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ABSTRACT

10 Eukaryotic cells respond to DNA damage by arresting
the cell cycle and modulating gene expression to
ensure efficient DNA repair. We used global trans-
criptome analysis to investigate the role of ploidy
and mating-type in inducing the response to damage

15 in various Saccharomyces cerevisiae strains. We
observed a response to DNA damage specific to
haploid strains that seemed to be controlled by
chromatin regulatory proteins. Consistent with
these microarray data, we found that mating-type fac-

20 tors controlled the chromatin-dependent silencing of
a reporter gene. Both these analyses demonstrate the
existence of an irradiation-specific response in
strains (haploid or diploid) with only one mating-
type factor. This response depends on the activities

25 of Hdf1 and Sir2. Overall, our results suggest the
existence of a new regulation pathway dependent
on mating-type factors, chromatin structure remod-
eling, Sir2 and Hdf1 and independent of Mec1 kinase.

INTRODUCTION

30 The cellular response to exogenous DNA damage involves
a complex combination of cell cycle arrest, the modulation
of gene expression and DNA damage repair, resulting in
the survival or death of the cell. Diploid Saccharomyces
cerevisiae strains (Mata/Mata) are more resistant than haploid

35 strains (Mata or Mata) to gamma rays (1). The genetic basis
of this difference remains poorly understood. Diploids and
haploids differ in the expression of mating-type genes and
the number of chromosome copies. Various cellular processes,
including mating, meiosis and budding, are directly control-

40 led by a/a mating-type, at the transcriptional level.
Recent studies have also demonstrated the importance of

mating-type status in the regulation of microtubule properties
(2), the maintenance of cell wall integrity (3) and DNA repair
by non-homologous end-joining (NHEJ) (4). Galitski et al. (5)

45investigated the contributions of mating-type and ploidy to
gene expression in three isogenic sets of yeast strains differ-
ing only in terms of ploidy, which were subjected to whole-
genome expression analysis. The results obtained confirmed
the existence of both ploidy-dependent and mating-type-

50specific gene expression patterns under normal growth condi-
tions. We used microarray analysis and gene reporter fusions
to assess the contributions of ploidy and mating-type to the
transcriptional response induced by irradiation.

Gamma irradiation generates various types of DNA dam-
55age, including double-strand breaks (DSBs). A single unre-

paired DSB is deleterious for cells, as it may lead to genetic
instability and the loss of chromosome fragments. Such dam-
age may occur anywhere in the genome and may have a major
effect on the general organization of chromosomes in the

60nucleus. The DSBs caused by ionizing radiation trigger
G2/M arrest before entry into mitosis, preventing the loss
of chromosome fragments during division (6,7), whereas
base modifications inhibiting DNA replication activate the
S phase-progression checkpoint (8). Transduction of the res-

65ulting signals is thought to require the kinase cascade, which
involves the activities of Mec1p, Rad53p, Chk1p and Dun1p
[reviewed in Elledge et al. (9)] However, the transcription
factors involved in the g-induced response at the other end
of the regulation cascade have not been identified.

70One of the most important defense mechanisms against
the lethal effects of DSB is the repair of broken DNA by
homologous recombination (HR). The abolition of radiation
resistance has been observed for a number of DNA repair
mutants of the RAD52 recombinational repair epistasis

75group (RAD51, RAD52 and RAD54) (10), and for RAD50,
XRS2 and MRE11, affecting the resection of DSBs (11,12).
The difference in radiosensitivity between haploids and dip-
loids seems to result mostly from the lack of a template for
HR during the G1 and early S phases of the haploid cell cycle.
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However, many studies have shown that genotype at the
MAT locus also plays an important role in the response to
irradiation, affecting DNA repair and the HR/NHEJ balance,
(13–16). Diploid cells express the Mata1-Mata2 repressor,

5 which turns off the transcription of a set of ‘haploid-specific
genes’, including several components of the mating phero-
mone signaling pathway. NHEJ efficiency has been shown
to be lower in diploid cells than in haploid cells (17,18).
All the genes involved in controlling this balance have not

10 been yet characterized. Recent studies have shown that LIF1
and LIF2 (NEJ1) are strongly regulated by mating-type, as
the steady-state levels of these proteins are lower in diploid
Mata/Mata strains than in haploid strains (4,19). However,
mating-type heterozygosity is known to increase the frequency

15 of HR (15,16) via Ku-dependent and -independent mech-
anisms (13). The available data therefore seem to indicate
that both ploidy and mating-type locus affect the efficiency
of DNA repair. The identification of all proteins induced
by irradiation and subject to a/a regulation should further

20 increase our understanding of the way in which the choice
between repair pathways is controlled.

MATERIALS AND METHODS

Strains and culture conditions

The S.cerevisiae diploid FF 6053 (Mata/a), and the haploids
25 FF 18734 (Mata), FF 18733 (Mata) and FF 18735 (Mata/a)

were used for transcriptional analysis. The FF 6053 diploid
was obtained by mating two haploids (FF 18734 and FF
18733). FF 18735 was constructed by integration a plasmid
(Yip5) encoding Mata into the FF 18733 haploid strain. The

30 hdf1 and sir2 mutant strains are W303-1a (Mata) haploid
derivatives. We analyzed URA3 gene silencing in haploid
and diploid strains, using W303-1a derivatives containing a
modified telomere VII-L, in which the ADH4 subtelomeric
gene was replaced by the URA3 reporter gene and various

35 portions of the X and Y0 element were inserted between the
URA3 reporter gene and terminal telomeric DNA repeats (20).
Yeast cells were grown exponentially in YPD medium at
30�C and oxygenated by shaking at 150 r.p.m. with a HT
Infors AG shaker (Bottmingen, Switzerland).

40 Ionizing irradiation conditions and time-courses

Overnight exponential cultures were centrifuged, and the cell
pellet was resuspended at a density of 109 cells/ml and irra-
diated (60 Gy/min and 137Cs source) at room temperature in
rich medium to minimize temperature and osmotic variations

45 during treatment. Irradiated cells were plated directly on rich
medium for survival analysis or immediately resuspended in
rich medium at the original density for time-course experi-
ments. Cells were irradiated at time 0, and samples were col-
lected for microarray and cell cycle analysis at various times

50 (0.1, 1, 2, 3, 4 and 5 h) after irradiation. Kinetic analysis was
performed on strains exposed to a 200 Gy of ionizing radi-
ation, which resulted in a cell survival rate of 25% for the two
haploid strains (FF 18734 and FF 18733) and 75% for the
diploid strain (FF 6053). We used DAPI staining, microscopy

55 and FACS analysis, as described previously (21) to determine
the duration of cell cycle arrest following irradiation. The
transcriptional response was analyzed during this period.

Probe and microarray hybridization and
data analysis

60Total RNA was extracted from frozen samples by the hot
phenol method. A fluorescently labeled first-strand cDNA was
synthesized by RT, as described in Supplementary Data. For
all microarray hybridizations, the fluorescent Cy-3-labeled
cDNA control population was prepared from the same pool

65of total RNA extracted from five independent, exponentially
growing cultures of the diploid strain (FF 6053). Hybridized
microarrays were scanned with a Genepix 4000B machine
(Axon Instruments). Fluorescence intensities for all spots
were normalized using the location and scale normalization

70procedures described by Mercier et al. (22), details are pro-
vided in Supplementary Data.

As a unique pooled RNA sample (prepared from non-
irradiated cultures of the diploid strain) was used as the ref-
erence in all experiments, we calculated a ratio by dividing

75the measured ratio for each irradiated haploid strain with the
corresponding value for the same strain in the absence of
irradiation. For this purpose, we prepared three independent
normal growth cultures of each haploid strain for control
experiments (0 Gy), and used the median ratio for these strains

80for the normalization of irradiation time-course data. Genes
with expression levels differing between irradiated and non-
irradiated samples by a factor of at least two for at least one
time point filtering of the time-course experiment were iden-
tified as irradiation-regulated (IR) genes. Pairwise mean link-

85age clustering analysis was performed with Cluster (using
uncentered Pearson correlation coefficients) and visualized
using Treeview (23).

Measurement of telomere position effect (TPE) by
analysis of reporter gene expression

90TPE was assessed by analyzing variegated expression of the
URA3 gene. Cells with a repressed URA3 gene were selected
as colonies growing in the presence of 5-FOA (SC + 5-FOA),
which is toxic to cells expressing a functional URA3 gene
product (24). We then distinguished ura- mutants and silenced

95cells by replica plating on medium lacking uracil (SC-URA).
Cells growing on both SC + 5-FOA and SC-URA media were
considered to have a repressed URA3 gene. We compared
the TPE in haploid and diploid strains in the absence of irra-
diation, using various URA3 reporter gene constructs (detailed

100in Figure 4). Drop assays were performed with the URA
construct, by spotting serial dilutions of three independent
overnight cultures in SC liquid medium on to SC, SC-URA
and SC + 5-FOA plates. The effect of irradiation dose was
assessed by dilution assay for three exponential independent

105cultures of each strain, irradiated at different doses, serially
diluted and plated on specific media to determine the percent-
age of cells with a repressed URA3 gene. In parallel, we
evaluated the survival rate of irradiated cells by calculating
the ratio of viable cells in irradiated cultures to viable cells in

110non-irradiated cultures.

Online supplementary data

Details of probe, microarray hybridization protocols and data
analysis are given provided in the Supplementary Materials
and Methods. Haploid-specific (HS-IR) genes and their

115function are listed in Supplementary Table S1. A statistical
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analysis of the effect of Gasch mutants on HS-IR gene expres-
sion is given in Supplementary Table S2. Supplementary
Figure S1 shows Treeview expression analysis of the HS-IR
genes in 300 mutants and Supplementary Figure S2 shows the

5 chromosomal location of HS-IR genes. The raw data are
available at the following URL http://microarrays.curie.fr/.

RESULTS

Differences in global responses to irradiation
between haploids and diploids

10 We compared global gene expression responses to ionizing
radiation between S.cerevisiae haploids and diploids by irra-
diating three isogenic strains: the Mata/a diploid (FF 6053
strain), the Mata haploid (FF 18733 strain) and the Mata
haploid (FF 18734 strain). The patterns of gene expression

15 induced by irradiation were deduced by comparing the pat-
terns of expression of a given strain before and after irradi-
ation. The three isogenic strains were exposed to a 200 Gray
(Gy) dose of ionizing radiation. Cell survival rates were lower
in both haploids (25%) than in the diploid (75%). The irradi-

20 ated cells stopped dividing for about 4 h and then resumed
mitosis in all three strains (data not shown). We studied the
transcriptional response of irradiated cells during the full
recovery period, by analyzing mRNA from samples taken
immediately after irradiation and every hour for the next 5 h.

25 In all three strains, ionizing radiation led to significant
changes in the gene expression program, with the relative
abundance of about 1400 genes differing by a factor of two
or more between irradiated and non-irradiated cultures. Most
of these IR genes displayed rapid and strong changes in

30 expression—a typical stress response feature that has already
been reported after g-irradiation and treatment with various
other types of DNA-damaging agent (25–27). We compared
the lists of IR genes for the three strains (Figure 1). Surpris-
ingly, the two haploids had twice as many IR genes in common

35 with each other (595) than in common with the diploid strain
(291 and 265). Only 124 genes were found to be induced (or
repressed) in all three strains following irradiation. Many of
the genes known to be involved in inducible DNA damage

repair, such as RAD51, RAD54, RNR2, RNR4, HUG1 and
40RFA2 (21,28–30), were induced in all three strains. We com-

pared our data with published results obtained after MMS
and ionizing radiation treatments in a Mata strain (25).
The eight genes displaying specific induction in response to
DNA-damaging treatments (RNR2, RNR4, RAD51, RAD54,

45PML2, YER004W and YBR070C) were also found to be
induced in our experimental conditions in the Mata haploid
strain. DIN7 was the only gene of the ‘DNA Damage Signa-
ture’ set [see Gasch et al. (25)] unaffected by irradiation in our
experiments.

50We focused on the 471 IR genes displaying changes in
transcription after irradiation in both haploids, but not in
the diploid strain. We found that 278 of these HS-IR genes
were induced and 193 were repressed (Figure 1; Supplement-
ary Tables S1).

55Promoter analysis of HS-IR genes

We tried to identify transcription factors potentially involved
in the regulation of HS-IR genes by analyzing the 800 bp
sequence directly upstream from the coding region for con-
sensus binding sites for known or unknown transcription

60factors. The Pbox, Qbox and PRE elements and sequences
recognized by mating-type factor heterodimers were not sig-
nificantly more frequent in the set of HS-IR genes than in the
genome as a whole. This result suggests that the regulation
of this response by mating-type factors is indirect. Only two

65sequences were found to occur at high frequency in the
promoters of the 278 induced HS-IR genes: 114 genes
(41%, versus 22% for the genome as a whole) contained
the CTCATC sequence recognized by Rfa2. The binding of
Rfa2p to upstream sequences has been shown to repress the

70expression of some repair genes and is decreased by UV irra-
diation or MMS treatment, thereby leading to the induction of
these repair genes (31). We found that 81 of the 278 induced
HS-IR genes possessed upstream regions containing the
ATGAGC sequence, which has no known binding factor.

75The promoter regions of the 193 repressed HS-IR genes
presented no overrepresentation of any specific sequence
other than the frequent occurrence of G-rich sites.

Subtelomeric and even distributions of HS-IR
genes on chromosomes

80Visual inspection showed that an unexpectedly high propor-
tion of induced HS-IR genes were located near chromosome
ends (c2 ¼ 114.6, P <0.0001; Supplementary Figure S1).
Indeed, 18% of the 278 induced HS-IR genes were located
within 20 kb of a telomere (subtelomeric). About one quarter

85(51/218) of the subtelomeric genes on our microarrays were
induced by irradiation (Supplementary Table S1). The 51 sub-
telomeric HS-IR genes induced were evenly spread over 23
of the 32 chromosomes extremities, indicating that subtelo-
meric gene derepression is a general process affecting most

90chromosome ends (Supplementary Figure S1).
Genes controlled by the same sequence-specific transcrip-

tion factor tend to be spaced at regular intervals along chro-
mosome arms (32). We analyzed the distribution of HS-IR
genes by calculating the distance between pairs of HS-IR

95genes from the same chromosome arm. In this analysis of
coexpressed genes, eight yeast chromosome arms had too low

Figure 1. Venn Diagrams comparing the HS-IR genes modulated in the various
strains. Circles indicate the number of genes showing changes in expression
by a factor of at least two after irradiation in the haploids FF 18733 (Mata), FF
18734 (Mata) and the diploid FF 18735 (Mata/a). The intersections of the
circles correspond to genes induced in at least two strains (i.e. the strains
corresponding to the intersecting circles). Numbers indicate the number of
genes in each group.

Nucleic Acids Research, 2005, Vol. 33, No. 20 6637



a density of HS-IR genes for any firm conclusion to be drawn.
Six of the remaining 24 arms displayed weak periodicity, and
18 displayed clear periodicity. For example, the HS-IR genes
on the right arm of chromosome X tended to be regularly

5 spaced, and were separated by 16 850 bp or by multiples of
16 850 bp (Figure 2A; grid step 16 850 bp). This even spacing
is not consistent with the random attribution of gene positions
(Figure 2B). Different periods were observed for different
chromosome arms, as reported previously for coregulated

10 genes (32). Thus, most HS-IR genes appear to be control-
led by a few molecular factors involved in regular nuclear
organization.

Chromatin modifying activities regulate HS-IR genes

We investigated whether all the HS-IR genes studied were
15 regulated by the same pathway, by comparing the effect on

their expression of deletions of genes encoding various regu-
latory proteins. We investigated microarray data for about 300
mutants (33). As expected for genes regulated by the same
pathway, 134 of the 193 repressed HS-IR genes displayed

20 similar sensitivities to a large set of mutations (Supplementary
Figure S2-A), with basal expression levels decreasing for 32
mutants and increasing for 113 mutants. The number of HS-IR
genes showing variation of expression was estimated and

compared with the total number of genes showing variation
25of expression in each mutant. Only mutants giving a P > 0.005

in a hypergeometric test were considered (listed in Supple-
mentary Table S2). Analysis of the molecular functions affec-
ted in mutants displaying specific HS-IR gene expression
changes showed that most directly or indirectly involved chro-

30matin remodeling and/or silencing. The largest changes in
expression of repressed HS-IR genes were observed in mutants
with impairments affecting chromatin (e.g. sir4, rpd3, sin3,
hat2, cyc8, hst3, ubp10 and tup1). The clustering of the
induced HS-IR genes was consistent with a complex pattern

35of regulation, with very few common regulators (Supplement-
ary Figure S2-B). However, most of the induced HS-IR genes
also displayed significant changes in expression in mutants
with impaired chromatin assembly and chromatin modifica-
tions (sir2, sir3, hdf1, iswi1 and isw2) and DNA topology (top1

40and top3). Inactivation of the TUP1 and SSN6 genes encoding
proteins acting as a transcription factor complex sensitive to
chromatin structure (34) significantly increased the expression
of repressed HS-IR genes, suggesting that irradiation may
facilitate the recruitment of these repressors to the regulatory

45regions of HS-IR genes.

HS-IR gene expression and silencing are controlled
by mating-type

HS-IR genes were identified as genes displaying changes in
expression after irradiation in haploids but not in diploids.

50These genes seemed to be sensitive to chromatin regulation
and some were subject to telomeric chromatin silencing. We
investigated the contribution of mating-type status to control
of the general transcriptional response to irradiation by ana-
lyzing the expression of HS-IR genes in a pseudo-diploid

55strain: a Mata haploid strain, expressing the a factor. Control
experiments involving microarray analysis confirmed that a
combination of the a1 and a2 factors resulted in the repression
of haploid-specific genes. As expected, the STE2, STE6,
MFA1, MFA2, AGA2, ASG7, Mfalpha1, Mfalpha2, STE3,

60FUS3 and RME1 genes displayed similar levels of expression
in the Mata/a pseudo-diploid and in the diploid. Most of the IR
genes shown to be induced after irradiation in haploids but not
in diploids showed no induction in the pseudo-diploid strain
(Figure 3). In contrast, 65% of the 124 genes induced (or

65repressed) in both haploids and diploids (see Figure 1),
were also induced in the haploid expressing both mating-
types (data not shown).

As the expression of HS-IR genes, including subtelomeric
genes (Figure 3), seems to be controlled by mating-type fac-

70tors, we investigated the effect of ploidy on silencing by means
of reporter gene studies. Telomeric silencing at native ends has
been reported to vary with gene location, depending on the
combination of X and Y0 elements in yeast (35). We confirmed
that this was the case in a TPE assay in strains carrying dif-

75ferent subtelomeric sequences between the URA3 gene and the
TG1–3 repeat. However, for all constructs, the URA3 gene was
less strongly silenced in the diploid strain than in the haploid
strain (Figure 4). Diploid-associated derepression was more
pronounced in reporter constructs bearing the part of the X or

80Y0 element immediately adjacent to the telomere, suggesting
that the natural subtelomeric sequences are involved in modu-
lating TPE as a function of ploidy. Thus, TPE and microarray

Figure 2. Distribution of distances separating radioaltered HS-IR genes
along the right arm of yeast chromosome X. (A) Distances were measured
between the starting points of the coding sequences of all gene pairs for the
complete list of HS-IR genes. These distances are shown here on a bar graph,
with a grid interval of 16 850 bp. Bar width (or ‘bin size’ for data discretization)
is 2500 bp i.e. about the length of one yeast gene allowing fine distribution
analysis. Varying bin size had no effect on the conclusions drawn. (B) As for
(A), following the random attribution of gene positions. Gene content, chromo-
some length and target list are as in natural chromosome X. For each gene
on this chromosome arm of length L, the randomization process replaces
the start position with a random integer between 1 and L. Calculations used
Microsoft� Excel VBA routines. The routines and data are available upon
request.
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analyses highlighted constitutive differences in silencing
between diploid and haploid strains. As shown by microarray
data (Figure 3), the silencing of subtelomeric genes measured
by TPE (Figure 5) was not significantly affected by irradiation

5 in diploids. The difference in silencing between diploids and

haploids may be due to differences in the number of chromo-
somes or to differential regulation by mating-type factors, as
shown for the HS-IR genes. We constructed diploid strains
expressing only one mating-type to determine which of these

10two possibilities applied. The constitutive TPE in diploids

Figure 4. Measurement of TPE, using an artificial telomere-proximal gene,
URA3, at tel VII-L. Various URA3 constructs were tested for TPE in haploid
(gray rectangles) and heterozygous diploid (black rectangles) strains. Histo-
gram bars represent the mean values obtained for a given strain. Each diamond
indicates the proportion of colonies displaying URA3 gene repression (ratio of
colonies growing in 5-FOA-SC versus SC).

Figure 3. Analysis of the expression of subtelomeric HS-IR genes. Expression of the HS-IR genes in the four strains: the haploids (Mata), (Mat a), [Mat a(a)] and the
diploid (Mat a/a)—is shown with TreeView (23). Only data for telomeric genes are reported. The full analysis of the 471 HS-IR mutants is presented in
Supplementary Figure S1. Panel A, non-irradiated cells: For each strain, RNA from three independent cultures was analyzed as described in materials and methods.
Panel B, irradiated cells: RNA levels for the various genes were determined immediately after irradiation with 200 Gy (time 0.1) and after 1 h, 2 h, 3 h, 4 h and 5 h of
incubation. Ratios were calculated with respect to the median of the three measures in non-irradiated cells.

Figure 5. Effect of gamma rays on TPE in haploids and diploids with different
mating-types. Four isogenic strains varying in ploidy and mating genotype,
as indicated on the abscissa, were analyzed for TPE. The percentage of viable
cells displaying URA3 repression in non-irradiated (dark gray) cultures and in
cultures exposed to 200 Gy irradiation (light gray) was estimated by dilution
assay on three independent cultures (diamonds). The cell survival rate is
indicated in brackets.

Nucleic Acids Research, 2005, Vol. 33, No. 20 6639



expressing only one mating-type was weaker than that in dip-
loids, indicating that TPE may be sensitive to chromosome
number. This would not be entirely surprising as the silencing
protein Sir3 has already been shown to be present in limiting

5 amounts in haploid cells (35,36). Interestingly, unlike (a/a)
diploids, diploid strains expressing only the a or the a factor
displayed complete derepression of the subtelomeric reporter
gene after irradiation (Figure 5). This result is consistent with
microarray data indicating that the response to irradiation,

10 including the silencing switch-off, is inhibited by the expres-
sion of both mating-type factors in diploids.

The HS-IR response requires Ku70 and Sir2
but not Mec1

We further characterized the chromatin-dependent response to
15 DNA damage by analyzing the response of hdf1 and sir2

mutant cells to 200 Gy of ionizing radiation over a 5 h period.
These mutants displayed a much weaker overall transcrip-
tional response than wild-type cells. Only 646 and 517
genes in the hdf1 and sir2 mutants, respectively, displayed

20 radiomodulation, with only 185 genes being radiomodulated
in both mutants. Only 6% of the genes insensitive to hdf1 and
sir2 were HS-IR genes. Thus, the hdf1 and sir mutations seem
to block preferentially change in expression of the 471 HS-IR
genes. We checked that the dependence of the gene responses

25 to hdf1 and sir2 activity was specific to HS-IR genes, by
carrying out the same analysis with the 124 genes induced
in both diploids and haploids. This group was significantly
less sensitive to the deletion of hdf1 and sir2 deletion, with
only 19% (23/124) of the genes tested radiomodulated

30 in the mutants (c2 ¼ 14,2, P < 0.001). These results
suggest that the Sir2 and Ku70 proteins play specific roles
in regulating the haploid-specific transcriptional response to
irradiation.

We performed the same analysis on data published by
35 Gasch et al. These authors studied the kinetics of gene expres-

sion after irradiation, for a wild-type strain and a mec1 mutant.
They found that 1369 genes were regulated by irradiation in
the wild-type strain, versus only 962 in the mec1 mutant. We
found that 544 genes were radiomodulated in both strains,

40 indicating that the expression of these genes was not entirely
controlled by Mec1 kinase. We analyzed the effect of mec1
mutation on the expression of HS-IR genes. Most (104) of the
169 HS-IR genes radiomodulated in the wild-type were also
radiomodulated in the mec1 mutant. This high proportion of

45 Mec1-independent responses differed significantly from that
reported by Gasch (544 of a total of 1369 radiomodulated
genes were radiomodulated in both strains; c2 ¼ 10.69, P <
0.005). In contrast, only 22 of the 124 genes radiomodulated in
our three wild-type strains were radiomodulated in the mec1

50 mutant. This proportion does not differ significantly from that
for the data published by Gasch (c2 ¼ 0.9, P < 0.25). Thus,
mec1 deletion has effects opposite to those of hdf2 and sir2
deletions, affecting HS-IR gene expression only weakly and
having a strong effect on the haploid-independent response to

55 irradiation. Global analysis of the response to irradiation in
the hdf2, sir2 and mec1 mutants suggested that the response of
HS-IR genes to irradiation depends on mating-type factors, Ku
and Sir but not Mec1. This regulation pathway is different from
the known Mec1-controlled pathway of radiomodulation in

60haploids and diploids and seems to be insensitive to
mating-type factors, Ku and Sir proteins. Most of the genes
responding to DNA damage (e.g. RNR2, RNR4, RAD51,
RAD54 and RFA2) studied by other laboratories are regulated
by the Mec1 pathway.

65DISCUSSION

We identified, by means of transcriptome analysis and reporter
gene studies, a cellular response to irradiation dependent on
chromatin structure and mating-type factors. Gene silencing
has been shown to result from the inhibition of RNA pol II

70transcription activity by a specific compact chromatin struc-
ture. It requires the binding to histone tails of three unrelated
proteins: Sir2, Sir3 and Sir4 initially recruited by Rap1. One
possible mechanism accounting for the decrease in silencing
after irradiation involves the repression by irradiation of genes

75encoding these proteins, resulting in a loosening of the com-
pact structure of chromatin. The RAP1 and SIR3 telomeric
structural genes displayed no change in expression following
irradiation. The SIR4 gene displayed a continuous increase in
expression over the period analyzed. However SIR4 over-

80expression was expected to increase silencing rather decrease
it as observed, based on data for the overexpression of
SIR3 (35,36).

Many authors have highlighted the similarity between
DSB and telomeric termini. Both bind proteins involved in

85the NHEJ repair pathway, such as the Ku heterodimer and
the Mre11/Rad50/Xrs2 nuclease/helicase complex, which is
thought to be involved in break religation. The Sir proteins,
which are associated with transcriptional silencing at subtelo-
meric and mating-type loci, seem to be directly or indirectly

90involved in DNA damage repair. Sir4 interacts physically with
Ku70, and mutations of the Sir complex result in deficiencies
in the repair of linear plasmids (37–40). At both telomeres and
DSBs, NHEJ and HR proteins compete in the maintenance of
chromosome integrity. Ku proteins prevent HR at telomeres

95(41), whereas this process is the primary means of repair at
DSBs (see for review van den Bosch, (42,43). The proteins
binding around each site may be responsible for selecting the
mechanism activated. DNA repair by HR is enhanced by
mating-type heterozygosity. This increase in the rate of HR

100repair was not observed in an a/a diploid with only one
mating-type, suggesting that the presence of a homologous
chromosome is not sufficient to increase the rate of HR
(13–15,18). Moreover, the DNA repair defect caused by
the rad51-K191R mutant protein, which is responsible for a

105partial defect in ATP hydrolysis, is abolished in diploids
and by mating-type heterozygosity in haploids (44). The effect
of mating-type heterozygosity, which enhances repair, is not
restricted to the HR pathway, because end-joining activity is
also repressed in diploids (13,16,17). The abolition of radi-

110ation sensitivity in diploids has been observed for a number of
DNA repair mutants (10), and in the case of the rad18 and
rad55 diploids, is due to mating-type heterozygosity rather
than ploidy (15,45). Vaillant et al. showed that NHEJ regu-
lation involves the control of Lif2 protein production, which is

115repressed in diploids.
An analysis of published microarray data identified no

known repair genes more strongly expressed in diploid strains
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expressing the two mating-type alleles than in diploids
expressing only one mating-type allele (46). Our data on the
transcriptional response induced by irradiation showed that
very few of the many genes displaying differential expression

5 in haploids were directly involved in DNA damage repair (see
Supplementary Tables S1 and S2). We performed an extensive
ontology analysis on the microarray data, estimating statistical
significance by means of a hypergeometric method. The pro-
cesses retained were those corresponding to a number of genes

10 significantly higher than would be expected on the basis of
chance alone, considered the whole set of genes analyzed. This
analysis revealed that induced HS-IR genes are involved prim-
arily in ribosome biogenesis (23 genes, c2 ¼ 15), rRNA meta-
bolism and RNA processing (28 genes, c2 ¼ 6.5), whereas

15 repressed HS-IR genes are primarily involved in energy
reserve metabolism (7 genes, c2 ¼ 20.68), mitochondrial
electron transport (5 genes, c2 ¼ 40.75) and response to cop-
per or desiccation (5 genes, c2 ¼ 10,33). Birell et al. (47) in
their analysis of the transcriptional response to various DNA-

20 damaging agents (including ionizing radiation), found no rela-
tionship between the genes required for survival following
exposure to DNA-damaging agents and the genes displaying
an increase in transcription after exposure. We identified 10
genes (QCR9, QCR10, COX5B, QCR8, CYT1, GRX1, CTT1,

25 SOD1, SOD2, CUP1-1 and CUP1-2) involved in oxidative
phosphorylation, oxidative stress and Cu++ homeostasis that
were induced after irradiation. The genes involved in these
processes were recently shown to be induced by continuous
exposure to low doses of ionizing radiation (22). Their con-

30 tribution to the survival of irradiated cells remains unclear but
it is possible that they act by regulating the free radical pool in
the cell.

Our results demonstrate that chromatin structure is con-
trolled by mating-type heterozygosity. Silencing at telomeric

35 ends was weaker in diploids than in haploids, as shown by
assessments of the expression of all genes located at subtelo-
meric positions and reporter gene fusions. In our reporter gene
studies, we observed this ploidy dependence in different gen-
etic backgrounds and various telomeric sequence combina-

40 tions. The low level of silencing in diploids could be a
consequence of saturating some silencing proteins by doubling
the number of binding sites on chromosomes in diploids.
However, we do not favor this hypothesis that does not explain
the low level of silencing of most subtelomeric genes in the

45 haploid strain expressing the two mating-types (Figure 3). In
our search for trans-acting elements accounting for this dif-
ference, we found that several genes encoding proteins playing
a direct or indirect role in chromatin structure displayed dif-
ferences in expression in haploid and diploid cells. The RSC6,

50 ELP3 and SMC3 genes, encoding proteins involved in chro-
matin remodeling, were constitutively and more strongly
expressed in diploids. The TEL2 and EST2 genes, encoding
proteins involved in telomere length regulation, were also
more strongly expressed in basal conditions in diploids than

55 in haploids. TBF1 was also expressed more strongly in the
diploid. Tbf1 displays insulating capacity, and binds to pro-
moters and in subtelomeric anti-silencing regions (STARs)
throughout the yeast genome (48,49). The interaction between
Tbf1p and telomeres leads to a loss of silencing at these chro-

60 mosomal loci (49). This observation is correlated with weaker
telomeric silencing in the diploid strain than in haploid cells.

The low level of gene silencing observed in diploids was
also found in diploids expressing only one mating-type factor.
However, unlike diploids heterozygous for mating-type, these

65strains displayed significant derepression after irradiation,
like the haploid parent. Conversely, microarray analysis indic-
ated that haploids expressing both mating-types showed no
significant change in subtelomeric gene expression after irra-
diation (Figure 4). Thus, mating-type heterozygosity prevents

70chromosome remodeling after irradiation. Most studies on the
expression of telomere-proximal genes have been carried out
in a haploid background (50–52). Such a difference in the
silencing status of subtelomeric regions between the haploid
and diploid states has never before been described. Affecting

75silencing by inactivating Sir2 protein or by inducing chromatin
remodeling by irradiation would have the direct consequence
to suppress the HML and HMR loci repression leading to
expression of both mating-type cassettes as in pseudo-
diploids. Thus, based on our data and published results, it is

80difficult to determine the respective role of mating-type and
silencing in the HS-IR response regulation. We propose that
irradiation disturbs the silencing chromatin all over the chro-
mosomes leading to transient expression of most of the genes
under its control, including cassettes at HML and HMR loci.

85The expression of both mating-type in the irradiated haploid
would decrease general silencing as observed for subtelomeric
genes silencing in non-irradiated diploids and a(a) pseudo-
diploid, and thereby delay silencing restoration and extend the
HS-IR response. Actually whereas genes induced in haploids

90and diploids show a very rapid and transient induction of
expression, most of the HS-IR genes remain overexpressed
during all the cell division arrest.

The loss of TPE for artificial telomere-proximal genes has
been shown to be concomitant with checkpoint-dependent

95delocalization of the heterochromatin structural proteins
Sir1-4, Rap1 and Ku following DNA damage induced by
various agents (EcoRI or HO endonuclease, MMS or bleomy-
cin treatment) (53,39). Martin also showed, by chromatin
immunoprecipitation (ChIP), that Sir3, Sir4 and Ku80 were

100redistributed from telomeric DNA to damaged sites. Thus, the
local loss of telomeric proteins due to DNA damage may lead
to the derepression of subtelomeric genes. The loss of hetero-
chromatic structure at telomeres therefore appears to be a
response to DNA damage. This response seems to be partially

105controlled by the kinases (Mec1 and Rad53) playing key roles
in the checkpoint response to DNA-damaging treatments. For
example, the redistribution of Sir3 after DNA-damaging treat-
ment depends on Mec1, but not the Rad53 or Tel1 checkpoint
proteins (39,53,54). However, Rad53 contributes to genome

110stability independently of Mec1, by preventing the damaging
effects of excess histones, both during normal cell cycle pro-
gression and in response to DNA damage (55). Analysis of
our data and those of Gasch et al. indicated that Sir2 and
Hdf1 controlled the response to irradiation of HS-IR genes,

115whereas Mec1 did not. The mechanism underlying the
dependence of this response on mating-type factors remains
to be demonstrated.

SUPPLEMENTARY DATA
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