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Abstract – Growth rate is the main breeding goal of fish breeders, but individual selection has
often shown poor responses in fish species. The PROSPER method was developed to overcome
possible factors that may contribute to this low success, using (1) a variable base population
and high number of breeders (Ne > 100), (2) selection within groups with low non-genetic
effects and (3) repeated growth challenges. Using calculations, we show that individual selec-
tion within groups, with appropriate management of maternal effects, can be superior to mass
selection as soon as the maternal effect ratio exceeds 0.15, when heritability is 0.25. Practically,
brown trout were selected on length at the age of one year with the PROSPER method. The
genetic gain was evaluated against an unselected control line. After four generations, the mean
response per generation in length at one year was 6.2% of the control mean, while the mean cor-
related response in weight was 21.5% of the control mean per generation. At the 4th generation,
selected fish also appeared to be leaner than control fish when compared at the same size, and
the response on weight was maximal (≈130% of the control mean) between 386 and 470 days
post fertilisation. This high response is promising, however, the key points of the method have
to be investigated in more detail.

Salmo trutta / selective breeding / aquaculture / genetics / individual selection

1. INTRODUCTION

The genetic management of breeding stocks in aquaculture becomes more
and more important to ensure long-term sustainable development. Growth
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rate is one of the major traits to be improved, but in many cases individ-
ual selection experiments have shown poor or even negative response in fish
(e.g. [20, 27, 37]). Others were apparently more successful, but either lacked
reliable control lines [8] or did not continue after the first generation [12].
Family selection seems to be more effective [15, 19, 29]. Still, efficient indi-
vidual selection would be of special interest to breeders since it is simple and
cheaper to set up in practical conditions. Due to the small size of fish at hatch-
ing, early individual tagging is impossible. Thus, family information can be
obtained either through separate rearing of families, or by individual genotyp-
ing and parentage assignment, for example with microsatellites (e.g. [6, 11]).
Both methods are expensive, the first one because it requires large experimen-
tal facilities, and the second one because of the cost of individual genotyping
(20−30 e/individual).

The failure of individual selection may be explained by four main reasons:

– The low variability of the base populations: due to their high fertility, fish
strains can be propagated with a limited number of breeders. This seems to be
one of the main reasons for the failure of tilapia experiments [20, 37] and of
the carp Israeli experiment [27].

– Inbreeding may develop during the selection experiment, and have an ad-
verse effect on growth rate (−1.5 to −8% per 0.10 increase of F, the inbreed-
ing coefficient [5, 30, 36]). Since high selection intensities are easy to apply
in fish due to their fertility, they are especially sensitive to inbreeding during
selection.

– Maternal effects may be at the origin of a large part of the phenotypic vari-
ance between individuals. Differences in hatching time may have a dramatic
effect on further performance ([21] in the carp), and may occur very easily
when reproduction is poorly controlled. The use of mass spawnings in some
experiments [20, 27] may therefore explain part of their failure. Maternal ef-
fects, caused by differences in egg size, may also have an important effect on
the growth performance of the individuals [4, 39].

– Individual selection may select the most aggressive fish, and the increase
of the average aggressiveness in the group may lower their mean perfor-
mance [32]. However, some results in Tilapia and medaka show that growth
rate is negatively correlated with aggressiveness [31, 33, 34]. The most likely
effect of social structure is the magnification of growth differences, either from
genetic or environmental origin [2, 26].

The PROSPER process (PRocédure Optimisée de Sélection individuelle Par
Épreuves Répétées = enhanced individual selection procedure through recur-
rent challenging) was designed to overcome these potential problems in order
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to achieve an efficient individual selection in fish. We will first describe the
theoretical background of PROSPER, then its application on one line of brown
trout (Salmo trutta) over four generations. When the program started in 1986,
brown trout was seen as an alternative to salmon in France, being able to
grow in seawater under the French climate. Its main disadvantage was a low
growth rate, the improvement of which was the aim of this selective breeding
experiment.

2. MATERIALS AND METHODS

2.1. Theoretical background of PROSPER

Specific answers are proposed to overcome the potential limitations of the
efficiency of mass selection in fish, which are reviewed in the introduction.

Maintenance of genetic variability

The base population should be chosen according to its performance for eco-
nomical traits, and attention should be paid to the numbers of breeders used
to found it and to propagate it. Additional information may be drawn from the
variability at neutral markers, which may give indications on past bottlenecks,
likely to have reduced its initial genetic variability. The numbers of broodfish
used at each generation in the selection process should be high enough (in the
range of Ne = 100) to keep inbreeding to a reasonable level.

Reduction of maternal effects variance

One possible practical source of maternal effects is the use of spawns from
different days, which is the norm in production systems using natural spawning
(e.g. in tilapia, seabass, seabream, in most cases). This is also a quite frequent
practice in trout farms, where the spawning season for one line often lasts for
more than one month. In all these cases, differences in spawning date imply
differences in weights of offspring from different dams measured at the same
date. Even between the offspring of females spawned on the same date, large
differences in maternal effects may occur, which are mainly due to variation
(assumed to be environmental) in egg size [4, 17, 39]. The method proposed
for improving selection response is to undertake selection within groups of
offspring from five dams with similar mean egg sizes, each group being crossed
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with a minimum of 10 sires. The rationale for this is the following: the relative
efficiency of within group selection compared to individual selection [10] is:

Rw
Ri
=

1 − r√
1 − t

(1)

where Rw is the response to within group selection, Ri is the response to indi-
vidual selection, r is the correlation between breeding values of group mem-
bers, and t is the phenotypic correlation between group members, which can
be expressed as:

t =
rσ2

A +
σ2

M

d
σ2

P

= rh2 +
m2

d
(2)

where σ2
A is the additive genetic variance, σ2

M is the maternal effects variance,
σ2

P is the phenotypic variance, d is the number of dams used to create the
group, h2 is the heritability and m2 is the maternal effects ratio. Substituting (2)
in (1):

Rw
Ri
=

1 − r√
1 − rh2 − m2

d

· (3)

If the group is the offspring of a cross of s sires with d dams then:

r =
1
4s
+

1
4d
=

s + d
4sd
· (4)

Normally, the ratio Rw/Ri is lower than one. If, however, the dams within the
group are chosen so that their mean egg size is equal and we can assume that
there are no more maternal effects within the group (equivalent to one dam per
group with respect to maternal effects, and d dams per group with respect to
additive variance), then equation (3) becomes:

Rw
Ri
=

1 − s + d
4sd√

1 − s + d
4sd

h2 − m2

· (5)

Some values of Rw/Ri are plotted in Figure 1, showing the superiority of the
within group selection with groups from five dams and 10 sires, as soon as m2

exceeds 0.15 when h2 is 0.25. It can be noted that variations in h2 or increases
in numbers of sires over 10 only marginally influence the results. Therefore,
the value of 5 dams × 10 sires seems appropriate.
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Figure 1. Relative response to within group selection (Rw) and mass selection (Ri),
with groups from 10 sires and d dams, h2 = 0.25, for different values of the maternal
effects ratio m2, under the hypothesis that maternal effects can be constrained to zero
within groups.

The value of m2 = 0.15 may seem high, since many studies show that the
initial heterogeneity in performance between offspring of different dams pro-
gressively vanishes [4, 13, 24, 25]. However, when they are reared in competi-
tion from hatching, the differences may remain [1]. When fish are first reared
separately then mixed, common environmental effects (whatever their origin,
maternal or environmental) may disappear [9] or not [22]. Although there is
no literature estimating the maternal effects in large fish which were reared
together from hatching, in brown trout, m2 on weight is as high as 0.68 at the
swim-up stage [39]. There is also a substantial persistence of the initial envi-
ronmental differences when fish are mixed from hatching: a 1% difference in
eyed egg weight results in a 0.5% difference in weight in 3-month-old rainbow
trout [1]. In another experiment on the same species, we showed that a 64%
difference in eyed egg weight between the progenies of two dams, crossed
with the same sires, resulted in a 34% difference in weight at 17 months of age
(Dupont-Nivet, unpublished results). Proper estimation of m2 in mixed families
would require genotyping of a mixed family structure, since tagging of new-
born larvae is impossible. The published data in salmonids, however, provide
no m2 estimates, either because there are not enough dams (2♀ × 46♂ in [6])
to estimate the m2, or because there are not enough sires (2 neomales × 48♀
in [11]) to properly separate the maternal and additive effects. However, in
these two studies with rainbow trout, around 400 g mean weight, the estimated
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heritability of length is 0.05−0.18 in [6], where the additive variance is esti-
mated mainly from between sires variance, and 0.52−0.66 in [11], where it is
estimated mainly from between dams variance. Although the populations and
rearing conditions are different, this leaves room for significant maternal ef-
fects. Thus, the hypothesis of high values of m2 in mixed families of salmonids
seems realistic, although not formally proven.

Recurrent challenges

Even when initial environmental variability within each group has been re-
duced as above, phenotypic variability of growth performance, which appears
soon after the fish start feeding, may still include uncontrolled environmen-
tal effects. Whatever the origin of their superiority, the largest animals tend to
maintain their position in the distribution, which may hinder the expression of
high growth potential in other animals [3, 14].

Our hypothesis was that recurrent challenges should reduce this, although
it is true that one could state the exact opposite, considering that repeatedly
combining fish with a similar size to a common tank, may lead to a situation in
which only the really aggressive fish obtain the highest body weights. Ideally,
the growth rate of the groups should be managed with feeding level and density
so that all groups (although issued from different egg sizes and possibly dif-
ferent fertilisation dates) should reach the same mean size at 4-5 months post
hatching (around 3 g). All animals from the different groups are then subjected
to the same challenge: they are distributed in 3 size classes, using the same
truncation points for all groups (Fig. 2). Animals in the “Small” size class
(approx. 50%) are discarded, and two new groups are constituted with the
“Large” and “Medium” size classes. In practice, at the time of the first chal-
lenge, differences between group means may remain, but are expected to be
of purely environmental origin. As the PROSPER design implies within group
selection, the means of the groups should be very close to allow the use of
the same truncation points. If they are not close enough, the groups are dis-
tributed among several clusters of groups with close mean size, within which
the same truncation points are applied. The management of the groups is-
sued from the different clusters is then adapted to allow convergence in mean
weight, for further merging (see the practical schemes in Section 2.1). The
sorted groups (Large, Medium) have a low phenotypic variance but are as-
sumed to have a high genetic variance. Within each cluster, the “Medium”
group and the “Large” group are reared under the same density and feeding
conditions (which may differ between clusters), and after a growing period
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Figure 2. Principle of recurrent growth challenges in the PROSPER individual selec-
tion method.

allowing the re-expansion of phenotypic variability, the animals in both groups
are re-subjected to the same type of challenge. However, at this time, the differ-
ence between group means (within cluster) is expected to be mainly of genetic
origin. These challenges are to be repeated several times until a reasonable
global selection pressure is achieved (around 5 to 2%).

2.2. Application of PROSPER to the selective breeding of brown trout

Base population

The base population used in this experiment (NL) came from a commercial
fish farm in Normandy, and was chosen among eight European domesticated
and wild populations. This population exhibited a high growth rate in fresh
and seawater [7], as well as a high allozyme heterozygosity [23] which was
considered as a good indicator of the absence of severe population bottleneck
in its history.

Selection process

The selection process followed the principles outlined before. Fork length
was chosen as a selection criterion, because it is (1) highly correlated with
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weight (which remains the trait of economical interest) and (2) easy to mea-
sure on large numbers of animals under field conditions. Typically, in mid-
November, two hundred 3-year-old fish were sorted as maturing females, fluent
males and immature fish. Every 10 days, spawns were collected from ovulated
females, and the mean egg weight of each spawn was estimated by weighing
200 eggs. Three pools of eggs from about 5 females with similar mean egg
weight were constituted (1000 eggs/female), with each pool being fertilised
with the same pool of sperm from 15 males. This procedure was repeated
four times with different males at 10 day intervals, achieving the constitu-
tion of 12 groups, representing altogether around 60 females and 60 males.
These groups were equalised to 600 fish/group and reared separately until
five months post-hatching. At that time, the first selection challenge was ap-
plied. In each group, the fish were measured, the smallest 400 fish were dis-
carded, and 100 large and 100 medium fish were kept. The “medium” and
“large” groups issued from the former 12 groups which were the closest in
mean size were merged two by two. Thus, 12 groups of 200 fish (6 large
and 6 medium) were available after the first challenge. The fish were grown
for 4 months before the second challenge. At that time, the groups were dis-
tributed into two clusters containing 3 “large” groups, as close as possible in
mean size and the corresponding 3 “medium” groups. All groups within a clus-
ter were subjected to the same thresholds. The smallest 600 were eliminated,
300 “large” and 300”medium” fish were kept within each cluster. They were
grown for 4 to 6 months before the third challenge, where all 4 groups were
subjected to the same selection threshold (i.e. same minimum fork length),
producing one group of 300 fish. At 2 years of age, there sometimes was a
fourth challenge where only the largest 200 fish were kept as future breeders.
This was adapted to the numbers of breeders and rearing conditions at each
generation (details in Tab. I).

Initially, the NL line was maintained at the Inra freshwater fish culture fa-
cility of Gournay sur Aronde (Oise, France), with some fish transferred to sea-
water for the first two generations, in order to select on both freshwater and
seawater growth performance. This was stopped after the second generation
due to spawning problems of seawater reared females. The NL line was then
maintained in the Inra-Ifremer joint experimental freshwater farm in Sizun
(Finistère, France).

In the first generation, females were separated from males from the 4th chal-
lenge in order to lower the selection pressure on them, since the sexual dimor-
phism in favour of males tended to increase it. In the subsequent generation,
this was not done any more and then the effective selection pressure was higher
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Table I. The PROSPER selection process in brown trout.

Challenges
Generation Challenge Age Mean Groups Groups % % selected
(date fertil.) Nd Ns number (days PF) Survival weight (g) before after selected (cumul.) Sex Used for
SEL1 54 56 1 172 88% 2.7 6 4 31.9% 31.9%
Nov. 86 2 264 99% 24 4 2 64.0% 20.4%

3 503 94% 221 2 1 59.2% 12.1%
4 713 98% 767 1 1 100.0% 12.1% I+F

52.3% 6.3% M
5 860 96% N/A 1 1 60.0% 7.3% I+F SEL2

71.1% 4.5% M SEL2
3S 532 38% 268 1 1 65.9% 13.5%
4S 773 85% 2810 1 1 81.0% 10.9% SEL2

SEL2 63 84 1 199 86% 9.9 14 13 24.8% 24.8% SEL3
Nov. 89 2S 466 93% 228 13 6 26.5% 6.6%

3S 828 N/A N/A 6 1 61.3% 4.0% SEL3
SEL3 43 72 1 196 94% 10.0 10 9 13.4% 13.4%
Nov. 92 2 327 100% 106.3 9 2 40.0% 5.4%

3 499 100% 554 2 1 51.5% 2.8% SEL4
SEL4 56 55 1 186 76% 9.08 7 2 34.4% 34.4%
Nov. 95 2 445 92% 198 2 2 29.9% 10.3%

3 551 91% 456.5 2 1 10.5% 1.1%

Nd: number of dams; Ns: number of sires; Age days PF: age in days post-fertilisation; N/A: not available. “Sex” indicates groups subjected to
differential selection pressures according to pheonotypic sex (M=male, F=female, I=immature). S=challenges occurring in seawater, SELg: gth
generation of selection.
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on females than on males. The overall selection pressure was 8.3% in genera-
tion 1, 9.7% in generation 2, 2.8% in generation 3 and 1.2% in generation 4.

One random-bred control line was derived from the same base population as
the selected line, and propagated with 34–54 females and 46–57 males at each
generation. The control line will be referred to as CONg, and the selected line
as SELg, g being the number of generations of selective breeding (or random
mating for the control).

Estimation of the response to selection

The response to selection was estimated at each generation using contempo-
rary comparisons of offspring from the selected and control line, in replicated
tanks. In some cases the response was estimated through crossing of a selected
or control line to another line of brown trout available on the fish farm, known
as the synthetic line (SY), which was founded between 1979 and 1986 from
eight different Atlantic populations of brown trout. The SY line was part of an-
other experiment, and was used as a tester in the 2nd and 3rd generation to save
space in the experimental farm. The use of this line as a male or female tester
only allowed to measure half of the genetic gain, so the observed contrast was
multiplied by two to estimate the selection response. Possible heterosis cannot
be ruled out, but the contrast between CON*SY and SEL*SY should not suffer
from it, since both CON and SEL are derived from the same base population.
The details of the comparisons used are given in Table II, in the Results section.
The fish were fed ad libitum. Selection response was measured at 1 year (328
to 349 days post fertilisation) in all response estimation experiments. In each
replicate (2−4 per line), 50 to 115 randomly sampled fish were weighed indi-
vidually (nearest 0.1 g) and measured (fork length, nearest mm) – see details
in Table II.

Correlated response on fish shape

The last selection response experiment occurred in the fourth generation
of selection. Offspring from selected and control fish were reared each in
two replicate tanks, and 100 fish were measured and weighed in each tank
at 339 days post fertilisation. The Fulton condition coefficient K was calcu-
lated for each fish (K = 105 ×W · L−3, with W the individual weight in g and
L the individual length in mm).
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Table II. Estimation of selection response in brown trout on weight and length at 1 year. SELx is the selected line (x selective breeding
generations), CONy is the control line (y random mating generations), SY is a synthetic line.

Generation of selection

1 2 3 4

Selected line ♂SEL1*♀SEL1 ♂SEL2*♀SY ♂SY*♀SEL3 ♂SEL4b*♀SEL4b

Nb ♂/♀ used 16/18 20/7 45/47 11/34

Control line ♂CON1*♀CON1 ♂CON2*♀SY ♂SY*♀CON3 ♂CON4*♀CON4

Nb ♂/♀ used 22/18 20/7 45/18 37/27

Age at measurement (d.p.f.) 349 338 328 345

Number of replicate tanks/genotype 2 2 4 2

Fish measured/tank 50 50 115 100

Selected length (mm±SD) 206 ± 15 201 ± 17 197 ± 20 225 ± 14

Control length (mm±SD) 193 ± 16 188 ± 13 177 ± 17 180 ± 17

Corrected1 response on length (mm) 13 26 40 45

Selected weight (g±SD) 115.3 ± 28.1 105.3 ± 30.2 101.0 ± 30.8 148.8 ± 32.7

Control weight (g±SD) 95.6 ± 25.1 82.8 ± 19.4 71.9 ± 22.1 79.9 ± 27.0

Corrected1 response on weight (g) 19.7 45.0 58.2 68.9

1 Taking into account the fact that only half of the response is estimated in generations 2 and 3 by the contrast between the “Selected” and the “Control”
genotype, since they are crossed on a synthetic line.
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An analysis of covariance was conducted (SAS-Glm), first checking for ho-
mogeneity of slopes within replicates, then using the following model:

Yi jk = µ + a.LWi jk +Gi + R j(i) + ei jk

where Yi jk is the condition coefficient of the kth fish in the jth replicate of the
ith line, µ is the population mean, LWi jk is the natural logarithm of the weight
of the fish, a is the regression coefficient of Yi jk on LWi jk, Gi is the fixed effect
of the line (i = 1, 2; selected or control), R j(i) is the random effect of the jth
replicate ( j = 1, 2) within the ith line, and ei jk is the random residual.

Variation over the life cycle of the correlated response on weight

In the last selection response experiment (4th generation of selection),
50 fish per tank were weighed at regular intervals from 89 to 588 days post
fertilisation. At each time, the selection response was estimated as the percent
weight superiority of the selected line over the control line, using the formula
R% = 100

(
Ws
Wc − 1

)
, with Ws and Wc the mean weight of offspring from the

selected and control lines, respectively.

3. RESULTS

Response to selection at 1 year

The results are given in Table II and plotted in Figure 3. The response on
length at one year, estimated at the 4th generation, was 24.6% of the control
mean (6.2% per generation). The correlated response on weight was 86% of
the control mean (21.5% per generation). The increase in response from the
3rd to the 4th generation was lower than in the preceding generations.

Correlated response on fish shape

The slopes of the regression of K on ln(weight) were homogeneous among
lines and replicates, so standard analysis of covariance could be used. It
showed that:

– the regression of K on ln(weight) was highly significant (P < 0.0001,
a = 0.172), demonstrating a positive correlation between weight and condition
factor;
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Figure 3. Selection response (in percent of the control mean) for length and weight at
one year in brown trout, over four generations of PROSPER selection.

– the effect of line on K was significant (P < 0.05), with least squares means
of K (±S.E.) of 1.23 ± 0.01 for selected fish and 1.36 ± 0.01 for control fish.
The same model without log-weight as a covariate gave no significant effect of
line on K (P > 0.6), with least squares means of 1.28 ± 0.01 for selected fish
and 1.31 ± 0.01 for the control.

Variation over the life cycle of the correlated response on weight

The growth of the selected and control line as well as the selection response
are plotted in Figure 4. The selection response starts from 4% at 89 days, then
grows until 386 days, when it stabilises around 130%, before decreasing to
94% at 588 days.

4. DISCUSSION

This experiment yielded a large response to selection. As a reference, figures
obtained in other salmonid breeding programmes are usually lower: 13% and
14.4% per generation on weight in rainbow trout and salmon (respectively)
in Norway [16] using combined selection, 12.5% per generation on weight
of Atlantic salmon in Canada [29] with the same procedure, and 10.1% per
generation on coho salmon in Canada [19] with family selection.

However, since we did not experimentally compare it to any other method, it
cannot be stated that these good results are specific to the method rather than to
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Figure 4. Establishment of the selection response for weight in the first two years in
the 4th generation of selection offspring in brown trout. � selected line, © control line,
� selection response (%).

the stock. Moreover, family and combined selection also often include inbreed-
ing control and selection on traits other than growth, limiting the potential gain
on this last trait, which was not the case in our experiment.

Since our response is estimated as a contrast between the offspring of a
random bred control and the offspring of the selected line, one possible reason
for the large response would be a negative trend on the genetic value of the
control, caused by inbreeding or random drift. This could be partly supported
by the values of the control at each generation (Tab. II), which may however
also be due to between years variation which may be very high in fish, due
to their sensitivity to the environment. The variations observed may also be
partly explained by the age at which the fish are measured, which varied among
experiments.

The two response experiments (generations 2 and 3) that use the synthetic
line as a tester tend to show higher relative responses than the experiments us-
ing pure selected and control lines. As noted before, heterosis may exist but
should be the same for both CON*SY and SEL*SY crosses, since CON and
SEL are derived from the same base population. However, this type of cross
should also give a higher relative value to an inbred line, compared with its
value as a pure line. It is well known that selection tends to increase inbreed-
ing, and that inbreeding depression on growth exists in fish [5, 30, 36]. If this
was the case here, this would tend to increase the contrast between SEL and



The PROSPER method for selecting fish 657

CON when crossed with another population (the SY line). This crossing effect
(which should be present in the 3rd but not in the 4th generation response es-
timate) may explain the small apparent increase between the 3rd and the 4th
generation, despite the high selection pressure applied in the 4th generation.

The response we observed on length would imply a high heritability of this
trait, in the range of 0.3−0.5. The range of estimated heritability values for
length in salmonids is large: 0.05−0.18 in rainbow trout at 16 months [6], 0.14
at 12 months in Arctic char [28], 0.32 at first winter in Chinook salmon [40],
0.36 at 13 months in coho salmon [35], 0.53 at 215 days in rainbow trout [18].
This large variation between estimates may be due to the characteristics of the
species or strains, but also to their management, as outlined in the Materials
and Methods. For example, it appears that the heritability of length in rainbow
trout seems much larger (0.18 compared to 0.05) in offspring from sorted eggs
than in offspring from dams with very different egg sizes [6]. This supports
the hypothesis that adequate management of maternal effects may increase the
response to selection.

The selection process was based on length, which is not an economic trait
per se but which is much faster and reliable to measure than weight in out-
door conditions. The correlated response on weight was very high, which may
originate from a high genetic correlation between length and weight, a high
heritability of weight at one year of age, and of course the high phenotypic
coefficient of variation of weight when compared to that of length. A larger
heritability for weight than for length is, however, not supported by the liter-
ature, since all the references cited before for length around 1 year display a
similar or lower estimate for weight at the same age.

The selection on length, although it increased the weight of the selected
line, did not increase the condition factor at a given age, and even tended to
produce leaner fish (if compared at the same size). This demonstrates a proba-
ble negative genetic correlation between length and condition factor. This type
of negative correlation has been seen at 1 year in Arctic char (−0.17, [28]) and
in carp (−0.38, [38]).

The shape of the response curve in the first two years of growth, as ob-
served in offspring from the 4th generation, is interesting. It starts quite low
(4%) at 100 days post fertilisation, and grows quickly to 50−60% around
150−200 days post fertilisation (corresponding to the usual time of the first
challenge), then it grows regularly until it stabilises at 130% between 386 and
470 days (corresponding to the time where most of the selection pressure has
been applied), and then decreases. This shows that the genetic correlation of
growth rate over the different periods is lower than unity (especially for growth
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before the first challenge and after the last one). Clearly, the response is max-
imal at ages around the last challenge, so later challenges may in theory be
useful for increasing the growth of large fish, although they may be perturbed
by the sexual maturity which modifies the relative growth rates of maturing
males, females and immature fish.

We have shown that the “PROSPER” selection scheme can in theory be
more efficient than simple mass selection, and we demonstrated in practice
that it could yield good results in brown trout over four generations. However,
if the overall process is efficient, we still do not know whether it is more effi-
cient than simple mass selection, and whether its main features (constitution of
fertilisation groups, recurrent challenges) provide significant improvement or
not, compared to mass selection. Further investigations, especially in the field
of competitive interactions, and control of maternal effects and inbreeding are
therefore needed.
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