will be used as the sequencing template. During the recent Plant and Animal
Genome meeting (January 16, 2005 San Diego, CA), presentations demonstrated that
a human-pig comparative map has been completed, BAC fingerprint contigs (FPC)
for each of the autosomes and X chromosome have been constructed and that BAC
end-sequencing has permitted, through BLAST analysis and RH-mapping, anchoring
of the contigs. Thus, significant progress has been made towards the creation of a
MTP. In addition, whole-genome (WG) shotgun libraries have been constructed and
are currently being sequenced in various laboratories around the globe. Thus, a
hybrid sequencing approach in which 3x coverage of BACs comprising the MTP
and 3x of the WG-shotgun libraries will be used to develop a draft 6x coverage of
the pig genome. Copyright © 2005 John Wiley & Sons, Ltd.

Keywords: genomics; pig genome; porcine; physical maps; sequencing consortium;
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Background and discussion

The pig genome is of similar size, complexity
and chromosomal organization (2n = 38, including
meta- and acrocentric chromosomes) as the human
genome. Over the past decade tremendous progress

has been made in mapping and characterizing
the swine genome. Currently, moderate- to high-
resolution genetic linkage maps containing highly
polymorphic loci (Type II) have been produced
using independent mapping populations (Rohrer
et al., 1996; Ellegren et al., 1994; Archibald et al.,

Copyright © 2005 John Wiley & Sons, Ltd.
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1995). Additionally, physical mapping methods
such as somatic cell hybrid analysis (Rettenberger
et al., 1994; Yerle et al., 1996), in situ hybridiza-
tion, and ZOO-FISH (Chowdhary et al., 1996;
Fronicke et al., 1996; Goureau et al., 1996) have
been employed to enrich the Type I marker map,
and to perform comparative analysis with map-
rich species such as the human and mouse. To
date, >3000 mapped loci are catalogued for the
pig genome (http://www.thearkdb.org). Recently,
whole-genome radiation hybrid (WG-RH) panels
(7500 and 12500 rad) have been generated for
swine (Hawken ef al., 1999; Yerle et al., 2002),
resulting in yet another rapid increase in the num-
ber of expressed sequences being mapped, facilitat-
ing comparative mapping with other species (Rinke
et al., 2002). The swine genomics community has
also acquired access to resources such as bacterial
artificial chromosome (BAC) libraries (Fahrenkrug
et al., 2001; Anderson et al., 2000) that provide
approximately 35x coverage of the swine genome.
These BAC resources have facilitated the produc-
tion of high-resolution physical maps in specific
chromosomal regions (Rogel-Gaillard et al., 1999;
Milan et al., 2000) and support the construction of
sequence-ready mapping resources for the porcine
genome.

Comparative maps have indicated that the
porcine and human genomes are more similarly
organized than when either is compared to the
mouse (Thomas et al., 2003). The mean length
of conserved syntenic segments between human
and pig is approximately twice as long as the
average length of conserved syntenic segments
between human and mouse (Ellergren et al., 1994;
Rettenberger et al., 1995). Furthermore, the orga-
nizational similarities between the human and
porcine genomes are reflected in similarities at the
nucleotide level. In more than 600 comparisons of
non-coding DNAs aligned by orthologous exonic
sequences on human chromosome 7, pig (and cow,
cat and dog) sequences consistently grouped closer
to human and non-human primate sequences than
did rodent (mouse and rat) sequences (Thomas
et al., 2003). Furthermore, the rodent genomes are
evolving at a different (faster) rate than other rep-
resentative genomes. For these reasons it is neces-
sary to produce the genomic sequence for euthe-
rian mammals outside the primate and rodent lin-
eages in order to better assemble and annotate
the human sequence. During the Plant and Animal

Copyright © 2005 John Wiley & Sons, Ltd.
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Genome meeting, it was reported that a 1.0 Mb
human-pig comparative map has been completed
(Meyers et al., 2005). This map will provide the
basis for creating a MTP that will be used as the
template for genome sequencing.

Harvesting genomic information

The porcine research community has a long his-
tory in quantitative genetics, and more recently
in genomics research. The genetic contribution
of many polygenic traits in pigs is well docu-
mented, and this knowledge has provided the basis
for the identification and mapping of a growing
number of quantitative trait loci (QTL) (Anders-
son et al., 1994; Milan et al., 2000; Rohrer et al.,
1999; Wilkie et al., 2000; Paszek et al., 2000;
Malek et al., 2001a,b; Nezer et al., 2002). These
maps have been used to identify chromosomal
regions that influence quantitative traits affect-
ing growth, body composition, reproduction and
immune response (Bidanel and Rothschild, 2002).
The quantitative trait loci defined in these stud-
ies often span 20—40 centiMorgans (cM) and per-
haps correspond to about 20-40 Mbp of DNA.
These initial scans for the gene(s) controlling the
phenotype of interest generally only reduce the
search space to 1-2% of the genome, perhaps
to 200—400 positional candidate genes. Locating
the gene(s) responsible and identifying the causal
molecular genetic variation is a major challenge.
Nevertheless, there have been some striking suc-
cesses in achieving this goal in pigs, to which some
of the co-authors have contributed.

The only limitation to performing direct genetic
experiments and identifying genes underlying these
traits is the lack of a complete genome sequence.
Selection experiments, heterosis studies and breed
comparisons have all been used in porcine genetic
studies. Many populations have been used to map
genes to large chromosomal regions but posi-
tional mapping of causal genes has been difficult.
Sequencing the porcine genome and generating
100000 SNPs will provide additional polymor-
phic markers and positional candidate genes based
on the human and mouse map. Large populations
with designed matings can be used to position-
ally map genes. The populations can be generated
by natural reproduction, artificial insemination or
assisted reproductive technologies. Clones can also
be generated from fibroblasts or stem cells and
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cryopreserved. This technology provides the oppor-
tunity for knock-out or knock-in experiments in an
animal other than the mouse. Interspecies porcine
hybrids are easily produced and are very valuable
for knock-out/knock-in experiments and studying
genomic imprinting (Andersson et al., 1994).

Justification for sequence information

A CREES-USDA workshop during the summer of
2002, The Allerton III Conference (‘Beyond Live-
stock Genomics’) was designed to bring together
leading investigators from broad disciplines (phys-
iology, reproduction, animal health, nutrition and
genetics) to begin to develop a plan for full uti-
lization of genomic information to promote ani-
mal health and production (Hamernik et al., 2003).
In February 2002, the National Academy of Sci-
ences organized a public workshop, ‘Exploring
Horizons for Domestic Animal Genomics’, to iden-
tify research goals and funding needs. Subsequent
discussion identified a growing need to have a
broader context for discussion to ensure full uti-
lization of the genomic information and tools in
support of animal research. Thus, the Allerton III
Conference provided a venue for discussion of
how genome sequences could be harvested to sup-
port the broader animal agricultural community,
while contributing to life science discovery. The
objectives of the Allerton III Conference included:
(a) identification of genomic and bioinformatic
tools and reagents required to exploit information
from the human genome initiative; (b) discussion
of needs and opportunities for full implementa-
tion of genomic capabilities by related disciplines;
and (c) identification of needs and opportunities to
ensure full technology transfer and commercializa-
tion (Hamernik et al., 2003).

The Swine Genome Sequencing Consortium

(SGSC)

In September 2003, interested researchers con-
vened at INRA-Jouy-en-Josas to establish the
SGSC for facilitation and coordination of inter-
national efforts toward obtaining the complete
porcine genome sequence. A coordinated interna-
tional effort was initiated to develop a porcine
BAC map with two BAC libraries (RPCI-44
and CHORI-242) made by Pieter J. de Jong,
one library made at the Roslin Institute (Ander-
son etal., 2000), and a library produced at

Copyright © 2005 John Wiley & Sons, Ltd.
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INRA (Rogel—@Gaillard et al., 1999). Through the
exchange of BAC clones, data has been merged
to permit a comprehensive analysis. INRA has
screened more than 1000 BACs from this library
for known genes and markers and has mapped
them on genetic and RH maps. INRA is sharing
this set of BACs to facilitate anchoring of con-
tigs. Sequencing the ends of all fingerprinted BAC
clones has also been conducted. The current sta-
tus of the fingerprint contig (FPC) was discussed
at the PAG 2005 meeting (Humphray et al., 2005;
see Table 1). The final product, which is scheduled
for completion in July 2005, will represent 20x
coverage of the porcine genome.

During the past year, significant allocation of
resources has occurred with respect to position-
ing the porcine genome sequencing initiative. This
has included the development of a whole genome
porcine BAC fingerprint with complete BAC end-
sequencing. Thus, to date, the SGSC has com-
pleted sequencing of over 500000 BAC ends (see
Table 2), which represents over 13% sequence
coverage of the pig genome (Humphray et al.,
2005).

Table |I. FPC Database (Wellcome Trust Sanger Institute)

Library Fingerprints Complexity*©
CHORI-242 1037622 6.3%x
Pigk BAC (Roslin) 739712 4.0x
RPCI-44 611040 4.0x
INRA 28478%P 1.0x
TOTAL 267 826 15.3x%

?Wellcome Trust Sanger Institute: http://lwww.sanger.ac.ak/
Projects/S_scrofa/

b University of lllinois at Urbana-Champaign.

©Based on 2.7 Gb genome size.

Table 2. BAC end sequencing results

Passed Paired Average Average
Library reads ends(%) GC (%) length (bp)
CHORI-242*b 276758 92 41 698
Pigk BAC? 145110 93 42 700
RPCI-44° 71847 87 40 521
INRAS 64102 94 42 613
Total 557898 BACs representing 3% of pig genome

@ Wellcome Trust Sanger.
b University of lllinois at Urbana—Champaign.
< INRA.
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Figure I. Schema for the production of autologous reagents for sequencing the porcine genome. Duroc sow 2—14 was
selected as the donor of the DNA used to create the CHORI-242 BAC library. She has been ‘immortalized’ by the
establishment of fibroblast cell cultures that have been successfully used for nuclear transfer. Fetal fibroblast cultures from
cloned piglets have been transferred to the Sanger Institute and genomic DNA from these cell lines has been used to
create whole-genome shotgun libraries. Tissues from embryos at various stages of gestation have also been collected for

use in the construction of full-length cDNA libraries

The sequencing template

The majority of clones that have been fingerprinted
and end-sequenced have come from the CHORI-
242 BAC library. This library was constructed from
a single female pig that was raised at the University
of Illinois (Figure 1). To facilitate sequence assem-
bly, efforts will be made to select as many CHORI-
242 clones as possible for the BAC minimum tiling
path. Additionally, the WGS libraries will be made
from autologous DNA to further enhance sequence
assembly between WGS reads and those from the
BAC skim. Full-length cDNA libraries will also be
constructed from tissues belonging to the original
sow or her clones, providing autologous sequence
for gene annotation.

Strategy for genomic sequencing

The strategy that we espouse for sequencing the
pig genome combines the whole-genome shotgun
(WGS) approach with skim sequencing of BAC
clones selected to represent a minimum tiling path
through the pig genome (Engler et al., 2003; She
et al., 2004). We propose that a draft sequence of
the pig genome with 6—7x genome coverage be
produced by this hybrid approach. A draft sequence
does not provide complete coverage of the entire
genome; indeed, there are still gaps in the cur-
rent ‘finished’ human genome sequence. One of
the key strengths of the hybrid approach is that
the resources (BAC clones) will be in place for
targeted sequence closure in regions of interest.
An important difference between the application

Copyright © 2005 John Wiley & Sons, Ltd.

of this approach to the pig genome and its use
for other species to date is that the porcine fin-
gerprint map and BAC end sequence information
will be completed before the sequencing project
starts. Thus, it should be possible to determine a
BAC tiling path from these two datasets, identi-
fying a set of BACs with minimal overlap at the
outset of the sequencing project. Current calcula-
tions predict that at most 25000 BACs will need
to be sequence-skimmed, since the human genome
is approximately 2.9 GB and the pig genome is
approximately 2.6 GB. This calculation is also sup-
ported by the increased size of the BAC inserts
from 150 kb to a range of 160—180 kb, thus reduc-
ing the number of BACs to be sequence-skimmed.
The project will then sequence 3 x coverage and the
remaining 3—4x coverage will come from whole-
genome sequencing of 3 kb, 10 kb and 50 kb
libraries. The sequence will be released into public
databases as it is generated, and sequence traces
will be deposited in the trace repositories hosted at
NCBI and EBI. Sequence assemblies >2 kb will
be deposited in the HTGS databases at NCBI and
EMBL. It is anticipated that after the first year of
sequencing, a draft 3x assembly of the genome
will be released into public databases.
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