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[1] A technique to retrieve surface soil moisture was assessed at the global scale using a
synthetic data set of L-band (1.4 GHz) brightness temperatures TB for 2 years, 1987
and 1988. The global TB database consists of half-degree continental pixels and accounts
for within-pixel heterogeneity, on the basis of 1 km resolution land cover maps. The
retrievals were performed using a three-parameter inversion method applied to the L-band
Microwave Emission of Biosphere model (L-MEB). Three land surface variables were
retrieved simultaneously from the multiangular and dual-polarization TB data: surface soil
moisture wg, vegetation optical depth t, and surface temperature TS. The retrievals
were obtained in two TS configurations: TS was either unknown or known with an
uncertainty of 2 K. Applying these two assumptions, global maps of the estimated accuracy
of the wg retrievals were produced, and the capability of the TB to monitor wg was
evaluated. A sensitivity study was carried out in order to analyze the effect of the main
parameters that may affect the retrieval accuracy: the fraction cover of open water and
forests, frozen soil conditions, and the radiometric noise on TB. These results contribute to
the better definition of the potential of the observations from future spaceborne missions
such as the Soil Moisture and Ocean Salinity (SMOS) project. INDEX TERMS: 1640 Global

Change: Remote sensing; 1866 Hydrology: Soil moisture; 3360 Meteorology and Atmospheric Dynamics:

Remote sensing; KEYWORDS: L-band radiometry, soil moisture, inversion, modelling, global scale
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1. Introduction

[2] In order to achieve a suitable spatial resolution at L-
band, the possibility of using an antenna synthesis method
was proposed. Such a concept relying on a deployable
structure has led to the Soil Moisture and Ocean Salinity
(SMOS) mission, which was the second Earth Explorer
Opportunity Mission selected by the European Space Agen-
cy (ESA) in 1999. The SMOS mission [Kerr et al., 2001] is
scheduled for launch in 2006. The main objective of this
mission is to deliver key state variables of land surfaces (soil
moisture fields), and of ocean surfaces (sea surface salinity
fields) with a ground resolution better than 50 km. The
sensor consists of an interferometric radiometer that will
provide dual-polarized, multiangular observations, with a
high sampling time (3 days or better) and a global coverage.
[3] The root-zone soil moisture is a key variable of the

water and energy exchanges at the land-surface/atmosphere

interface, because it is a slowly varying quantity conditioning
plant transpiration and bare soil evaporation [Noilhan and
Calvet, 1995; Wood et al., 1995]. Estimating this variable at
the global scale has potential applications in hydrology and
meteorology [Fennessy and Shukla, 1999; Dirmeyer, 2000;
Leese et al., 2001]. Several studies showed that time series of
surface soil moisture (wg) can be used to retrieve the root-
zone soil moisture by using an assimilation algorithm [Ente-
khabi et al., 1994; Calvet and Noilhan, 2000; Wigneron et
al., 2002a]. A number of airborne and ground-based experi-
ments have shown that L-band passive microwave remotely
sensed brightness temperatures (TB) have great potential for
providing estimates of wg. Therefore the assimilation of TB
or of TB-derived wgmay permit to monitor the root-zone soil
moisture. The objective of the assimilation is to retrieve
variables which are not directly observed by remote sensing,
but which can be simulated by using a process model (e.g.,
an atmospheric model or a soil-vegetation-atmosphere trans-
fer–SVAT-model). For example, the root-zone soil moisture
cannot be directly observed by a remote sensing system, but
it is physically related to wg, which has a direct effect on the
L-band emission of the soil. The estimation of the root-zone
soil moisture using L-band radiometry requires the use of a
SVAT model, simulating the time variations of wg, coupled
with a radiative transfer model (RTM) simulating the TB
[Calvet and Noilhan, 2000]. In this study, the SVAT model
was used to build the synthetic data set, and was not involved
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in the retrieval exercise. The assimilation of remote sensing
data to analyze surface fields like the root-zone soil moisture
is currently not operational. There is a debate about which
technique should be used to analyze surface variables:
assimilate remote sensing products (obtained by inverting a
RTM) or assimilate radiances by coupling the SVAT model
with a RTM. Assimilation is beyond the scope of this study,
which concerns RTM inversion only.
[4] On the basis of both large-scale airborne experiments

over agricultural sites and ground-based experiments over
crop fields, the potential of L-band radiometry to retrieve the
surface soil moisture has been evaluated and retrieval algo-
rithms have been proposed [Wang et al., 1990; Schmugge
and Jackson, 1994; Jackson et al., 1995, 1999; Van de
Griend and Owe, 1994; Wigneron et al., 1995, 2000; Njoku
and Li, 1999; Owe et al., 2001]. However, as extensive L-
band observations from spaceborne systems are not currently
available, these various soil moisture retrieval approaches
could not be assessed at the global scale.
[5] In the present study we used a global data set of

synthetic TB, at L-band, computed for a two-year period,
1987 and 1988 (T. Pellarin et al., Two-year global simulation
of L-band brightness temperatures over land, submitted to
IEEE Transactions on Geoscience and Remote Sensing,
2003) (hereinafter referred to as Pellarin et al., submitted
manuscript, 2003). This period presents a significant climat-
ic variability: contrasting El-Niño and La-Niña climatic
conditions prevailed in 1987 and 1988, respectively. The
simple L-band Microwave Emission of Biosphere model (L-
MEB; Pellarin et al. (submitted manuscript, 2003)) was used
to produce the multitemporal, half-degree TB maps at several
incidence angles and for horizontal and vertical polarizations
(H and V, respectively). Synthetic or semi-synthetic (based
on a combination of measured and simulated data) data sets
are routinely used in defining new space missions at the
European Space Agency (ESA). Such data sets have proved
to be very useful for the design of the instrument and for the
definition of the orbit and ground segment (system prepro-
cessing, calibration procedures, atmospheric corrections,
retrieval concepts, etc.) of the spatial mission. This kind of
approach is all more justified in the case of SMOS by the
lack of alternative L-band spaceborne measurements
corresponding to real-world data. Furthermore, the methods
used in this study (direct modeling and inversion process)
were developed and validated from ground- and airborne-
based measurements. They should be valid to analyze
spaceborne measurements in the case of SMOS as: (1)
Atmospheric effects are very low. Both downward and
upward atmospheric brightness temperatures are in the range
of 1 to 3 K at nadir (i.e., about 1% of the total TB), depending
mainly on air temperature and atmospheric pressure. Clouds
have virtually no effect on the atmosphere absorption at L-
band. (2) Measurements are not sensitive to illumination
conditions. (3) The global emission of heterogeneous scenes
can be easily computed as the sum of contributions of all
surface types, weighted by the fraction of surface cover. (4)
Complex effects in relation with geometry (vegetation struc-
ture, surface roughness, . . .) have much less impact at large
spatial scale as there is some kind of compensation due to the
mixing of a variety of contributions to the emitted signal as
found in the analysis of active spaceborne microwave
measurements [Cognard et al., 1995].

[6] The synthetic global TB data set obtained by Pellarin
et al. (submitted manuscript, 2003) was a useful reference to
develop and validate methods to retrieve soil moisture. On
the basis of these TB data, the retrieval of wg using simple
statistical regression algorithms [Pellarin et al., 2003] was
investigated. In the most promising of these approaches,
referred to as the Local Regression Model (LRM), indepen-
dent regression models were calibrated over each pixel.
Satisfactory results were obtained and the accuracy of the
LRM soil moisture retrieval was better than 0.04 m3 m�3

over about 90% of the continental area (note that the 0.04
m3 m�3 threshold was considered as the required accuracy
of wg retrievals [Kerr et al., 2001]).
[7] This paper describes the results obtained using a

different retrieval method, forward model inversion, which
was evaluated using the same synthetic L-band global data
set. This method was derived from the inversion algorithm
proposed by Wigneron et al. [2000]. The retrievals were
obtained by the inversion of L-MEB, and two inversion
configurations were tested, assuming that surface tempera-
ture was either unknown or known with an uncertainty of
2 K. Global maps of the estimated accuracy of the soil
moisture retrievals were produced and the capability of L-
band TB observations to monitor wg could be evaluated in
the two situations. A sensitivity study was carried out to
analyze the effect of the main parameters that may affect the
retrieval accuracy: the fraction cover of open water and
forests, soil freezing, and the radiometric noise on TB.

2. Material and Methods

[8] This study is based on a global data set including
synthetic L-band brightness temperatures and the associated
land surface characteristics during a two-year period from 1
January 1987 to 31 December 1988. A detailed description
of the data set and of the modeling approaches used to carry
out the simulations is given by Pellarin et al. (submitted
manuscript, 2003). In this section, the main features of the
data set and of the L-MEB model are summarized and the
model inversion method is presented.

2.1. Synthetic Data Set

[9] The simulations were performed using a two-step
process:
[10] 1. A land surface scheme, the Interactions between the

Soil, the Biosphere and the Atmosphere (ISBA) model
[Noilhan and Planton, 1989], was used at the global scale
to simulate the time variations of the surface state character-
istics (i.e., the soil temperature and moisture content at the
surface and at depth, the snow cover characteristics) required
by the L-band emission model. The simulations used two-
year atmospheric forcing data derived from the International
Satellite Land Surface Climatology Project Initiative I
(ISLSCP I) data [Meeson et al., 1995] and a detailed global
surface database, ECOCLIMAP [Masson et al., 2003], con-
taining a global land covermap at a spatial resolution of 1 km.
[11] 2. The L-MEB model was used to produce multi-

temporal TB maps from the ISBA outputs as well as from
information derived from the ECOCLIMAP thematic maps
and the atmospheric forcing database. The brightness tem-
peratures were computed for five different incidence angles
(0, 20, 30, 40 and 50�) and two polarizations (H and V).
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[12] 3. ECOCLIMAP is a new global data set at a 1 km
resolution intended to be used to initialize the SVAT schemes
in meteorological and climate models, at all horizontal scales.
The database supports the ‘tile’ approach, which is used by
an increasing number of SVAT models. In ECOCLIMAP,
215 ecosystems were derived from the combination of
existing land-cover and climate maps with satellite data.
Monthly estimates of the surface parameters used in SVAT
models, such as leaf area index (LAI), vegetation fraction,
roughness length, minimal stomatal resistance, albedo and
emissivity are provided by ECOCLIMAP, based on look-up
tables. The high resolution of ECOCLIMAP (1 km) is useful
for studies at much larger scales, because it provides the sub-
grid information: different surface parameters can be

assigned to, for example, the bare soil, low vegetation and
woody vegetation fractions of the grid mesh, allowing the
computation of several energy budgets for the same grid
mesh.
[13] The synthetic L-band TB were simulated at a half-

degree resolution and at this rather coarse spatial resolution,
few homogeneous pixels can be found. Therefore the sub-
pixel heterogeneity was accounted for by using a ‘‘multi-
patch’’ version of ISBA. This version was able to simulate
distinct water and energy budgets in the same pixel for the
three main surface types that were considered (namely bare
soil, woody vegetation and herbaceous vegetation). ISBA
was run at a spatial resolution of half a degree (about 50 �
50 km2) and produced daily 0600 and 1800 local standard
time (LST) maps of the variables (wg and temperature, and
snow characteristics) required for running the L-MEB
model. A number of variables produced by ISBA or derived
from the ISLSCP I and ECOCLIMAP data sets were stored
daily for the two considered local times. These variables are
listed in Table 1. For a given pixel, distinct simulations of
the same variable were performed by ISBA, for each tile of
the pixel.
[14] The spatial distribution of the four different land

covers is given in Figure 1. Most pixels are heterogeneous
since only 10% of them consist of a single cover type
(mainly bare soil in Sahara). In ECOCLIMAP, the total
forest area represents 29.2% of the continental surface (9.6,
5.2 and 14.4% of tropical, broadleaf and coniferous forests,
respectively). Herbaceous vegetation represents 47.3% of
the continental surface (12.9 and 34.4% of crops and
grasslands, respectively). The bare soil surface type covers
23.5% of the continental areas. For more than 33% of the
pixels, the surface fraction of open water exceeds 1%.

2.2. The L-MEB Model

[15] The L-MEB model is the result of an extensive
review of the current knowledge of the microwave emission

Table 1. Main Input Variables of the L-Band Microwave

Emission of Biosphere (L-MEB) Modela

Symbol Definition Unit

Variables
TAIR Air temperature (2m) K
TS Skin surface temperature K
T2 Soil temperature K
wg Surface soil moisture m3 m�3

wgI Surface frozen soil moisture m3 m�3

wR Rain intercepted by the canopy kg m�2

hSNOW Snow depth M
rSNOW Snow density kg m�3

TSNOW Snow temperature K
wSNOWliq Liquid water content of the snow mantel kg m�2

Vwc Vegetation water content kg m�2

Vegetation and Soil Parameters
w Vegetation L-band single scattering albedo –
b Ratio t/Vwc m2 kg�1

Clay, Sand Soil texture %
rd Dry bulk soil density g cm�3

hSOIL, QSOIL, NSOIL Soil effective roughness parameters –
aThe surface soil moisture (wg), the L-band vegetation optical thickness

(t), and, possibly, the surface temperature (TS) are the variables to be
retrieved.
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Figure 1. Global half-degree maps obtained from the ECOCLIMAP data set: fractional cover of bare
soil, woody vegetation, herbaceous vegetation and free water surfaces.
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of various land surface types (herbaceous and woody vege-
tation, frozen and unfrozen bare soil, snow, etc.) at L-band.
The main components of L-MEB are (1) the vegetation
module using the t-w approach [see, e.g., Wigneron et al.,
1995], (2) a snow emission model developed by Pulliainen et
al. [1993] and Pulliainen and Hallikainen [2001], and (3) a
simple parameterisation of the atmospheric effects (Pellarin
et al., submitted manuscript, 2003). The main variables
needed to simulate TB are the wg and temperature, the
vegetation water content, the soil roughness parameters, the
soil type, and the snowmantel characteristics (depth, density,
grain size, liquid water content). The air temperature and the
surface elevation are also needed to simulate the atmospheric
effects. The simulation process accounted for sub-pixel
heterogeneity. Four main surface types, and the associated
values of their cover fraction within each pixel, were con-
sidered: bare soil, herbaceous vegetation (grassland or
crops), forests (coniferous, broadleaf or tropical forests),
open water surfaces (lakes, river, . . .). For all of these cover
types, the possible presence of snow was considered. It was
assumed that snow covered bare soil and herbaceous vege-
tation surfaces. For forests, the snow layer was assumed to lie
below the forest canopy. Situations of partially and/or totally
frozen soil were accounted for by using different values of
the soil dielectric permittivity. Also, open water surfaces
could be frozen (in this case the dielectric permittivity of ice
was used). The brightness temperature of the mixed pixel
including all (or some of) the four surface types was written
as:

TB p;qð Þ ¼ fB � TB p;qð Þ�B
þ fF � TB p;qð Þ�F þ fH � TB p;qð Þ�H þ fW

� TB p;qð Þ�W ð1Þ

where fX is the cover fraction of the different surface types
(X = B, F, H, W for bare soil, forests, herbaceous
vegetation-covered surfaces, open water surfaces respec-
tively), and TB(p,q)�X is the p-polarized brightness tempera-
ture at an incidence angle q. The modeling of TB(p,q)�X also
included the down-welling sky and cosmic radiation
reflected by the surface.
[16] For both herbaceous and woody vegetation tiles, only

the majority land cover was used (i.e., mixed grassland and
crop landscapes or coniferous and broadleaf forests were not
considered). For all the vegetation types, L-MEB rests on the
vegetation single scattering albedo w representing the scat-
tering within the canopy layer and on the vegetation optical
depth t, which parameterizes the attenuation effects. The
vegetation optical depth t can be estimated using the so-
called b parameter [Jackson and Schmugge, 1991]:

t ¼ b VWC ð2Þ

where VWC (kg.m�2) is the aboveground vegetation water
content.
[17] A value of b of 0.12 ± 0.03 was reported as

representative of most agricultural crops at 1.4 GHz [Jack-
son and Schmugge, 1991]. In the present study, for non-
forested canopies, VWC was related to LAI as VWC = 0.5
LAI. It follows that the optical depth of the low-vegetation
canopies varied with time, like the monthly estimates of
LAI derived from the ECOCLIMAP database. On the
contrary, over forests, the value of t was assumed to be

constant and was related to the branch water content
[Ferrazzoli et al., 2002]. The vegetation parameters of
the vegetation types are given in Table 2. In the case of
forests, the highest optical depth (t = 2) was prescribed for
tropical forests. The value of w depends on the vegetation
structure, which is mainly a function of the canopy type
and phenology. To simulate TB, significant simplifications
were made, and w was considered to be constant, with an
average value of 0.05 and 0.15 for low-vegetation canopies
and forests, respectively. However, the actual range of
variations of w is probably about 0–0.1 for low-vegetation
covers and about 0.05–0.15 for forests. As, to date, it is
impossible to build accurate global maps of w, it was
assumed that no a priori information was available about
w in the retrieval process and this parameter was set to a
constant value of 0.05 (section 2.4).
[18] The effect of surface roughness on the soil emission

was accounted for by using a simple formulation, which
was found to be adequate for most applications. In this
semi-empirical equation, the polarized soil reflectivity �S

(q, p) is computed as a function of three empirical soil
roughness parameters (hSOIL, QSOIL and NSOIL) [Wang and
Choudhury, 1981]:

�s q; pð Þ ¼ 1� QSOILð Þ�s* q; pð Þ þ QSOIL�s* q; qð Þ½ 	

� exp �hSOIL cos qð ÞNSOIL

� �
ð3Þ

where p and q stand for the polarization (V or H), and �S*
(q, p) is the polarized specular reflectivity which can be
computed from the soil dielectric permittivity eS and the
incidence angle q, by using the Fresnel equations. A
detailed analysis of the soil roughness effects performed
by Wigneron et al. [2001] showed that both QSOIL and
NSOIL could be set equal to zero at L-band and that the L-
band surface microwave emissivity can be written as:

ep ¼ 1� �s q; pð Þ ¼ 1� �s* q; pð Þ exp �hSOILð Þ½ 	 ð4Þ

[19] Inmost soil moisture retrieval studies based on L-band
airborne or ground-based experiments, roughness condi-
tions were generally found to be rather smooth over
agricultural or natural areas. In this study, for the sake of
simplicity, the parameter hSOIL was set constant and equal to
0.3, which is a value representative of rather smooth soil
roughness conditions. The effects of topography were not
considered in this study. It is expected that these effects are
generally rather low except in mountainous regions where
the capabilities of monitoring soil moisture are generally
limited by dense forest covers.

Table 2. Value of the L-MEB Vegetation Parameters at the Global

Scalea

Surface Type
Single-Scattering

Albedo w b Parameter

Vegetation Water
Content Vwc,

kg m�2

Grasslands 0.05 0.20 0.5 LAI
Crops 0.05 0.15 0.5 LAI
Rain forests 0.15 0.33 6 (branches)
Deciduous forests 0.15 0.33 4 (branches)
Coniferous forests 0.15 0.33 3 (branches)

aWith leaf area index (LAI) values in units of m2 m�2.
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[20] The validation of the main components of L-MEB
was described in several papers. Many studies addressed the
L-band emission of herbaceous canopies [Mo et al., 1982;
Brunfeldt and Ulaby, 1984; Brunfeldt and Ulaby, 1986;
Pampaloni and Paloscia, 1986; Van de Griend and Owe,
1993; Wigneron et al., 1995]. The validation of the simu-
lation of forest and snow emission was described by
Ferrazzoli et al. [2002], Pulliainen et al. [1999], and Pull-
iainen and Hallikainen [2001], respectively.

2.3. Model Inversion

[21] The three-parameter retrieval method used in this
study consisted in retrieving three land surface variables
simultaneously from the multiangular and dual-polarization
TB data: the surface soil moisture, the vegetation optical
depth, and the surface temperature (wg*, t*, and TS*,
respectively, where * denotes retrieved values). The inver-
sion process was based on a standard minimization routine
computing the retrieved variables and the associated stan-
dard errors [Wigneron et al., 2000]:

[22] 1. For each continental pixel, and each observation
date (each day at 0600 and 1800 LST), a vector TB

ref,
representing the reference land surface emission for five
incidence angles and two polarizations was extracted from
the TB data set.
[23] 2. A Gaussian noise with standard deviation sTB was

added to TB
ref in order to simulate an observed vector TB

0,
accounting for the uncertainties associated with the space-
borne measurements, in terms of radiometric sensitivity.
Three levels of sTB were considered in this study: 1, 2 and
3 K. The 1 K noise level is consistent with the radiometric
performance expected for SMOS and was considered as the
reference value of the radiometric noise in this study.
However, the effect of larger noise levels (2 and 3 K levels)
was evaluated. In addition to the radiometric noise, a noise
representative of the imperfect correction of the Faraday
rotation was accounted for and was added to the synthetic
TB. Faraday rotation tends to depolarize the signal. In this
study, this noise was lower than 0.5 K with a probability of
98% [Pellarin et al., 2003].
[24] 3. The retrievals of wg, t and TS were obtained by

minimizing a cost function (CF). The minimization routine
was a generalized least squares iterative algorithm [Mar-
quardt, 1963] modified (P. Waldteufel and G. Caudal,
unpublished manuscript, 2001) to account for a priori
information available on model-input parameters: for ex-
ample, first guess of wg, t and TS (wg

ini, tini and TS
ini), and

the associated standard deviations swg, st and sTs. The
routine produced both the retrieved surface parameters (wg,
t and TS) and the theoretical estimates of the standard
deviations associated with these retrievals, assuming that
TB
0 and the model-input parameters were affected by a

Gaussian random error.
[25] The cost function (CF) was the sum of the weighed

squared differences between retrieved and observed values
and reference and simulated TB:

CF ¼

P
TBp qið Þ � To

Bp qið Þ
h i2

s2TB
þ wg*� wginið Þ2

s2wg
þ t*� tinið Þ2

s2t

þ TS*� Tsinið Þ2

s2Ts
ð5Þ

where � denotes the sum over the five incidence angles and
both polarizations.

2.4. Two Inversion Approaches

[26] Two different retrieval approaches were tested. The
first inversion process (referred to as IP1) was performed
assuming that limited or no a priori information was
available on the three parameters (wg, t and TS). In the
second inversion process (referred to as IP2), TS was
assumed to be known with an uncertainty of 2 K.
[27] In the case of IP1, the values of wgini, tini, TS

ini, swg,
st, and sTs were derived from the annual means and the
associated standard deviations computed from the global
data set. The obtained values are given in Table 3. The
values of swg, st, and sTs are rather large, so that the
retrieved values were almost independent from the initial
values (wgini, tini and TS

ini).
[28] In IP2, the value of TS

ini was taken as TS
ref + dT,

where dT is a term representing a Gaussian noise of 2 K,
and sTS = 2 K (Table 3). The reason for using this
configuration is that estimates of TS may be obtained from
thermal infrared remote sensing and/or global weather
forecast analyses.
[29] In order to assess the performance of IP1 and IP2 in

uncontrolled conditions, it was assumed that little a priori
information on the pixel land cover was available. A
number of assumptions were made:
[30] 1. In the forward model used in the inversion it was

assumed that the land cover consisted of grassland. In
particular the value of w was set to 0.05 (Table 2). Since
the optical depth was included in the inversion process the
chosen value of b had no effect on the retrieval.
[31] 2. As discussed above, both NSOIL and QSOIL were set

equal to zero and the value of hSOIL was set to a constant
value of 0.3. This simplification may affects the represen-
tativeness of the retrieval process because in the real world,
the roughness parameters may change from one pixel to
another. However, preliminary tests have shown that the
uncertainty affecting the roughness have little effect on the
retrieved value of wg. On the other hand the retrieved values
of t may be perturbed by this effect.
[32] 3. The fractional cover of snow, open water and

frozen soil was set to a nil value.
[33] 4. Soil texture was assumed to be equal to the mean

global clay and sand fractions derived from ECOCLIMAP,
20.4 and 48.3%, respectively.
[34] 5. A nil vertical temperature gradient was assumed

(TS = T2 in Table 1).
[35] Daily retrievals were obtained for 1988 (similar

results were obtained for 1987 and are not presented here).
The retrievals were carried out only at 0600 LST, which is

Table 3. Selected Initial Values and Standard Deviations of the

Three Parameters of the Inversion: Surface Soil Moisture, L-Band

Optical Thickness of the Vegetation, and Surface Temperaturea

wgini, m3 m�3 swg, m
3 m�3 tini st TS

ini, K sTs, K

IP1 0.15 0.1 0.5 0.4 280 15
IP2 0.15 0.1 0.5 0.4 Ts ± 2 2

aThe ini superscript denotes initial values; s, standard deviations; wg,
surface soil moisture; t, L-band optical thickness; and TS, surface
temperature.
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the optimal observation time to minimize the Faraday effect
[Le Vine and Abraham, 2002; Yueh, 2000].
[36] The scores employed to compare the reference and

the retrieved temporal series are the RMS error and the
efficiency (or skill score). The efficiency (E) of a method
used to estimate a given variable v (in this study, v = wg, t
or TS) is defined as:

E ¼ 1�

P
i

vi � vi*ð Þ2

P
i

vi � mð Þ2

2
64

3
75 with m ¼ 1

N

XN
i¼1

vi ð6Þ

where vi and vi* are, the reference (i.e., the direct simulation)
and the retrieved values of v, respectively. Positive values of
E indicate that the employed method is more informative
than prescribing a constant value of v equal to m.

3. Results of the Three-Parameter Inversion

[37] The three-parameter retrievals were derived from
either the IP1 or IP2 inversion processes. A significant
advantage of retrieving 3 parameters (both t and TS, in
addition to wg) is that a priori estimates of both t and TS,
obtained from ancillary information, are not required in the
retrieval process of wg. Therefore analyzing the obtained
information about the time variations of land surface tem-

perature or about the vegetation dynamics from the retriev-
als of TS and t, respectively, was not the central objective of
this study. However, valuable information on these two
variables were also obtained, and the most significant
results are presented in this section.

3.1. Results of IP1

[38] For each continental pixel, a comparison between
time series of reference (wg, t and TS) and retrieved (wg*,
t* and TS*) surface parameters was carried out for the IP1
inversion process. The spatial distribution of the values of
the RMS error and efficiency that were computed for the
three retrieved parameters are presented in Figure 2. The
performance of the wg retrieval is presented in the two
upper plots of Figure 2.
[39] Relatively good results were obtained over a large

part of the globe. The wg* accuracy appeared to be low in
forested areas, especially in tropical regions (Amazonia,
central Africa and Indonesia). In these regions, the RMS
error was always higher than 0.16 m3 m�3 (it was
generally close to 0.25 m3 m�3) and the efficiency was
negative. The low sensitivity of TB to soil moisture was
due to the high attenuation of the soil emission by the
dense forest cover. This result could also be observed, to a
lesser extent (the RMS error ranges between 0.08 and
0.12 m3 m�3), for boreal coniferous forests where the
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Figure 2. Spatial distribution of the 1988 retrieval (left) RMS error and (right) efficiency, of (from top
to bottom) surface soil moisture, L-band optical thickness of the vegetation, surface temperature (wg, t,
TS), using the IP1 algorithm with a 1 K noise on TB. See color version of this figure at back of this issue.
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forest biomass is significantly lower than in tropical
regions. A low wg* accuracy was also obtained over
pixels where the cover fraction of water was significant,
in particular in northern Canada, Scandinavia and eastern
Russia (the RMS errors generally exceeded 0.16 m3 m�3

for these pixels). The global yearly score (RMS) computed
as the average value of the RMS error obtained for all the
pixels during a 1-year period was equal to 0.088 m3 m�3.
This score was significantly larger than the 0.04 m3 m�3

accuracy threshold. However, if we consider only the
pixels including less than 20 and 5% of forests and open
water, respectively (which represents 45% of the pixels),
the RMS value is brought down to 0.044 m3 m�3.
Therefore a 0.04 m3 m�3 accuracy is reached over almost
one half of the continental areas. Negative values of E
(Figure 2, top right plot) were obtained over 40.0% of the
continental area (white pixels). As expected, these regions
corresponded to forested areas (tropical zones, boreal
forests, eastern coast of the United States and Australia,
western Europe), or regions including open water surfaces.
Negative values of E were also obtained locally in desert
areas (Sahara, Arabia) and on the Tibet plateau. These
pixels corresponded to areas where the time variations in
wg were weak. The RMS error of the wg* associated to
these pixels was rather low and the negative E was caused
by a small bias.
[40] As far as retrievals of the optical depth (t*) are

concerned, a rather low accuracy was obtained in general:
the global RMS error on t* (Figure 2, middle left plot)
was 0.264. If we consider that b 
 0.15 and using equation
(2), this value corresponds to an error of 1.8 kg m�2 in
terms of vegetation water content, which is very high. A
positive efficiency was obtained over only 10% of conti-
nental pixels (Figure 2, middle right plot). It can be also
noted that the accuracy decreased as the pixel-averaged
vegetation optical depth increased. The worst results were
obtained over tropical forests (the RMS error was generally
larger than 0.7). Poor results were obtained over broadleaf
and coniferous forests (with RMS values ranging between
0.1 and 0.7) and relatively good results elsewhere. Over
forested areas, the dependence of microwave emissivity on
optical depth t tends to saturate at levels of t higher than
about 1. Another explanation of the difficulty in retrieving
t over forested areas is the fact that the single scattering
albedo w was set to 0.05 in the inversion process (typical
of grassland and agricultural areas) while this parameter
was set at 0.15 for the reference simulations over forests.
Analytically, almost the same values of TB are obtained
using (t = 1.2 and w = 0.05) or (t = 1.5 and w = 0.15). It
follows that values of t are always underestimated over
forested areas. Results on TS* suggest similar comments.
The TS * accuracy was low over forested areas (TS was
generally underestimated by about 20 K). RMS errors
lower than 5 K were obtained over about 26% of the
continental pixels.
[41] To illustrate the performance of IP1, a comparison

between the time variations in reference and retrieved wg, t
and TS is given for two pixels (Figures 3 and 4). The first one
is almost exclusively composed of crops (95%, with a
coniferous forest fraction of 5%) and located in central
Europe close to the Black Sea (47.75�N, 38.25�E). The
second one (referred to as Mississippi) is a mixed pixel

located close to the Mississippi river (32.75�N; 92.75�W)
including mostly coniferous forest (81%), crops (19%) and
water (2%).
[42] A good agreement between reference and retrieved

parameters was obtained for Black Sea pixel (Figure 3). The
RMS error on wg* during 1988 was 0.035 m3 m�3. A
peculiarity of this pixel is that during the three-month winter
period (from December to February) the surface soil layer is
totally frozen. During this period, the inversion process
converged toward a minimum value of wg* of about
0.07 m3 m�3. This is due to the fact that the value of the
permittivity of a frozen soil (eSF = 5–0.5 i) used in reference
simulations corresponds to a low value of wg of 0.07 m3 m�3

when using the routine computing the soil permittivity. It is
thus difficult to distinguish a dry soil from a frozen soil in the
soil moisture retrieval process. This specific point will be
discussed in more detail in section 4. For the Black Sea pixel,
the retrieval accuracy was satisfactory for both t and TS: the
RMS error was 0.035 and 3.9 K, respectively, and E was
larger than 0.7 in both cases.
[43] For the Mississippi pixel, the presence of forest led to

a poor retrieval accuracy (Figure 4). All the variables (wg, t
and TS) were underestimated. For example, the annual mean
value of reference wg was 0.161 m3 m�3 whereas the annual
mean value of wg* was 0.062 m3 m�3, with a RMS error of
0.151 m3 m�3. For t and TS, the mean bias was about 0.4
and 25 K, respectively. Note that this underestimation is a
general result obtained for most of the pixels including a
significant fraction of forests ( fF > 10%). The E values were
negative for all the parameters.

3.2. Results of IP2

[44] Using the IP2 process was a way to assess the impact
of external information related to surface temperature. In
IP2, the assumed accuracy on the TS estimate was 2 K (sTs
was fixed to 2 K in the cost function CF, instead of 15 K for
IP1). This additional constraint in the retrieval process
tended to force the retrieved TS* to be closer to the reference
TS.
[45] The spatial distribution of the RMS errors and

efficiencies obtained using IP2 are given in Figure 5. It
can be seen that low-accuracy areas remain (i.e., pixels
including forests and open water areas). However, signifi-
cantly better results than IP1 were obtained, mainly for wg
and TS. The global wg* RMS error decreased significantly
from 0.088 m3 m�3 to 0.064 m3 m�3. If pixels composed of
less than 20% of forest and less than 5% of water are
considered (i.e., 45% of the continental pixels), the global
RMS value is 0.034 m3 m�3 (0.044 m3 m�3 for IP1). No
major improvement was obtained for t*. The RMS error on
t* decreased from 0.26 to 0.24. On the other hand, for the
boreal coniferous forests, the RMS error decreased from
0.4–0.5 for IP1 down to 0.3–0.4 for IP2. Since TS was
constrained in IP2, improved values of TS* could be
obtained but the RMS error was still high (6.9 K).

3.3. Comparing Different Retrieval Approaches

[46] To illustrate the improvement obtained by using IP2
instead of IP1, the time variations of reference and retrieved
parameters are presented over the Mississippi pixel in
Figure 6 (the corresponding results for IP1 are given in
Figure 4). It can be seen that even though there is a rather
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large underestimation of t and TS (RMS error of 0.37 and
16.3 K, respectively), wg* values are improved over for-
ested areas using IP2, in contrast to IP1. The IP2 RMS error
and E values were 0.058 m3 m�3 and 0.34, respectively, and
0.15 m3 m�3 and �3.6, respectively, for IP1.
[47] A global comparison of IP1 and IP2 is given in

Figure 7. The probability density function of the different
RMS errors is presented for both IP1 and IP2. These histo-
grams synthesize the information on the RMS error as
displayed in Figures 2 (for IP1) and 5 (for IP2). The vertical
dash-dotted line in Figure 7a represents the 0.04 m3 m�3

threshold on wg. It can be observed that IP2 provided a clear
improvement of wg*. The 0.04 m3 m�3 accuracy was
reached for 39.3% of the continental pixels using IP2, and
21.5% using IP1. Note that for IP2, a large number of pixels
still presented RMS error in the range 0.04–0.08 m3 m�3. In
Figure 7b, it is difficult to assess whether IP2 provided any
improvement in t*. It can be noted that to the two peaks of
the probability density of the RMS error, close to 0.4,
correspond to coniferous forest areas. Slightly better
retrievals could be obtained using IP2 over these pixels.
Finally, a clear improvement on TS* was obtained (Figure
7c): RMS errors lower than 2 K on TS retrievals do not
occur using IP1 whereas they represent about 21% of the
continental pixels using IP2. The RMS error on TS de-
creased significantly, from 12.3 K to 6.9 K. Over forested

areas, an underestimation of TS exceeding 5 K was obtained
(20 K for IP1).
[48] An inter-comparison of the results obtained using IP2

and LRM [Pellarin et al., 2003] is given by Figure 8, for a 1
K TB noise: the probability density functions of the wg*
RMS errors are compared. It can be seen that significantly
better results were obtained using LRM: the 0.04 m3 m�3

accuracy was reached over about 90 and 40% of the pixels
using LRM and IP2, respectively. The global RMS on wg*
was 0.029 m3 m�3 for LRM, and 0.064 m3 m�3 for IP2. It
should be noted that a direct comparison of these two
methods is somewhat biased, since different assumptions
were used to develop the two retrieval approaches. As noted
above, in IP2, the retrievals were made assuming that little a
priori information was available on the pixel land cover
(most unfavorable conditions). Conversely, LRM was first
calibrated over each pixel using reference TB data in 1987.
Thus all the information on the cover type and the soil texture
was implicitly integrated in the calibrated coefficients of the
pixel-based LRM regression. However, the LRM approach
developed by Pellarin et al. [2003] was found to be signif-
icantly more sensitive to the radiometric noise than IP2. For
instance, for a TB noise increasing from 1 K to 3 K, the
proportion of continental pixels where the soil moisture
retrieval accuracy was better than 0.04 m3 m�3 decreased
from 90 to 25.4% for LRM and from 40 to 19.8% for IP2).

Figure 3. Time variation of reference and retrieved values (thick and fine lines, respectively) of surface
soil moisture, L-band optical thickness of the vegetation, surface temperature (wg, t, TS) during 1988,
over a crop pixel in central Europe (Black Sea), using the IP1 algorithm with a 1 K noise on TB.
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[49] The effect of various variables on the accuracy of
forward model inversion is analyzed in more detail below.

3.4. Effect of State Variables

[50] The inversion’s performance differed according to
surface conditions (surface soil moisture and vegetation
optical thickness). In particular, the frequency of wg*
RMS error better than the 0.04 m3 m�3 threshold (i.e., the
success rate of the inversion) was not the same for different
wg and t values. Figure 9 shows the frequency distribution
of wg and t values, and the corresponding success rate,
using IP2. It appears that (1) simultaneously large values of
wg and t, (2) very low values of wg, were associated with
low success rates. In the first case, the weaker emission of a
wet soil was more easily attenuated by the larger optical
thickness of dense vegetation. In the second case, represen-
tative of soil freezing, the inversion produced biased wg*.
For sparse vegetation (low t), soil moisture had little effect
on the success rate.

3.5. Effect of Soil Freezing and Snow

[51] As mentioned previously, the inversion process dete-
riorates in soil freezing conditions (Figure 3 and section
3.1). This is an important issue since in our simulations
frozen soil surfaces can exceed 40% of the continental area
at 0600 LST (e.g., in February). An attempt was made to

detect soil freezing from the three-parameter retrievals. The
simplest approach consisted in prescribing a TS* threshold
below which the soil was considered as frozen. However,
over forested areas, TS was generally strongly underesti-
mated (Figure 4) and soil freezing was erroneously diag-
nosed in many forested regions. Therefore it was attempted
to detect soil freezing for pixels presenting low average
values of t*, only.
[52] Using IP1, it was found that, for t* values lower than

0.2, the condition TS* < 257 K permitted to detect 56% of
the soil freezing cases in 1988. In the same time, this
method produced 4% of false detections. Using this crude
indicator, and by setting wg* = 0 m3 m�3 when frozen soil
conditions were detected, the global RMS error decreased
from 0.088 to 0.078 m3 m�3. The obtained improvement
was particularly significant from November to April in the
Northern Hemisphere.
[53] For IP2, for t* values lower than 0.2, the condition

was: TS* < 266 K. In this case, 73% of the soil freezing cases
was detected, and the global RMS error decreased from 0.064
to 0.049 m3 m�3. About 6% of false detections were
obtained. These preliminary results show that a simple
approach might be developed in the future to address the soil
freezing issue, which is important to improve thewg retrieval.
[54] An attempt wasmade to detect snow by using a similar

method. Using TS* < 254 K, t* < 0.4, and TS* < 260 K,

Figure 4. Time variation of reference and retrieved values (thick and fine lines, respectively) of surface
soil moisture, L-band optical thickness of the vegetation, surface temperature (wg, t, TS) during 1988,
over the Mississippi mixed pixel (coniferous forest 81%, crops 19% and water 2%),using the IP1
algorithm with a 1 K noise on TB.
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t* < 0.6 with IP1 and IP2, respectively, 45 and 49% of snow
occurrence was detected, respectively. Although, in both
configurations, less than 3% of false detections were made,
it seems that detecting snow using this method is not
accurate enough.

3.6. Effect of Open Water and Forest

[55] As shown in the previous section, the presence of
forested and open water surfaces in the pixel is one of the
key parameters affecting the wg* accuracy. A quantitative
assessment of this effect is given in Figure 10 for both IP1
and IP2. In Figure 10, the percentage of continental pixels
for which the RMS error on wg* is lower than a given RMS
threshold (five thresholds were selected: 0.04, 0.06, 0.08,
0.12 and 0.16 m3 m�3) is plotted as a function of the cover
fraction of open water and forested surfaces. Note that the
retrievals were not carried out for pixels presenting a water
fraction exceeding 50%.
[56] A summary of the main features revealed in these

four figures is given below:
[57] 1. For both IP1 and IP2, the presence of water

surfaces within the pixel water cover constituted a signifi-
cant limitation of the inversion process. For instance, when
the water fraction exceeded 5% the percentage of pixels
under the 0.04 m3 m�3 error threshold was only 8 and 19%
for IP1 and IP2, respectively. For water fraction values

higher than 20%, the majority RMS errors were larger than
0.10 m3 m�3.
[58] 2. IP2 was more efficient than IP1 for open-water

free pixels. However, lower accuracies were obtained using
IP2 for pixels including a significant proportion of water
surfaces (more than 10%). The main explanation of this
behavior is that the presence of water led to a significant
decrease of TB: this effect was interpreted by IP2 as
resulting from the emission of very wet surfaces and leads
to large overestimations of wg*; conversely, in IP1, this was
interpreted as resulting from the emission of cold areas and
led to a large underestimation of TS, with a limited effect on
wg*.
[59] 3. The presence of forested areas within the pixel was

detrimental, to a lesser extent than for open water surfaces,
to the quality of both IP1 and IP2 [see also Van de Griend et
al., 2003]. For instance, for a forest fraction of 0.2, the
percentage of pixels under the 0.04 m3 m�3 threshold was
still about 10 and 50% for IP1 and IP2, respectively,
whereas this percentage was almost zero for a fractional
water cover of 0.2 (Figure 10).
[60] 4. Over forested areas, IP2 performed better than IP1.

In IP1, the presence of forested areas within the pixel led to
the underestimation of all 3 parameters (wg*, t*, TS*) in the
retrieval process (see Figure 4, for example). The TS
constraint of IP2, allowed to limit the drift of TS* toward
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Figure 5. Spatial distribution of the 1988 retrieval (left) RMS error and (right) efficiency, of (from top
to bottom) surface soil moisture, L-band optical thickness of the vegetation, surface temperature (wg, t,
TS), using the IP2 algorithm with a 1 K noise on TB. See color version of this figure at back of this issue.
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low values, and a better accuracy could be obtained on wg*
(Figure 6).

3.7. Effect of Instrumental Noise

[61] In section 3, IP1 and IP2 retrievals were obtained for
a 1 K noise, a value representative of the expected perfor-
mance of SMOS. The effect of larger noise levels on TB was
investigated. Figure 11 presents histograms of the RMS
error on wg*, t* and TS* by using IP1 and IP2, for 3 noise
levels: 1, 2 and 3 K. In Figure 11, it can be noted that noise
induced a decrease in the wg* accuracy, and the impact of
TB noise was less pronounced for IP2 than for IP1.
[62] For IP2 and for the 3, 2, and 1 K noise levels, a RMS

error on wg* lower than 0.04 m3 m�3 was obtained for only
19.8, 35.2 and 39.3% of the pixels, respectively. The
general shape of the 3 curves is rather constant, but the
minimum error on wg* increased of about 0.01 m3 m�3 for
each 1 K increment in the TB noise.
[63] The effect of the TB noise on the t retrievals was

much lower, for both IP1 and IP2. The global RMS
increased from 0.25 (for a 1 K noise level) to 0.28 and
0.29 (2 and 3 K, respectively).
[64] Conversely, increasing TB noise levels produced a

significant decrease of the TS* accuracy. However, IP1 and
IP2 reacted differently to this effect. For IP1, the RMS
increased from 8.6 K (for a 1 K noise level) to 9.5 and

10.32 K (2 and 3 K, respectively). For IP2, the RMS
decreased, surprisingly, from 6.9 K (for a 1 K noise level)
to 3.6 and 2.6 K (2 and 3 K, respectively). This behavior
was due to the fact that as the TB noise level increased, sTB
increased in equation (5), and the weight of the last term in
this equation became more important. In other words, as the
TB noise level increased, the constraint on TS included in
equation (5) became stronger, relative to the other terms.
Therefore the RMS error on TS* tended toward 2 K, which
corresponds to the uncertainty associated with the estimates
of surface temperature (TS

ini) which was introduced in IP2.

4. Discussion and Conclusion

[65] In this study, the performance of a three-parameter
inversion process, using little ancillary information, was
evaluated at the global scale, during one annual cycle. The
obtained results contribute to better define the potential of
future L-band spaceborne missions such as SMOS for
monitoring soil moisture at the global scale, using a method
which could pave the way for the development of an
operational algorithm. This first-step approach may be
improved in future studies by considering specific targets
for which additional information is available.
[66] While the study of Wigneron et al. [2000] analyzed

the retrievals over four types of homogeneous scenes, the

Figure 6. Time variation of reference and retrieved values (dark and grey lines, respectively) of surface
soil moisture, L-band optical thickness of the vegetation, surface temperature (wg, t, TS) during 1988,
over the Mississippi mixed pixel (coniferous forest 81%, crops 19% and water 2%),using the IP2
algorithm with a 1 K noise on TB.
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present paper was based on a global synthetic dual-polar-
ized, multiangular L-band TB data set (Pellarin et al.,
submitted manuscript, 2003) describing the continental
pixels at a half-degree spatial resolution during 2 years
and accounting for within-pixel heterogeneity, using 1 km
resolution land cover maps. On the basis of this large data
set, a detailed analysis of the capability of monitoring soil
moisture from TB could be performed. Global maps of the

retrieval accuracy for 3 main variables, wg, t and TS were
obtained. Two versions of the three-parameter retrieval
approach were used: IP1, using no a priori information,
and IP2, using surface temperature estimates. In both cases,
it was assumed that no a priori information about the pixel
land cover was available. This worst-case assumption was
made in order to simulate uncontrolled operational condi-
tions and limit the circularity problem of using the same
model to produce the synthetic TB and to perform the
inversion. Also, events such as flooding or fire may lead
to quick changes in the land cover, and an algorithm using
a lot of a priori information would then have difficulties.
In spite of using a synthetic data set, we are rather
confident of our results because (i) the L-MEB model
was validated as much as possible (see section 2.2), (ii) the
validation of three-parameter retrievals over experimental
data has been evaluated by Wigneron et al. [1995, 2002b]
over soybean, wheat and corn canopies and in two ongoing
studies (M. Pardé et al., Using passive multi-angular and
bi-polarization microwave measurements to retrieve soil
moisture over a wheat field, Comparison of different
methods, submitted to Remote Sensing of Environment,
2003; M. Pardé et al., N-parameter retrievals from L-band
microwave measurements over a variety of agricultural
crops, manuscript in preparation, 2003) over a variety of
vegetation canopies. The experimental data used in these
studies were obtained during a complete vegetation cycle
(from bare soil to harvest in some cases) over a large range
of land surface conditions. The error of the retrieved wg
ranged between 0.030 and 0.055 m3 m�3. These values are
close to those obtained in the present study over pixels
presenting a low forest cover fraction
[67] The most significant results of this study are given

below:
[68] 1. The soil moisture retrieval accuracy was better than

0.04 m3 m�3 (which is the optimal accuracy for potential
applications) over about 20% and 40% of the continental
areas for IP1 and IP2, respectively. The accuracy of t
retrievals was generally rather low for both IP1 and IP2.

Figure 7. Probability density function of the 1988
retrieval RMS error of (a) surface soil moisture, (b) L-band
optical thickness of the vegetation, and (c) surface
temperature (wg, t, TS), using IP1 and IP2 algorithms (dark
and grey lines, respectively) with a 1 K noise on TB. The
vertical dash-dotted line represents the 0.04 m3 m�3

threshold on wg.

Figure 8. Probability density function of the 1988
retrieval RMS error of surface soil moisture (wg), using
LRM [Pellarin et al., 2003] and IP2 algorithms (dark and
grey lines, respectively) with a 1 K noise on TB. The vertical
dash-dotted line represents the 0.04 m3 m�3 threshold on
wg.
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However, RMS errors on t lower than 0.15 (corresponding
to a value of vegetation water content of about 1 kg m�2)
were obtained over 49% of the continental areas. Most often
than not, the three-parameter retrieval approach IP1 could
not provide accurate estimates of surface temperature TS.

Results of IP2 were produced assuming that estimates of TS
with 2 K accuracy could be obtained at the global scale.
Estimation of TSwith such an accuracy is feasible, from both
satellite measurements and weather forecast analyses includ-
ing a land surface scheme [Jin and Dickinson, 2002]. On the

Figure 9. Effect of state variables on the IP2 inversion: (left) frequency distribution (%) of surface soil
moisture and vegetation L-band optical thickness (wg and t, respectively) and (right) the corresponding
success rate (%), i.e., the frequency of wg* RMS error better than the 0.04 m3 m�3 threshold.

Figure 10. Percentage of continental pixels for which the 1988 retrieval RMS error of surface soil
moisture is lower than a given RMS threshold (0.04, 0.06, 0.08, 0.12 or 0.16 m3 m�3) as a function of the
cover fraction of (left) open water and (right) forested surfaces, for (top) IP1 and (bottom) IP2 algorithms,
with a 1 K noise on TB.
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basis of this result, and considering that, in the real world,
vertical temperature gradients are likely to affect the soil-
vegetation system, it can be concluded that trying to retrieve
TS from L-band emission observations is worthless. TS
should be fixed to its first guess value during the retrieval
process.
[69] 2. IP2 was compared with the LRM approach, which

is a simpler method estimating wg from a linear combina-
tion of microwave indices derived from the multiangular
and dual-polarization TB data [Pellarin et al., 2003]. Sig-
nificantly better results were obtained using LRM, since the
0.04 m3 m�3 accuracy could be reached over about 90% of
the pixels and the global RMS on wg was 0.029 m3 m�3

compared with 40% and 0.064 m3 m�3 for IP2, respectively.
However, LRM was calibrated using reference TB data in
1987 and all the pixel land cover, soil texture, and climate
characteristics were implicitly integrated in LRM. In other
words, a lot of a priori information was included in LRM,
while IP2 used only TS estimates.
[70] 3. At the global scale, the retrieval accuracy was

found to be related to the land surface characteristics. In

particular, neglecting to explicitly account for the fraction-
al cover of open water, forests, and soil freezing, was
detrimental to the soil moisture retrieval accuracy. It was
found that the least constrained method (IP1) was less
sensitive to this effect. The reason is that the use of a
priori information is delicate: a constrained inversion
algorithm is likely to produce erroneous results if the used
a priori information is not correct. However, an operation-
al inversion algorithm should account for the available
information, especially about the extent of open water
surfaces included into the pixel. Studies are ongoing to
evaluate to which accuracy level this effect should be
quantified, by accounting for the SMOS characteristics:
the changing footprint size as a function of the view angle,
the complex multiangular configuration [Waldteufel et al.,
2000].
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Figure 11. Probability density function of the 1988 retrieval RMS error of (from top to bottom) surface
soil moisture, L-band optical thickness of the vegetation, surface temperature (wg, t, TS), using (left) IP1
and (right) IP2 algorithms for different noise levels on TB: 1, 2 and 3 K (dark, grey and dotted lines,
respectively). The vertical dash-dotted line represents the 0.04 m3 m�3 threshold on wg.
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J.-P. Wigneron, Unité de Bioclimatologie, INRA, BP81, 33883, Villenave

d’Ornon, France.

PELLARIN ET AL.: GLOBAL SOIL MOISTURE RETRIEVAL ACL 9 - 15



wg retrieval RMS (m3.m3 )

  
 

 
wg retrieval RMS (m3.m3 )

  
 

 
τ retrieval RMS

0 720
0

250

wg retrieval efficiency

  
 

 
wg retrieval efficiency

  
 

 
τ retrieval RMS

0 720
0

250

τ retrieval RMS

  
 

 
τ retrieval RMS

  
 

 
τ retrieval RMS

0 720
0

250

τ retrieval efficiency

  
 

 
τ retrieval efficiency

  
 

 
τ retrieval RMS

0 720
0

250

Ts retrieval RMS (K)

  
 

 
Ts retrieval RMS (K)

  
 

 
τ retrieval RMS

0 720
0

250

Ts retrieval efficiency

  
 

 
Ts retrieval efficiency

  
 

 
τ retrieval RMS

0 720
0

250

Figure 2. Spatial distribution of the 1988 retrieval (left) RMS error and (right) efficiency, of (from top
to bottom) surface soil moisture, L-band optical thickness of the vegetation, surface temperature (wg, t,
TS), using the IP1 algorithm with a 1 K noise on TB.
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Figure 5. Spatial distribution of the 1988 retrieval (left) RMS error and (right) efficiency, of (from top
to bottom) surface soil moisture, L-band optical thickness of the vegetation, surface temperature (wg, t,
TS), using the IP2 algorithm with a 1 K noise on TB.
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