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Abstract
Background: The gene(s) encoding the ETEC F4ab/ac receptors, involved in neonatal diarrhoea
in pigs (a disease not yet described in humans), is located close to the TF locus on Sscr13. In order
to reveal and characterize possible candidate genes encoding these receptors, a porcine physical
map of the TF region is indispensable.

Results: A contig of 33 BAC clones, covering approximately 1.35 Mb surrounding the TF locus on
Sscr13q31-q32, was built by chromosome walking. A total of 22,552 bp from the BAC contig were
sequenced and compared with database sequences to identify genes, ESTs and repeat sequences,
and to anchor the contig to the syntenic region of the human genome sequence (Hsap3q21-q22).
The contig was further annotated based on this human/porcine comparative map, and was also
anchored to the Sanger porcine framework map and the integrated map of Sscr13 by RH mapping.

Conclusion: The annotated contig, containing 10 genes and 2 ESTs, showed a complete
conservation of linkage (gene order and orientation) with the human genome sequence, based on
46 anchor points. This underlines the importance of the human/porcine comparative map for the
identification of porcine genes associated with genetic defects and economically important traits,
and for assembly of the porcine genome sequence.

Background
Neonatal diarrhoea, often caused by ETEC F4 bacteria, is
a common problem in pig production. These bacteria use
their fimbriae to adhere to specific receptors on the brush
borders of enterocytes of their host. This adhesion is a pre-
requisite for infection and promotes bacterial coloniza-
tion of the small intestine. The colonizing bacteria
produce enterotoxins that stimulate the secretion of water

and electrolytes into the lumen of the small intestine and
lead to diarrhoea and often death in neonatal pigs [1].
ETEC F4 resistance, acquired by receptor phenotype differ-
ences of the host, seems to be inherited as an autosomal
recessive Mendelian trait [2], whereby the gene(s) encod-
ing the ETEC F4ab/ac receptors have been linked to sev-
eral loci on Sscr13 [3-7]. Based on the tight linkage of the
ETEC F4ab/ac receptor loci to microsatellite markers
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Swr926 (Locus P) and Swc22 (Locus G) by Peelman [5], a
BAC contig covering this region and containing TF was
built by chromosome walking. The contig was annotated
by comparing BAC sequences with sequences from nucle-
otide databases and by comparative mapping with the
human genome sequence in order to provide a basis for
the identification of the ETEC F4ab/ac gene(s) by the can-
didate gene approach.

Results and discussion
Construction of the BAC contig
The construction of the BAC contig was started at 2 micro-
satellite marker loci, Swr926 and Swc22, estimated to be
1 cM apart from each other and closely linked to the ETEC
F4ab/ac receptor loci, according to the porcine genetic
map of Peelman [5]. From those 2 loci, 2 subcontigs were
built by chromosome walking in both directions until the
gap between the 2 was filled. The resulting BAC contig,
comprising 33 BAC clones, is shown in Figure 1C All 66
BAC ends were sequenced and submitted to the GenBank
database as GSSs [GenBank:CG993013-CG993078]. On 4
occasions, 2 BAC clones turned out to possess the same
end (5'-215D7 with 5'-409C1, 129E6-3' with 225H9-3',
5'-613G8 with 5'-1002E2, and 5'-696F10 with 240G11-
3'). From 52 of the 62 unique sequences, primers were
designed to construct the contig and to screen for new
overlapping clones. By dividing the total number of over-
laps between the BAC ends and the BAC clones by the
total number of BAC ends an estimated contig depth of
3.3 was calculated. Since the average length of the BAC
inserts is 135,000 bp, we have covered a region of approx-
imately (33/3.3) × 135,000 = 1.35 Mb.

Annotation of the BAC end sequences
A total of 22,552 bp of the BAC contig (62 unique BAC
ends and 1 internal BAC fragment [GenBank:CZ692943])
were sequenced and annotated by NIX [8]. The sequences
had an overall GC content of 41.48%, which is less than
the 46.17% for Sscr7q found in an analogous study of Bar-
bosa and co-workers [9].

The BESs contained 2 gene fragments (MGC3040 and TF)
and 2 ESTs (CA778263 and AA461333) located on the
human genome (Figure 1A–C) [10]. In 35 of the 62 BESs,
homologous sequences could be found within 12 consec-
utive finished HTGs used to assemble the Hsap3q21-q22
region of the human genome sequence (Figure 1A–C)
[10]. These homologies were studied in detail by BLAST 2
sequence comparisons of the BESs with their orthologs
(based on the 35.1 latest human genome build). Repeat
sequences were excluded (RepeatMasker) and only single
hits were taken into account. Orthologous sequences
longer than 50 bp had on average a length of 150 bp, a
sequence identity of 80% and an e-value of 1e-20. Smaller
fragments were only considered as orthologs if at least 2

of them were located close to each other at their expected
orthologous position. An extended conservation of syn-
teny between Sscr13 and Hsap3 was already shown by the
comparative map of Van Poucke and co-workers [11],
based on chromosome painting results of Goureau and
co-workers [12]. But taking into account the orientation
of the finished HTGs and the position of the orthologous
sequences within these HTGs, a perfect comparative map
could be established showing even 100% conserved link-
age in this region.

Based on this comparative map the BAC contig covers
approximately 1.40 Mb of the human genome (from
134.075 Mb to 135.475 Mb on Hsap3) [10], which is
close to the BAC contig length calculated above. The BAC
sequences also contained 17 LINEs, 10 SINEs, 3 LTR ele-
ments and 1 DNA element (Figure 1D), resulting in an
average density of 0.77 LINEs/kb, 0.45 SINEs/kb, 0.14
LTR elements/kb and 0.05 DNA elements/kb. Barbosa
and co-workers [9] found an average density of 0.35
LINEs/kb, 0.61 SINEs/kb and 0.17 LTR+DNA elements/kb
on Sscr7q.

Comparative mapping with the human syntenic region
Based on this detailed comparative map between
Hsap3q21-q22 and the BAC contig, the latter could be
annotated by comparative mapping. H41, TOPBP1, TF,
SRPRB, RAB6B, SLCO2A1 and RYK could be found in the
contig by PCR (Figure 1A–C). Also PICA, a gene not yet
described in human but located on the pig EST map of the
NCBI human genome map viewer [10] between TOPBP1
and TF, was found in the contig by PCR at the orthologous
region (Figure 1A–C). It showed sequence homology with
the finished HTG sequence AC083905. MGC3040 and
BFSP2 could be found in the contig by BAC colony
hybridisation (Figure 1A–C). For MGC3040, TF and
SLCO2A1 two regions of the gene were annotated in the
contig. Their locations showed that those genes were
organised in the same orientation as in human. All the
comparative mapping results confirmed the conserved
linkage (gene order and orientation) based on the
sequence homologies of the BESs (Figure 1A–C).

Fifteen BAC ends are also located on the Sanger porcine
framework map [13]. On average, they show 98.5%
sequence identity, and are located in the same order (Fig-
ure 1C). This was expected because (1) the framework
map was constructed by fingerprinting and BES alignment
on the human sequence, and (2) this region shows 100%
conserved linkage with the human genome. So, for this
region, the Sanger map assembly, based on the assump-
tion of conservation between both species, is correct. But
because of inter- and intrachromosomal rearrangements
between the human and the porcine chromosomes
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Comparative map of the annotated BAC contig with its syntenic region on Hsap3q21-q22Figure 1
Comparative map of the annotated BAC contig with its syntenic region on Hsap3q21-q22. The contig is drawn in 
part C. Black triangles represent BAC end sequences from which primers were designed to construct the contig. The black cir-
cle represents the only internal BAC sequence from which primers were designed to construct the contig. White circles show 
overlaps of these BAC sequences with other BAC clones. White triangles represent BESs from which it was impossible to 
design primers. The triangles point towards the 3'-side of the BAC clone. Encircled triangles represent BAC ends that are also 
present in the Sanger framework map. Black diamonds represent microsatellite positions. Black squares represent genes anno-
tated by PCR, whereas white squares represent genes annotated by hybridization. Annotated sequences (genes are in regular, 
ESTs in italic) from the BAC contig are represented on a plane map (B) and their homology with the human genome sequence 
is illustrated with dotted lines (A). The orientation of the human genes and finished HTGs (used to assemble the human 
genome sequence) are represented in (A) by arrows [10]. Repeat sequences (white rectangle = LINE, black rectangle = SINE, 
black bow = LTR element, white bow = DNA element) are shown on a plane map in D. The RH mapping results are shown in 
E.
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[11,12], the Sanger framework map contains some errors.
This underlines the importance of the chromosome walk-
ing approach for the development of an exact map.

Based on the characteristics of the genes annotated in this
contig, SLCO2A1 could be a candidate gene encoding the
ETEC F4ab/ac receptor. It is a single copy gene encoding
the prostaglandin transporter, a 12-transmembrane
organic anion cell surface transporter that is expressed in
the small intestine. The presence of different mRNA tran-
scripts suggests that several functionally distinct mRNAs
may arise by alternative splicing and/or alternative pro-
motors [14]. It is also assumed that SLCO2A1 contains
several different substrate binding sites, to which binding
does not always result in substrate translocation across the
membrane [15].

RH mapping
During chromosome walking, 4 loci were mapped with
the IMpRH panel (data are submitted to the IMpRH server
[16]) in order to detect possible chromosome jumping, to
estimate the remaining gap between the 2 subcontigs, and
to anchor the contig to the integrated comparative map
[11]. Using the IMpRH server, 2-point distances were cal-
culated between BAC ends 409C1-3', 5'-613G8, 5'-
991F11 and an internal sequence of BAC 8A9, and micro-
satellite markers Swr926 and Swc22, that were previously
mapped on the IMpRH map (Figure 1E) [17]. Based on
these distances, the contig covers a region of approxi-
mately 40 cR. Thus, 1 cR equals approximately 33.750 kb
in our contig. The distance between Swr926 and Swc22
was measured as 17 cR. Because the same distance was
measured as 1 cM on a linkage map of Peelman [5], the

cR/cM ratio in our contig is 17. Hawken and co-workers
[17] measured values for Sscr13 of 59.9 kb/cR and 30.4
cR/cM with the linkage map of Rohrer and co-workers
[18].

Methods
Primer design and amplicon verification
All primers, designed with Primer3 [20], were confirmed
to not generate an amplicon of the same length with bac-
terial DNA as a template. Primers used for RH mapping
were also checked not to generate an amplicon of the
same length with hamster DNA as a template. The con-
struction of the BAC contig was started with primers
amplifying porcine microsatellite markers Swr926 [Gen-
Bank:AF235467] and Swc22 [GenBank:AF225193]. Dur-
ing the construction of the BAC contig, new primers were
designed based on the BESs [GenBank:CG993013-
CG993078]. Information on those primers can be found
in the corresponding GenBank files. For annotation by
comparative mapping with the human genome, primers
were designed based on orthologous human and/or por-
cine sequences. Information on new primers is presented
in Table 1. These PCR products were cloned in pCRII (Inv-
itrogen, Merelbeke, Belgium), sequenced for verification
with the Thermo Sequenase Primer Cycle Sequencing Kit
(Amersham Biosciences, Uppsala, Sweden) and submit-
ted to GenBank [GenBank:AY5182650-AY5182658,
DQ104835, DQ104841]. Because of sequence homology,
primers for PICA were confirmed to not amplify TF. Prim-
ers for RYK were described earlier [11].

Table 1: Information on new primers for genes annotated by PCR

Gene Forward Primer (5'- 3') Annealing temperature
Porcine Acc.No. Reverse Primer (5'- 3') Amplicon size

H41 GGCAAGAGTGAAGCAAATGG 60°C
AY518265 TCAAAAACATAACCCCAGCAA 395 bp
TOPBP1 CCTGAATCTCTTTATCCACATACTT 57°C
AY518266 CATTTGATGGTGCTGACTCTT 318 bp
PICA TGGACGCGAAGCTCTAT 59°C
U36916 TCCGAGTTACAATTCAAGATG 1.286 bp
TF (exon 2) CCAATAAGTGCTCCAGTTTC 56°C
X12386 CCCTGATGGCTTTGATG 111 bp
SRPRB CGCCTTCCATCCCTACCT 58°C
AY518267 AACCGCCCTTTGACTGCT 756 bp
RAB6B CATTGGGATTGACTTCTTGTC 58°C
AY518268 GATGTAGCTGGGGATCAGG 313 bp
SLCO2A1 (exon 3) GCCGTCCTCATCATCTTTGT 60°C
DQ104835 GAAGTGCGGGAGGGTGA 117 bp
SLCO2A1 (exon 9) CCTTGGGGATGCTGTTTG 60°C
DQ104841 TGGAGATGGTGATGATGGTG 96 bp
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BAC screening and contig building by chromosome walking
The INRA porcine BAC library was screened by PCR [21].
Approximately 20 µg BAC DNA was purified from a 100
ml culture of the isolated BAC clones by using the Qiagen
Plasmid Midi Kit (Westburg, Leusden, The Netherlands).
The primers used to isolate the BAC clones were used to
amplify the same amplicon on 20 ng BAC DNA for verifi-
cation. Both ends of the isolated BAC clones were
sequenced with 5 µg BAC DNA as template by using the
Thermo Sequenase Primer Cycle Sequencing Kit (Amer-
sham Biosciences, Uppsala, Sweden). Primers based on
those BESs were used to construct the contig by defining
overlaps with all other BAC clones. Primers at both ends
of the growing subcontigs were used to screen the BAC
library for new overlapping clones until the gap between
Swr926 and Swc22 was filled.

Annotation
Annotation of the contig was performed by analyzing all
BAC sequences on the NIX server (allowing integration
and display of many gene identification programs, such as
BLAST against EMBL, EST, STS and GSS databases [8], but
not operational anymore), and by comparative mapping
using PCR and BAC colony hybridization. These and sim-
ilar sequence comparisons such as BLAST 2, can also be
performed via the NCBI BLAST server [22]. Gene symbols,
names and positions were based on the NCBI Gene Entrez
[23] and NCBI Map viewer [10] with the latter also used
for the identification of the human HTGs.

BAC colony hybridization
For annotation purposes by comparative mapping with
the human genome, 2 IMAGE clones (3163990 [Gen-
Bank:BC000568] at the MGC3040 locus and 2472940
[GenBank:AI954686] at the BFSP2 locus), located in the
human syntenic region, were ordered (MRC geneservice,
Cambridge, UK). Inserts of these clones were used as radi-
olabeled probes for BAC colony hybridization.

RH mapping
During chromosome walking, 4 loci were mapped on the
IMpRH panel [24] in order to detect possible chromo-
some jumping, to estimate the remaining gap between the
2 subcontigs, and to anchor the contig to the integrated
comparative map [11]. Swr926 and Swc22 [17] and TF
[25] were already located on the IMpRH map.

Conclusion
A porcine BAC contig containing 33 BAC clones and cov-
ering approximately 1.35 Mb of Sscr13q31-q32 was con-
structed. The annotated contig, containing 10 genes and 2
ESTs, showed a complete conservation of linkage with
Hsap3q21-q22, based on 46 anchor points, providing fur-
ther evidence for conservation of linkage on a fine scale.
This underlines the importance of the comparative map-

ping strategy between human and pig, not only in the
search for genes in pig but also as a basis for the assembly
of the porcine genome [13,19]. The contig also contains
15 anchor points with the Sanger porcine framework map
[13], 4 anchor points (Swr926, Swc22, TF and RYK) with
the integrated map of Sscr13 [11] and 2 (Swr926, Swc22)
with the porcine Map Viewer [10].

List of abbreviations
BAC bacterial artificial chromosome

BES BAC end sequence

BFSP2 beaded filament structural protein 2, phakinin

bp basepairs

cM centiMorgan

cR centiRay

EMBL European Molecular Biology Laboratory

EST expressed sequence tag

ETEC enterotoxigenic Escherichia coli

GSS genomic survey sequence

H41 hypothetical protein H41

Hsap Homo sapiens

HTGs high throughput genomic sequences

IMpRH INRA-University of Minnesota porcine Radiation
Hybrid

kb kilobasepairs

LINE long interspersed nuclear elements

LTR long terminal repeat

Mb megabasepairs

MGC3040 hypothetical protein MGC3040

PICA porcine inhibitor of carbonic anhydrase

RAB6B RAB6B, member RAS oncogene family

RH radiation hybrid

RYK RYK receptor-like tyrosine kinase
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SINE short interspersed nuclear elements

SLCO2A1 solute carrier organic anion transporter family,
member 2A1

SRPRB signal recognition particle receptor, B subunit

Sscr Sus scrofa

STS Sequence Tag Site

TF transferrin

TOPBP1 topoisomerase (DNA) II binding protein 1
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