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ABSTRACT
The mechanisms by which nonrandom mating affects selected populations are not completely under-

stood and remain a subject of scientific debate in the development of tractable predictors of population
characteristics. The main objective of this study was to provide a predictive model for the genetic variance
and covariance among mates for traits subjected to directional selection in populations with nonrandom
mating based on the pedigree. Stochastic simulations were used to check the validity of this model. Our
predictions indicate that the positive covariance among mates that is expected to result with preferential
mating of relatives can be severely overpredicted from neutral expectations. The covariance expected
from neutral theory is offset by an opposing covariance between the genetic mean of an individual’s family
and the Mendelian sampling term of its mate. This mechanism was able to predict the reduction in
covariance among mates that we observed in the simulated populations and, in consequence, the equilib-
rium genetic variance and expected long-term genetic contributions. Additionally, this study provided
confirmatory evidence on the postulated relationships of long-term genetic contributions with both the
rate of genetic gain and the rate of inbreeding (�F) with nonrandom mating. The coefficient of variation
of the expected gene flow among individuals and �F was sensitive to nonrandom mating when heritability
was low, but less so as heritability increased, and the theory developed in the study was sufficient to explain
this phenomenon.

RECENT advances in quantitative genetic theory female, has been less well studied in this context. Al-
though utilizing a mating design to minimize �F doeshave allowed breeding schemes to consider the
not always lead to substantial deviations from HW pro-management of genetic variation objectively, simultane-
portions (Sonesson and Meuwissen 2000), much ofously with the maximization of genetic gain. Such ad-
the theory on genetic variation and the impact of non-vances are highly relevant to breeding practice, not only
random mating has been built up around the conceptfor commercial schemes but also for those schemes that
of departures from HW equilibrium (e.g., Caballeroare orientated toward the conservation of genetic re-
and Hill 1992; Santiago and Caballero 1995; Wangsources. These advances include the development of
1996) and the concepts of the avoidance of, or prefer-tractable, deterministic predictors of rates of inbreeding
ence for, mating relatives.(�F), gene flow, and genetic gain (�G) for complex

The interpretation of the work on nonrandom mat-selected populations (Woolliams et al. 1999; Woolli-
ing, both its application and its impact, remains a subjectams and Bijma 2000), and operational tools for day-
of scientific debate. For example, in conservation, ac-to-day selection decisions (Wray and Goddard 1994;
cepted practice uses minimum coancestry to minimizeMeuwissen 1997; Grundy et al. 1998).
�F (Caballero et al. 1996; Frankham et al. 2002), yetHowever, the theory underpinning these tools has
recent theoretical developments using genetic contribu-been developed primarily for random mating of the
tions show that the lowest �F with hierarchical matingsselected males and females and for a neutral locus where
is achievable when relatives are preferentially matedthe genotypic frequencies in the offspring display no
(Sánchez et al. 2003). In selected populations, there isdeparture from Hardy-Weinberg (HW) proportions,
clear evidence that mating designs are beneficial, al-other than that arising from the partitioning of the gene
though not all these designs define matings throughpool induced by two sexes (Robertson 1965). However,
pedigree, e.g., factorial mating (Woolliams 1989).the role of nonrandom mating, where some specific
Several articles indicate that attention to the pedigreedesign is placed upon which male is mated to which
relationships within a mating design can be advanta-
geous over random-mating schemes (e.g., Santiago and
Caballero 1995; Caballero et al. 1996; Sánchez et al.
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viduals), it measures the actual loss of heterozygosity due toMoreover, other studies on mating designs (Toro and
the nonrandomness of the mating of the parents with nonzeroPérez-Enciso 1990; Klieve et al. 1994; Fernández and
contributions in the offspring generation (often denoted as

Toro 1999) do not separate out the impact of specifying �I). Thus the former (�O) is a potential correlation of uniting
the matings from the impact of controlling only the gametes from selected parents, whereas the latter (�I) is a

realized correlation and will be affected by the finite randomoverall contribution of each selected individual assum-
sampling of gametes to form the offspring generation anding random mating.
by any artificial and/or natural selection of offspring beforeSantiago and Caballero (1995) were successful in
reaching the breeding population.

producing predictions of the effective population size Under the assumption of completely neutral genes �O would
[Ne, defined as (2�F)�1] in nonrandom mating popula- tend to be equal to �I. For neutral genes, when nonrandom

mating results from a mix of full-sib mating and random mat-tions undergoing mass selection, using an approach
ing, �I (i.e., �I � �O � �) can be related to the proportion ofbased upon the variance of allele frequencies. These
full-sib mating (denoted hereafter φ) by � � φ/(4 � 3φ) (Ghaiauthors considered nonrandom mating in the form of
1969).

departures from HW equilibrium achieved through par- To obtain �O in a breeding population, let �ij be the coances-
tial full-sib mating. However, Woolliams and Bijma try (kinship) coefficient (Lynch and Walsh 1998) of sire i and

dam j, then following Wright’s (1969) equation 1 � �O(i,j) �(2000) showed that, for random mating, an approach
(1 � �ij)/(1 � �), where � � FST is the average of all the entriesto predicting Ne using long-term genetic contributions
in the matrix of coancestries among the parents (i.e., i, j, andwas capable of extension to more complex selection
contemporaries), including self-coancestries and the recipro-

schemes. To achieve such an extension with nonrandom cals (Cockerham 1967). Thus �O(i,j) is defined for any pair of
mating requires an understanding of the expected gene parents in relation to the complete set of selected parents.

The term �O is the average �O(i,j) of the selected matings,flows of individuals based upon the inheritance of selec-
irrespective of the fitness of the offspring, i.e., as if all matingstive advantages, which in turn presupposes an understand-
contribute an equal and large number of offspring to the nexting of the behavior of the genetic variation. There appears
generation.

to be little published information on these topics. To obtain a summary value of �I for a pedigreed population
Therefore, the main objective of this study is to ad- undergoing selection, we follow the same reasoning as above.

Note that � � FST represents the average inbreeding coeffi-vance the theoretical framework for predicting the im-
cient if the offspring generation had been obtained by com-pact of nonrandom mating for populations undergoing
plete aggregation of the parental gene pool and sampling atdirectional selection, providing a predictive model for
random with replacement. Then for any individual offspring

the genetic variance and covariance among mates. The from that set of parents �I(k) � FIS and can be defined as
nonrandom mating is defined solely in terms of depar- 1 � �I(k) � (1 � F(k))/(1 � �), where F(k) is the coefficient

of inbreeding of individual k, and is equal to �sire(k),dam(k). Fortures from HW proportions for neutral alleles, without
the infinitesimal model, the Mendelian sampling deviationreference to phenotypes. The impact is measured in
for an offspring k has a variance equal toterms of genetic parameters, such as genetic variance,

expected gene flow, and �F, assuming the infinitesimal 1
2

�2
A,0�1 �

1
2
F (sire(k)) �

1
2
F (dam(k))� �

1
2

�2
A,0�12(1 � F(sire(k))) �

1
2
(1 � F (dam(k)))�

model and mass selection. In the course of this article,
the opportunity to validate the developments of Wool- �

1
2

�2
A,0(1 � �)�1 �

1
2

�I(sire(k)) �
1
2

�I(dam(k))� , (1)
liams and Bijma (2000) for nonrandom mating is

where �2
A,0 is the initial variance of the breeding values. In thetaken. The accuracies of the predictions of �F and �G

remainder of this study, the term (1 � �) in Equation 1 isand the validity of the framework are established with
omitted for derivations and predictions, analogously to Wool-the help of stochastic simulations. liams et al. (1999) and Woolliams and Bijma (2000). This
omission allows the genetic variance to reach an equilibrium.
Further details are given in the last section of materials and
methods.MATERIALS AND METHODS

The terms �I(k) are used to define two related, but distinct,
Nonrandom mating and neutral theory: The correlation summary �I: (i) �Ic � �kck�I(k), where ck was the observed

between uniting gametes due to the nonrandom mating of contribution of k to the selected offspring in the next genera-
parents is an additional factor affecting heterozygosity over tion, and (ii) �Ir � �krk �I(k), where rk was the long-term genetic
and above initial gene frequencies and their accumulated contribution (described in the following sections) of k. If we
drift. Using the classical F-statistics of Wright (1969), the assume now that directional selection has taken place among
expected fractional decrease in the heterozygosity for a given families, then the direct equivalence between �O and �I (irre-
population (FIT) can be related to two further statistics using spective of whether Ic or Ir) no longer holds for selective
the relationship (1 � FIT) � (1 � FIS)(1 � FST), where FST is genes or neutral genes since selection success will depend on
the fractional loss of heterozygosity due to the finiteness of the �I of the parents (Caballero et al. 1996).
the population census, and FIS is the loss of heterozygosity due Dynamics of genetic (co)variance for a selected trait under
to the nonrandom mating of parents. The FIS can be seen as nonrandom mating: In this section, a model is developed to
a correlation of gene effects between homologous alleles in show that the impact of nonrandom mating on covariances
pairs of mating parents, i.e., the correlation between alleles between mates for selected traits and neutral traits may be
within infinitely many conceptual offspring derived from each qualitatively different and to describe the circumstances under
of the pairs of mating parents (often denoted �O and hereafter which this can occur. In particular, it demonstrates that selec-
in this study). Whereas, if conceived of as the correlation tion induces a negative covariance between true family means

and Mendelian sampling terms, not only within individualbetween alleles within successful offspring (i.e., existing indi-
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selected parents but also between a parent and its mate, from Equation 3 is that the covariance between mates for
the selected trait may be dramatically reduced below what isthereby reducing genetic variance more than would be pre-

dicted by previously existing selection theory. expected when baf becomes more strongly negative, when (i)
selection intensity is large, since � → 1, and when (ii) h2

0 isConsider a population with equal numbers of dams and
sires, i.e., a mating ratio of 1, mated in pairs to produce a large, since �2

M/�2
P is large. The term (1 � baf )2 is relatively

insensitive to � for mass selection, but is sensitive to h2
0. Fordeviation from HW equilibrium equal to �O on the basis of

pedigree information alone. For the trait under selection, assume � � 0.64, � � 0.06, (1 � baf)2 takes values of 0.87, 0.73, 0.57,
0.38, and 0.18 for h2

0 � 0.2, 0.4, 0.6, 0.8, and 0.99, respectivelya heritability of h2
0 when in HW equilibrium in an unselected

base generation, with a phenotypic variance �2
P,0 � 1. It is as- (from Equation 3 and genetic variances obtained from simu-

lated populations); for � � 0.24, the values are 0.90, 0.77,sumed that the inheritance of the trait under selection can
be described by an infinitesimal model and, for simplicity in 0.62, 0.42, and 0.18.

Since �2*M � �2
M(1 � ��2

M/�2
P), �2*A � �2*F � 2 cov( fi, ai)* �the derivation of this model, that the nonrandom mating is

achieved by managing φ, the proportion of full-sib matings. �2*M � �2
A(1 � �h2), and for their offspring Aoff � 1⁄2(Ai � Aj) �

aoff :Note that this mating scheme does not produce half-sibs. From
Ghai (1969), the neutral expectations are �I � �O � �, and

�2
A � 1⁄2(�2*A � φ(1 � baf)2�2*F ) � �2

M . (5)φ � 4�/(1 � 3�) for large populations.
Let Pi denote the phenotype of an individual i for the se- This will move to equilibrium over generations so that the

lected trait and Bi be the breeding value for a neutral trait, effect of selection is counterbalanced by the addition of �2
Mthen the covariance between breeding values of mates is given (analogously to Bulmer 1980, p. 155).

by Caballero and Hill (1992) as cov(Bsire, Bdam) � 2�O�2
B, Consequently, for the selected trait, the total observed addi-

where �2
B is the variance of the breeding values in the unse- tive variance may decline even as �O increases (demonstrated

lected and randomly mated base population. Now consider in the results), although �O is superficially increasing one
Ai, the breeding value for the selected trait. Then Ai � 1⁄2(Asire � component of the variation. This is a phenomenon associated
Adam) � ai � fi � ai, where fi is the true family mean, and ai with linkage disequilibrium and arises from (i) a lower Mende-
is the Mendelian sampling term. Define �2

A,t as the variance lian sampling variance replenishing the genetic variation lost
of the breeding values at time t with �2

A,t � �2
F,t � �2

M, where due to selection in each generation and (ii) the induction of
�2

F,t is the variance of the true family means at time t, and negative covariance between the Mendelian sampling term of
�2

M � 1⁄2(1 � �I)h2
0 is the variance of the Mendelian sampling a parent and the true family mean of its mate.

terms [note that the term (1 � �) in Equation 1 is omitted Predictions of rate of inbreeding and genetic gain through
here, and since �2

P,0 � 1, h2
0 � �2

A,0]. For simplicity, the explicit the concept of long-term genetic contributions: The genetic
dependence on t in the notation is neglected. For selection contribution of an ancestor k (denoted rk) to a descendant j
on phenotype Pi, is the proportion of genes carried by j that are expected to

derive by descent from the ancestor k. A descendant’s breeding
fi �

�2
F

�2
P

Pi � εi,1 value can be decomposed into a sum of Mendelian sampling
deviations from all ancestors, with the weighting for ancestor
k’s Mendelian deviation being rk. For a mixing population,

ai �
�2

M

�2
P

Pi � εi,2 , (2) after a sufficiently large number of generations, k’s genetic
contribution to all individuals within the population ap-

where fi and ai are both partitioned into an expectation condi- proaches the same stable and constant value across genera-
tional on Pi and a residual (ε). Since cov(fi, ai) � 0, cov(ε1, ε2) � tions. In the remainder of the text, the stable genetic contribu-
��2

F�
2
M/�2

P . Following the methods of Bulmer (1980) for selec- tions from distant ancestors are referred to as “long-term
tion with the infinitesimal model, let superscript * denote a genetic contributions.” The long-term genetic contributions
parameter postselection on Pi, then cov(fi , ai)* � ���2

F�
2
M/�2

P will reflect differences among individual ancestors arising
since �2*

P � (1 � �)�2
P , where � is the variance reduction coef- from their respective selective advantages together with cumu-

ficient. This has a direct analogy to linkage disequilibrium, lative chance factors across generations. Therefore, long-term
where selection on Pi induces negative covariance between genetic contributions model the gene flow of individual ances-
the effects of different loci, and where the induction of this tors through the population.
covariance is not dependent on mating procedures. The re- The asymptotic �F for nonrandom mating can be derived
gression of ai on fi after selection is through its theoretical relationship with the sum of squared

long-term genetic contributions,
baf � ���2

F�
2
M/(�2

P �2*F ) , (3)
�F � 1⁄4(1 � �I)�

k
r 2

k (6)where �2*F � �2
F(1 � ��2

F/�2
P) is the variance of true full-sib family

means after selection. Note baf 	 0, and baf � 0 after selection.
(Woolliams and Bijma 2000). The rate of genetic gain (�G)When allocating mates (i, j) using the pedigree alone,
per generation is also related to long-term genetic contribu-

cov(Ai, Aj) � cov(fi � ai, fj � aj) tions since sustained genetic gain arises through the genera-
tion of covariance between long-term genetic contributions

� cov(fi, fj) � cov(fi, aj) � cov(fj, ai) � cov(ai, aj).
and Mendelian sampling deviations,

Substituting aj � baf fj � ε j and analogously for ai, and using φ
�G � �

k
rkak (7)to estimate the covariance between mates,

cov(Ai , Aj) � φ�2*F � 2baf φ�2*F � b2
af φ�2*F (Woolliams et al. 1999), where the sum is taken over a genera-

tion of ancestors. Therefore, the concept of long-term genetic� φ�2*F (1 � baf)2 . (4)
contribution bridges the loss of heterozygosity and the genera-
tion of genetic gain for any deviation from random matingIn the absence of selection, this is simply φ�2

F . Therefore, with
selection, since (i) �2*F 	 �2

F and (ii) baf 	 0, the covariance given by �I.
For mass selection, the selective advantages for an ancestorachieved between the breeding values of mates for the trait

of selection is less than that for neutral traits. The implication are its own breeding value and those of its mates. This set of
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selective advantages influences not only the breeding success leading to sublining. For the benefit of a more general scheme,
the upper limit of �Ofix was 	1 in this study. On the otherof the resulting offspring from that given ancestor, but also

that of subsequent descendants. This dependence of the gene extreme, the lowest possible value of �O in finite populations
lies much closer to what is expected for random-mating popu-flow on the selective advantage can be expressed as a condi-

tional expectation (
k), i.e., as a function of the selective advan- lations, due to the fact that the avoidance of inbreeding is
constrained in the long term by the genetic depletion causedtages. For truncation selection based upon phenotype, 
k can

be satisfactorily modeled as a linear relationship between the by drift, as pointed out by Caballero and Hill (1992). The
values of �Ofix used in the simulation were �0.03, 0, 0.03, 0.06,genetic contribution and the breeding values,
0.12, 0.18, and 0.24.


k � � � �(r,A)(Ak � A) � �
(r,A) �
mates

(Amate(k) � A
) (8) Long-term genetic contributions were calculated for an an-
cestral generation born after 20 generations of selection from

(Woolliams et al. 1999), where the terms A and A
 are the the unselected base and upon the cohort of descendants born
mean breeding values of the selected individuals for the sex 20 generations after that ancestral generation. This guaran-
of k and its mates’ sex, respectively. For discrete generations, teed attainment of equilibrium of genetic variances in all the
� � (2NS)�1 and (2ND)�1 for NS sires and ND dams, respectively, cases with �Ofix � 0.12. With more extreme �Ofix, however, a
and is independent of h2

0 and �I. When NS � ND � N with no longer period of time was needed before such equilibrium is
mating hierarchy, �(r,A) � �
(r,A), and from here onward, we reached (Santiago and Caballero 1995). For these cases,
denote this as �. Therefore under these two conditions, dis- 20 further generations were bred before establishing the an-
crete generations and N mating pairs, the only parameters cestral generation, although it was found unnecessary to ex-
varying with the breeding scheme are the slope of the relation- tend the period of time for obtaining summary statistics for the
ship � and the genetic variance among selected individuals converged contributions (i.e., 20 generations from ancestors to
derived from �2

A (Woolliams et al. 1999). Equation 8 becomes descendants). Observed long-term genetic contributions were
used to calculate the predictions of �F and �G from Equations
k � � � �[(Ak � A) � (Amate(k) � A
)]. (9)
6 and 7.

The values of achieved �O, �Ic, �Ir, and �2
A and the geneticThus � is the regression coefficient of the long-term contribu-

covariance among mates were recorded for each generationtion of an individual on the sum of its breeding value and that
of the simulated populations, together with the observed �F,of its mate. The impact of the selective advantage on the gene
�G, �r 2

k, and �r kak (Equation 7). The observed �F and �Gflow (and, ultimately, on �F) can then be measured by the
were obtained as the average rate of the last 20 generationscoefficient of variation (CV) of the conditional expectation:
of the simulated populations. � was obtained by multiple re-

CV(
k) � 2N�√2(�2*A � φ(1 � baf)2�2*F ) . (10) gression of the long-term contribution of ancestors on their
own breeding value and that of their mates; as no significantPopulation model and procedures for stochastic simulation:
difference in the regression coefficients was found, as pre-This section describes the general population model and selec-
dicted, the value used in the text is the average of the twotion procedures for which predictions and simulations will
values. The proportion of full-sib matings (φ) was also re-be compared. The population was reproduced in discrete
corded in each simulated population. Results were averagedgenerations with a constant breeding size of NS sires and ND over 1000 replicates and standard errors derived from thedams and a mating ratio of dams to sires of 1 in all generations
variance between replicates. The values of basic parameters(NS � ND � N). Each dam mothered nO offspring, all full-sibs,
used in the simulations were h2

0 � {0.01, 0.05, 0.1, 0.2, 0.4, 0.6,and comprising equal numbers of male and female candidates.
0.8, and 0.99}, N � {32, 64, and 128}, and nO � {4, 8, and 16}.Selection was upon phenotype P, which was the sum of breed-

ing value A and an environmental deviation.
For simulation, a noninbred and unrelated base population

was generated with �2
P,0 � 1. Each founder’s A was taken from RESULTS

N(0, �2
A,0), where �2

A,0 is the initial genetic variance (since
�2

P,0 � 1, initial heritability h2
0 � �2

A,0). In subsequent generations, Expected vs. observed degree of nonrandom mating:
each new breeding value was the sum of 1⁄2(Asire � Adam) and a The degree of nonrandom mating is described in this
Mendelian sampling deviation. The latter term was drawn from section, in terms of (i) the two distinct summary �I’s (i.e.,
N(0, 1⁄2�2

A,0(1 � 1⁄2�I(sire) � 1⁄2�I(dam))), where �I(sire) and �I(dam) are
�Ic and �Ir) vs. �Ofix and (ii) the expected and observeddue to the nonrandom mating between grandparents. An envi-
proportion of full-sib matings (φexp and φobs, respectively).ronmental deviation sampled from N(0, 1 � �2

A,0) was added to
each individual’s breeding value to obtain P. The simulations For item i, Table 1 shows that substantial deviations
omitted the term (1 � �) in Equation 1, as previously indicated between �Ir and �Ic occurred, with �Ir 	 �Ic as h2

0 in-
in the first section. Consequently, the genetic variance, and creased and �Ofix increased. Statistically significant buthence the variance in the selective advantages, in the simulated

slight differences with �Ir � �Ic also occurred with h2
0 �populations reached an equilibrium upon which to base stable

0.01. Where �Ir 	 �Ic, the substantial difference indicatespredictions.
Selected individuals were mated following a mating design a negative covariance between the individual’s long-

with nonrandom mating based upon �O (as defined earlier), term genetic contribution and �I. Thus, those individu-
which was carried out systematically in all generations except als with low values of �I, consequently with a relativelyin the base population, where founders were randomly allo-

greater Mendelian sampling variance in their offspring,cated in pairs. The allocation of mates was decided in such a
had a selective advantage over their contemporariesway that �O was as close as possible to a target value �Ofix.

This process involved a search throughout the feasible set of and, therefore, a greater long-term genetic contribu-
matings, carried out by the simulated annealing technique tion. This association between long-term genetic contri-
(Press et al. 1992), to minimize the objective function given butions and the variation in �I within a scheme becameby (�O � �Ofix)2. A random sample of matings was used as a

more evident as selection became more intense, throughstarting point. The maximum feasible value for �O is 1, which
can be attained by multiple generations of close inbreeding both large nO and/or large mating ratios (i.e., NS 	
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TABLE 1

Target departures from HW proportions (�Ofix) vs. observed departures measured as the asymptotic average
of �I weighted by the observed contribution as parent to the selected offspring in the next generation (�Ic)

and the asymptotic average of �I weighted by the long-term genetic contribution (�Ir), with phenotypic
selection and N � 32, for different �Ofix, family size (nO), and initial heritabilities (h2

0)

h 2
0 � 0.01 h2

0 � 0.2 h2
0 � 0.4

nO �Ofix �Ic �Ir �Ic �Ir �Ic �Ir

4 �0.03 �0.0266 �0.0266 �0.0273 �0.0273 �0.0278 �0.0278
0 0.0000 0.0000 0.0016 0.0015 0.0019 0.0021
0.06 0.0609 0.0620 0.0686 0.0711 0.0689 0.0679
0.12 0.1225 0.1271 0.1340 0.1344 0.1327 0.1220
0.24 0.2455 0.2572 0.2597 0.2306 0.2550 0.2095

16 �0.03 �0.0289 �0.0289 �0.0296 �0.0294 �0.0295 �0.0295
0 0.0006 0.0006 0.0065 0.0071 0.0075 0.0069
0.06 0.0635 0.0671 0.0787 0.0739 0.0744 0.0594
0.12 0.1274 0.1338 0.1414 0.1144 0.1311 0.1022
0.24 0.2489 0.2557 0.2538 0.1767 0.2376 0.1422

Standard errors are 	0.25% (nO � 16) and 0.29% (nO � 4).

ND, results not shown), since high selection intensity vanishingly small as is explicitly assumed in the result
of Ghai (1969), and random allocation of mates with twopromotes the proliferation of favored lineages.

For item ii, Figure 1 shows that high values of �Ofix led sexes will result in a marginally negative �O (Robertson
1965), requiring some full-sib matings in compensation.to important deviations between observed and expected

values of φ, with φobs 	 φexp, although a good fit was Effects of nonrandom mating on the genetic (co)vari-
ances for the selected trait : In this section, we describeobtained for intermediate �Ofix. Note that the simula-

tions were implemented through general algorithms for the effects of nonrandom mating on the selected trait for
(i) the genetic covariance among mates and (ii) thenonrandom mating so that �O was attained through

multiple sources of nonrandomness rather than genetic variance. Simulated genetic covariance among
mates is shown in Figure 2 for a range of �Ofix and h2

0,through full-sib mating alone, although since NS � ND

there were no half-sibs. For the lower extreme shown along with the respective neutral expectation under ran-
dom selection (i.e., h2

0 � 0). The values shown in Figurein Figure 1, with �Ofix � 0, φobs was �0 although φexp �
0. This should be expected for two reasons: in a small 2 are 1⁄2cov(Ai, Aj)/�2

A,0, since they have an expectation
population the probability of a full-sib mating is not

Figure 2.—Relationship between the covariance betweenFigure 1.—Relationship between the proportion of full-sib
matings (φ) and the initial heritability (h2

0), for phenotypic the breeding values of mates (cov(Ai, Aj)), scaled by 2�2
A,0, and

�Ofix, for phenotypic selection with different initial heritabili-selection with different values of �Ofix. The lines are predicted
relationships using φ � 4�Ofix/(1 � 3�Ofix), and the points are ties (h2

0). The lines are predicted relationships using Equation
4, and the points are observations from simulated populationsobservations from simulated populations (N � 32, nO � 16).

Predictions are: zero with �Ofix � 0; - - -, �Ofix � 0.24; – –, �Ofix � (N � 32, nO � 4). Predictions are: —, h2
0 � 0 (neutral the-

ory); - - -, h2
0 � 0.05; – - –, h2

0 � 0.2; – –, h2
0 � 0.4. Simulations0.06. Simulations are: �, �Ofix � 0.24; �, �Ofix � 0.06; �,

�Ofix � 0. are: �, h2
0 � 0.05; �, h2

0 � 0.2; �, h2
0 � 0.4.
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Figure 3.—Relationship between equilibrium genetic vari-
Figure 4.—Relationship between � and �Ofix, for phenotypicance prior to selection within a generation (�2

A), scaled by
selection with different initial heritabilities (h2

0) and family�2
A,0, and �Ofix, for phenotypic selection with different initial

sizes (nO). The lines are observations from simulated popula-heritabilities (h2
0). The lines are predicted relationships using

tions (N � 32), where � with thick lines are nO � 16; � withEquation 5, and the points are observations from simulated
thin lines, nO � 4; —, h2

0 � 0.01; – –, h2
0 � 0.2; - - -, h2

0 � 0.4.populations (N � 32, nO � 4). Predictions are: —, h2
0 � 0

(neutral theory); - - -, h2
0 � 0.05; – - –, h2

0 � 0.2; – –, h2
0 � 0.4.

Simulations are: �, h2
0 � 0.05; �, h2

0 � 0.2; �, h2
0 � 0.4.

ships of � with h2
0 and nO are fully consistent with the

findings of Woolliams et al. (1999) for random mating.
It may be expected from neutral theory that increas-of �Ofix for neutral theory. The clear result is that direc-

ing �O would increase the regression on the selectivetional selection reduces the covariance of mates from
advantage since selected offspring will be more likelywhat is expected under neutral theory. Furthermore,
to be mated to relatives, so reinforcing the strength orthis reduction is well predicted using Equation 4 and φ �
weakness of the inherited selective advantage, i.e., the4�/(1 � 3�) (with � replaced by �Ofix). In the examples
mean parental breeding value, not only predicts theshown in Figure 2, the covariance among mates remains
breeding value of its offspring but also predicts that of

approximately linearly related to �Ofix, but the slope
its offspring’s mate. This is clearly the case for low h2

0:of this relationship becomes lower as the heritability for example, for h2
0 � 0.01 and nO � 16, as �Ofix increased

increased from 0 to 0.4. The application of Equation 4 from 0 to 0.24, � increased more than threefold in a
with baf � 0 also results in a lower covariance than that linear relationship with �Ofix. However as h2

0 increased,
expected from neutral theory, but results in overesti- the slope of this relationship with �Ofix was substantially
mates of the covariance; e.g., for h2

0 � 0.40 and �Ofix � lower. For nO � 16 and h2
0 � 0.99, no increase in � with

0.18, the observed scaled value was 0.050, and Equation �Ofix was observed (result not shown). This reduction in
4 predicts 0.082 and 0.057 with and without setting baf � the slope of the relationship between � and �Ofix is di-
0, respectively. rectly related to the phenomenon displayed in Figure

Given that the genetic covariance among mates con- 2 concerning the covariance between mates as described
tributes to the genetic variance under nonrandom mat- above: when �Ofix and h2

0 are large, the covariance is
ing, a reduction in the former component from that lower than that expected from neutral theory and the
predicted by neutral theory will potentially result in a selective advantage is poorer than expected at pre-
reduction in the latter. This is confirmed in Figure 3 dicting the selective advantage of the offspring’s mate.
with stochastic simulations and predictions using Equa- The impact of the nonrandom mating on the ex-
tion 5. With selection, the genetic variance in the popu- pected gene flows conditional on the selective advan-
lation can be lower with �Ofix � 0 than when comparable tage (i.e., the sum of the breeding values of an individual
selection is practiced in randomly mated populations. and its mate) is shown in Figure 5, measured by the CV
The predictions from Equation 5 tend to overpredict of 
k (see Equation 10). The values presented in Figure
the genetic variance by more than is expected from 5 use parameters in Equation 10 estimated from the
reductions due to finite sample size alone. simulations. For �Ofix � 0, it is clear that the impact of

Effects of nonrandom mating on the expected gene the selective advantage on gene flow is greatest when
flow: Figure 4 shows the relationship between the regres- 0.4 	 h2

0 	 0.6, with close to 4-fold impact compared
sion coefficient of long-term genetic contributions on to h2

0 � 0.01. The impact of the selective advantage is
the sum of selective advantages of mating pairs and �Ofix. increased when �Ofix increases, but is more sensitive to
For a given �Ofix, for all combinations of h2

0 and nO stud- changes in �Ofix when h2
0 is low. Therefore, when �Ofix �

ied, � increased as nO increased (and hence selection 0.24, the maximum impact is close to h2
0 � 0.2 and is

only 1.5-fold greater compared to h2
0 � 0.01.intensity) and decreased as h2

0 increased. The relation-
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Figure 5.—Relationship between CV of expected long-term
genetic contributions [CV(
k)] and initial heritability (h2

0), for
Figure 6.—Relationship between asymptotic rate of in-phenotypic selection with different values of �Ofix. The lines

breeding (�F) and initial heritability (h2
0), for phenotypic se-are modeled using Equation 10 with parameters estimated

lection with different values of �Ofix. The lines are predictedfrom the simulations (N � 32, nO � 16). The different lines
relationships using Equation 6, and the points are observationsare: �, �Ofix � 0.24; �, �Ofix � 0.06; �, �Ofix � 0; �, �Ofix �
from simulated populations (N � 32, nO � 16). Predictions�0.03.
are: —, �Ofix � 0.24; – –, �Ofix � 0.06; - - -, �Ofix � 0; – - –, �Ofix �
�0.03. Simulations are: �, �Ofix � 0.24; �, �Ofix � 0.06; �,
�Ofix � 0; �, �Ofix � �0.03.Effect of nonrandom mating on predictions of �F

and �G based on long-term genetic contributions: The
effect of nonrandom mating on �F is shown in Figure

showed that extrapolating expectations of genetic vari-6 and Table 2 contrasts predictions using Equation 6
ance and covariance among mates for a neutral traitfor two different selection intensities. The pattern of
with nonrandom mating can be qualitatively wrong, withrelationship between �F and h2

0 and �Ofix is very similar
deviations toward severe overprediction. Deviationsto Figure 5, in that the h2

0 with the maximum �F becomes
were largest when heritability and selection intensitylower as �Ofix increases, and �F increases very rapidly
were large and there was a strong preferential mating offor small h2

0 when �Ofix is large.
relatives. While nonrandom mating had a considerablePredictions of �F using Equation 6 always underesti-
effect upon the impact of selective advantage for lowmated the observed �F, but this is expected by a fraction
heritability, as measured by the regression of geneticapproximately equal to 2�F (Woolliams and Bijma
contributions on the selective advantage and the CV of2000). When this is accounted for (as in Table 2), the
the expected gene flow conditional on the selectiveserious errors occur only when selection intensity and
advantage, the phenomenon described by the model�Ofix are high. The pattern of these errors is similar to
substantially reduces this effect for moderate heritabili-the cases in Table 1, where �Ic and �Ir show serious
ties. Furthermore, the study showed that high selectiondiscrepancies. The predictions shown use �Ir in Equa-
intensity can induce a negative covariance between thetion 6, and not �Ic, since �Ir provided more reliable
long-term genetic contribution of an ancestor and itspredictions than �Ic. Where serious discrepancies oc-
�I, particularly when �O is large, and suggested thatcurred between the observed �F and �F predicted from
selection acts to attenuate the strong preferential mat-Equation 6, the prediction error could be approximately
ing of relatives.halved (results not shown) by modifying Equation 6 to

A logical starting point for interpreting the resultsbe �F � 1⁄4�kr 2
k(1 � �I(k)), so that each individual’s

of deviations from neutral expectations is the geneticsquared contribution was scaled by the individual’s own
covariance achieved among mates for a selected trait�I. This partially overcame the covariance that was de-
when nonrandom mating was practiced. Naively, thescribed above between rk and �I(k). Finally, predictions
preferential mating of relatives would be expected toof �G (not shown) obtained from Equation 7 were accu-
result in a clear positive genetic covariance amongrate for most of the assessed cases, and often their errors
breeding values, since for a neutral trait this covariancewere 	5% within the range of parametric settings inves-
has an expectation equal to 2�O�2

A,0 (e.g., Caballerotigated.
and Hill 1992), and this is also shown in our simulations
for neutral traits, so provides a methodological valida-

DISCUSSION tion for our study. However, the predictive model for
the covariance among mates showed that inducing suchThis article has provided a novel model for predicting
a covariance by using pedigree information during se-the impact of nonrandom mating on the covariance
lection will lead to a covariance of opposite sign betweenamong mates of populations undergoing selection. Ex-

amination of the predictions obtained from this model the genetic mean of an individual’s family and the Men-
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TABLE 2

Simulated vs. predicted rates of inbreeding

h2
0 � 0.01 h2

0 � 0.2 h2
0 � 0.4

nO �Ofix Sim(�100) %Prd Sim(�100) %Prd Sim(�100) %Prd

4 �0.03 0.59 0.8 0.65 0.9 0.69 1.3
0 0.60 1.2 0.69 1.6 0.74 1.0
0.06 0.62 0.8 0.83 1.9 0.87 2.7
0.12 0.67 0.9 1.00 2.5 1.02 4.7
0.24 0.82 2.9 1.37 10.8* 1.33 9.2*

16 �0.03 0.74 1.5 1.02 2.2 1.17 2.9
0 0.77 1.8 1.26 6.2 1.45 3.6
0.06 0.89 3.7 1.76 7.3 1.87 7.4
0.12 1.07 5.9* 2.18 10.1* 2.18 11.1*
0.24 1.50 12.9* 2.98 18.7* 2.91 15.3*

Simulated (Sim) rate of inbreeding (�100), together with prediction errors from using Equation 6, for
phenotypic selection and N � 32, different target departures from Hardy-Weinberg proportions (�Ofix), family
sizes (nO), and heritabilities (h2

0) is shown. * indicates when the difference was �(5�F) � 100. Standard errors
of Sim(�100) were 	0.01, except for �Ofix � 0.24 where the standard errors were 	0.03. Prediction errors
are expressed as a percentage of deviation (%Prd) � 100 � ([Sim � Prd]/Sim), where Prd comes from
Equation 6.

delian sampling term of its mate. Therefore when there it cannot cope with nonrandomness coming from other
sources such as preference/avoidance of half-sibs andis a preferential mating, or avoidance, of relatives the

induced covariance is offset by this opposing covariance, (ii) the predictions provided by Ghai while broadly reli-
able were not without error. In the model, Ghai’s for-which can be substantial. This is in addition to another

opposing effect that is directly analogous to Bulmer mula was used to translate the desired �O to an expected
covariance among the true family means of mates in the(1980) by which the change in the Mendelian sampling

variance with �I has an impact on the replenishment of selected population; consequently, some improvement
might arise from a more general approach to this rela-the genetic variation that is lost through selection in

each generation. tionship.
The reduction in covariance between mates arisingThe mechanism underlying this model was potenti-

ated as the intensity of selection increased and as the with selection has direct consequences for the additive
genetic variance and for the relationship between long-heritability increased. In this article where the results

presented have been concerned with selection upon term genetic contributions and the selective advantage.
Both are reduced below expectations based upon neu-phenotype, the heritability represented the squared ac-

curacy of selection and, together with the value of �I, tral theory. The impact on genetic variance is sufficient
for the equilibrium genetic variance (i.e., where Mende-determined the split in information between the pedi-

gree and the Mendelian sampling term (important in lian sampling variance is not reduced each generation
as inbreeding progresses) to be less for preferentialEquations 2, 3, and 5). In more general selection

schemes the power of the mechanism would depend mating of relatives than for random mating when h2
0 is

high, a qualitative difference. The regression of theon the balance of pedigree information on a candidate
and information on its Mendelian components and the long-term genetic contribution on the sum of the ances-

tral breeding value and the average of its mates woulduse made of such information (e.g., within-family selec-
tion should not generate such a mechanism), rather also be expected to increase under neutral theory, since

this has a covariance not only with the offspring’s breed-than on the accuracy alone.
While the model provides an explanation of some ing value but also with that of the offspring’s mate. Note

that this expectation arises from the nonrandom matingof the results, it has some limitations. First, while its
predictions are more credible than those based on neu- in the offspring generation, not the ancestors: in the

ancestor’s generation the nonrandom mating is fullytral theory, the precision leaves some scope for believing
that other mechanisms may be operating. Of greater accounted for by regression on both parents. However,

if the covariance between mates is reduced then so is thesignificance is that the covariance between mates is esti-
mated by assuming that the proportion of full-sib mating predictive value of the ancestor’s selective advantages.

The impact of h2
0 on the CV of the expected genewas that predicted by Ghai’s (1969) formula. The use

of this formula has two problems: (i) it is limited to flow is similar to the impact of h2
0 on �F that was ob-

served in this study and that of Santiago and Cabal-schemes with equal numbers of males and females since
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Caballero, A., E. Santiago and M. A. Toro, 1996 Systems of mat-lero (1995). This relationship shows a much greater
ing to reduce inbreeding in selected populations. Anim. Sci. 62:

sensitivity to nonrandom mating when the heritability 431–442.
Cockerham, C. C., 1967 Group inbreeding and coancestry. Geneticsis low than when it is either moderate or high. This can

56: 89–104.be explained by the behavior of the covariance between
Fernández, J., and M. A. Toro, 1999 The use of mathematical

mates and its separate consequences for � and �2
A as programming to control inbreeding in selection schemes. J.

Anim. Breed. Genet. 116: 447–466.described, since changes in both parameters are respon-
Frankham, R., J. D. Ballou and D. A. Briscoe, 2002 Introductionsive to changes with �I when the heritability is low, but

to Conservation Genetics. Cambridge University Press, Cambridge,
decrease in sensitivity as heritability increases. The simi- UK.

Ghai, G. L., 1969 Structure of population under mixed randomlarity between CV(
k) and �F in their relationship with
and sib mating. Theor. Appl. Genet. 39: 179–182.�I may be anticipated since in Equation 6, which relates

Grundy, B., B. Villanueva and J. A. Woolliams, 1998 Dynamic
�F to squared contributions, the term E[�r2

k] is equiva- selection procedures for constrained inbreeding and their conse-
quences for pedigree development. Genet. Res. 72: 159–168.lent to E[�(
2

k � �2
k)], where 
k and �2

k are the mean
Klieve, H. M., B. P. Kinghorn and S. A. Barwick, 1994 The jointand variance of the contributions conditional upon the

regulation of genetic gain and inbreeding under mate selection.
selective advantages. Woolliams and Bijma (2000) J. Anim. Breed. Genet. 111: 81–88.

Lynch, M., and B. Walsh, 1998 Genetics and Analysis of Quantitativeshowed that �2
k � 
2

k for random mating, but an analo-
Traits. Sinauer Associates, Sunderland, MA.gous relationship has not been established for nonran-

Meuwissen, T. H. E., 1997 Maximizing response of selection with
dom mating, although it has been established that �2

k a predefined rate of inbreeding. J. Anim. Sci. 75: 934–940.
Press, W. H., S. A. Teukolsky, W. T. Vetterling and B. P. Flannery,will depend upon �I: avoidance of relatives reduces �2

k
1992 Numerical Recipes in FORTRAN: The Art of Scientific Comput-(e.g., Wang 1997), whereas preferential mating of rela-
ing. Cambridge University Press, Cambridge, UK.

tives increases �2
k (e.g., Caballero and Hill 1992). Robertson, A., 1965 The interpretation of genotypic ratios in do-

mestic animal populations. Anim. Prod. 7: 319–324.In conclusion, this study has described mechanisms
Sánchez, L., C. Garcı́a and M. A. Toro, 1999 Improving the selec-that influence the covariance observed between mates

tion efficiency of artificial selection: more selection pressure with
for a trait that is subject to selection when mating is less inbreeding. Genetics 151: 1103–1114.

Sánchez, L., P. Bijma and J. A. Woolliams, 2003 Minimizing in-nonrandom. In particular, the covariance is substan-
breeding by managing genetic contributions across generations.tially less than that expected from neutral theory, partic-
Genetics 164: 1589–1598.

ularly when the heritability is moderate or high, and Santiago, E., and A. Caballero, 1995 Effective size in population
under selection. Genetics 139: 1013–1030.this has consequences for the observed additive genetic

Sonesson, A. K., and T. H. E. Meuwissen, 2000 Mating schemesvariance, the scale of expected gene flow that is directly
for optimum contribution selection with constrained rates of

attributable to the selective advantage, and �F. The ob- inbreeding. Genet. Sel. Evol. 32: 231–248.
Toro, M. A., and M. Pérez-Enciso, 1990 Optimization of selectionserved sensitivity to nonrandom mating of the latter two

response under restricted inbreeding. Genet. Sel. Evol. 22: 93–phenomena when heritability is low can be explained 107.
with reference to neutral theory, and the study shows Wang, J., 1996 Deviation from Hardy-Weinberg proportions in finite

populations. Genet. Res. 68: 249–257.that it is the lack of sensitivity for moderate to high
Wang, J., 1997 More efficient breeding systems for controlling in-heritabilities that required the development of theory. breeding and effective size in animal populations. Heredity 79:
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