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Crop Yield Assessment from Remote Sensing
Paul C. Doraiswamy, Sophie Moulin, Paul W. Cook, and Alan Stern

Abstract
Monitoring crop condition and production estimates at the
state and county level is of great interest to the U.S. De-
partment of Agriculture. The National Agricultural Statisti-
cal Service (NASS) of the U.S. Department of Agriculture
conducts field interviews with sampled farm operators and
obtains crop cuttings to make crop yield estimates at
regional and state levels. NASS needs supplemental spatial
data that provides timely information on crop condition
and potential yields. In this research, the crop model EPIC
(Erosion Productivity Impact Calculator) was adapted for
simulations at regional scales. Satellite remotely sensed
data provide a real-time assessment of the magnitude and
variation of crop condition parameters, and this study in-
vestigates the use of these parameters as an input to a crop
growth model. This investigation was conducted in the
semi-arid region of North Dakota in the southeastern part
of the state. The primary objective was to evaluate a method
of integrating parameters retrieved from satellite imagery
in a crop growth model to simulate spring wheat yields at
the sub-county and county levels. The input parameters
derived from remotely sensed data provided spatial in-
tegrity, as well as a real-time calibration of model simulated
parameters during the season, to ensure that the modeled
and observed conditions agree. A radiative transfer model,
SAIL (Scattered by Arbitrary Inclined Leaves), provided the
link between the satellite data and crop model. The model
parameters were simulated in a geographic information
system grid, which was the platform for aggregating yields
at local and regional scales. A model calibration was per-
formed to initialize the model parameters. This calibration
was performed using Landsat data over three southeast
counties in North Dakota. The model was then used to
simulate crop yields for the state of North Dakota with in-
puts derived from NOAA AVHRR data. The calibration and
the state level simulations are compared with spring wheat
yields reported by NASS objective yield surveys.

Introduction
Monitoring agricultural crop conditions during the grow-
ing season and estimating the potential crop yields are
both important for the assessment of seasonal production.
Accurate and timely assessment of particularly decreased
production caused by a natural disaster, such as drought
or pest infestation, can be critical for countries where the
economy is dependent on the crop harvest. Early assess-
ment of yield reductions could avert a disastrous situation
and help in strategic planning to meet the demands. The

National Agricultural Statistics Service (NASS) of the U.S.
Department of Agriculture (USDA) monitors crop condi-
tions in the U.S. and provides monthly projected esti-
mates of crop yield and production. NASS has developed
methods to assess crop growth and development from sev-
eral sources of information, including several types of sur-
veys of farm operators. Field offices in each state are re-
sponsible for monitoring the progress and health of the
crop and integrating crop condition with local weather in-
formation. This crop information is also distributed in a
biweekly report on regional weather conditions. NASS pro-
vides monthly information to the Agriculture Statistics
Board, which assesses the potential yields of all commodi-
ties based on crop condition information acquired from
different sources. This research complements efforts to in-
dependently assess crop condition at the county, agricul-
tural statistics district, and state levels.

In the early 1960s, NASS initiated “objective yield” sur-
veys for crops such as corn, soybean, wheat, and cotton in
States with the greatest acreages (Allen et al., 1994). These
surveys establish small sample units in randomly selected
fields which are visited monthly to determine numbers of
plants, numbers of fruits (wheat heads, corn ears, soybean
pods, etc.), and weight per fruit. Yield forecasting models
are based on relationships of samples of the same maturity
stage in comparable months during the past four years in
each State. Additionally, the Agency implemented a mid-
year Area Frame that enabled creation of probabilistic
based acreage estimates. For major crops, sampling errors
are as low as 1 percent at the U.S. level and 2 to 3 percent
in the largest producing States.

Accurate crop production forecasts require accurate
forecasts of acreage at harvest, its geographic distribution,
and the associated crop yield determined by local growing
conditions. There can be significant year-to-year variability
which requires a systematic monitoring capability. To
quantify the complex effects of environment, soils, and
management practices, both yield and acreage must be as-
sessed at sub-regional levels where a limited range of fac-
tors and simple interactions permit modeling and estima-
tion. A yield forecast within homogeneous soil type, land
use, crop variety, and climate preclude the necessity for
use of a complex forecast model.

In 1974, the Large Area Crop Inventory Experiment
(LACIE), a joint effort of the National Aeronautics and Space
Administration (NASA), the USDA, and the National Oceanic
and Atmospheric Administration (NOAA) began to apply
satellite remote sensing technology on experimental bases
to forecast harvests in important wheat producing areas
(MacDonald, 1979). In 1977 LACIE in-season forecasted a
30 percent shortfall in Soviet spring wheat production that
came within 10 percent of the official Soviet estimate that
came several months after the harvest (Myers, 1983).
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The LACIE project used the Landsat Multispectral Scan-
ner (MSS) data to identify crops and their harvested acreage.
Global weather data from World Meteorological Organiza-
tion (WMO) stations were used in simple crop models to
predict yields. These models were primarily statistical mod-
els that correlated yields with parameters such as air tem-
perature and precipitation. Ground-based data on crop iden-
tification, crop condition, and yields were used in crop
classification and model forecasts. Completed in 1978, the
LACIE project showed that remote sensing can provide
timely information on foreign commodity production which
was significantly more accurate than the data generated by
existing data collection methods.

The successor to LACIE was a joint program for Agricul-
ture and Resources Inventory Surveys Through Aerospace
Remote Sensing (AgRISTARS) which began in 1978, and fol-
lowed most of the same objectives with respect to crop in-
ventory and production assessment (AgRISTARS Program,
1981). There were other areas investigated, which are out-
side of scope of this paper. During the six-year program,
there were major advancements in automation of large area
crop classification (Hixson et al., 1981) and crop condition
assessment (Boatwright and Whitehead, 1986). A series of
field experiments were sponsored by AgRISTARS to under-
stand the spectral characteristics of major U.S. grain crops
that led to improved accuracies in classification and better
understanding of the link between temporal spectral changes
and agronomics (Bauer et al., 1980; Daughtry et al., 1984;
Gallo et al., 1985). Another area of focus was the use of
deterministic models to predict crop yields. Doraiswamy
et al. (1979) provided an inventory of various crop yield
models, including statistical and deterministic methods for
the project. The performance of deterministic models for
large area forecasts depended on the availability of local
climatic data with adequate spatial resolution. Use of re-
motely sensed data was limited to studying the temporal
changes in vegetation condition such as crop growth and
development. Cloud contamination further reduced the
limited Landsat temporal coverage for the crop season, and
crop information could not be used in yield models.

Integration of remotely sensed data in crop yield mod-
els evolved during the next decade of research based on
field experiments and advances in biophysical modeling.
The need for linking real-time remotely sensed data initi-
ated research on retrieval of biophysical parameters from
satellite imagery. This paper summarizes the recent advances
in the integration of parameters retrieved from remotely
sensing imagery in crop models and presents an example of
its application for an operational program in the USDA.
One objective of this study is to demonstrate a framework
for scaling-up crop yield simulations using remote sensing
data. Currently, the climate and satellite data are available
within weeks of acquisition and can provide data for oper-
ational assessment of crop yields. The timely evaluation of
potential yields is increasingly important because of the
economic impact of agricultural products on world mar-
kets.

Background
Remote sensing technology applications for monitoring
vegetation condition has been studied extensively during
the past several decades, providing timely assessment of
changes in growth and development of agricultural crops.
The normalized difference vegetation index (NDVI) derived
from the visible and near-infrared (NIR) bands of the NOAA
AVHRR satellite has been successfully used to monitor veg-
etation changes at regional scales (Tucker et al.,1983). Tem-
poral changes in the NDVI are related to net primary produc-
tion (Malingreau et al., 1986; Goward et al., 1987; Prince,

1991). Tucker and Sellers (1986) provided a theoretical
background to relate primary production estimates based
on the absorption of photosynthetically active radiation
(PAR) by the canopy. Satellite observations can also provide
an estimate of biomass. Earlier field studies conducted by
Daughtry et al. (1983) and Asrar et al. (1985) provided ex-
perimental validation of this theory that relates spectral
reflectance to biomass production of vegetation at field and
regional scales.

Using NDVI derived from NOAA AVHRR data to estimate
crop yields is an extension of the above concept. Studies
have shown that the seasonal accumulated NDVI values are
correlated well with the reported crop yields in semi-arid
regions (Groten, 1993). Doraiswamy and Cook (1995) fur-
ther demonstrated that accumulating the NDVI values for
spring wheat only during the grain-fill period improved
the estimates of potential crop yields in North Dakota. Using
a Landsat classification of spring wheat for North Dakota, a
crop mask was developed to help retrieve the NDVI values
for primarily spring wheat crop. Although the results were
encouraging, the relationships seemed to be valid only for
the study areas and required adjustment for differences in
soil background and the mixture of crops in the area be-
cause of the low resolution (1.1 km) of the NOAA AVHRR
data.

Physiology-based crop growth models have been used
successfully for predicting crop yields at the field level
(Engel et al., 1997; Sinclair et al., 1997). These models
require numerous inputs that are specific to the crop, soil
characteristics, management practices, and local climatic
conditions. These models have had limited use because
fewer inputs are generally available at larger than field
scales. Additionally, satellite remote sensing technology
has been shown to be capable of providing certain crop
characteristics and a real-time snapshot of changes in
conditions affected by weather related events. Growth
models simulate biophysical processes in the soil-crop-
atmospheric system to provide a continuous description of
growth and development. Combining such a growth model
with input parameters derived from remotely sensed data
provides spatial integrity as well as a real-time “calibra-
tion” to simulations of model parameters (Maas et al., 1988;
Maas et al., 1992; Maas et al., 1993; Guerif et al., 1993;
Moulin et al., 1995; Doraiswamy et al., 2001). Earlier stud-
ies conducted at field scales have shown that remotely
sensed data could be incorporated in simulations of agri-
cultural crop yields to calibrate or adjust parameters dur-
ing the simulation period to ensure that the modeled and
satellite observed conditions agree.

Several crop growth models were examined for their
ability to predict yields for regional assessments with only
a few climatic and management input parameters. Soil mois-
ture conditions during the crop season are one of the key
factors in determining crop yields in rainfed agriculture.
Thus, a crop model with a robust and accurate soil-water
budget component is required. The EPIC (Erosion Productiv-
ity Impact Calculator) model developed by Williams et al.
(1984) was selected to simulate spring wheat crop growth
and yield. The model includes weather simulation, hydrol-
ogy, erosion-sedimentation, nutrient cycling, pesticide fate,
plant growth, tillage, soil temperature, and crop and soil
management components.

The EPIC model is a mechanistic growth model describ-
ing the potential growth of the crop as a function of solar
irradiation, air temperature, precipitation, and crop charac-
teristics. Potential biomass is adjusted daily as a function
of five plant stress factors (water, temperature, nutrient,
aeration, and root growth). The EPIC model has evolved over
the past decade into a widely used model and has gone
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through rigorous testing under various environmental con-
ditions. Its ability to simulate yields of grain sorghum,
wheat (Steiner et al., 1987), and corn (Bryant et al., 1992)
has been very satisfactory. In southern Alberta, Canada,
yields of spring wheat and spring wheat rotations were
simulated accurately by EPIC (Toure et al., 1995). Nutrient
(total nitrogen, organic phosphorous, and carbon) predic-
tions for a three-year rotation (cotton-grain sorghum-wheat)
were also found satisfactory (Smith et al., 1990). Hydrologic
processes, runoff, percolation, and evapotranspiration, sim-
ulated by the model, were in good agreement with observed
values (Steiner et al., 1987; Meisinger et al., 1991; Edwards
et al., 1994). However, conducting validation procedures is
critical for specific crops in the study region before using
simulated data in further analyses (Tanji, 1982; Addiscott
and Wagenet, 1985).

The integration of remotely sensed data with a crop
growth model can be achieved by using two distinct meth-
ods. In the first method, model initialization is done by
estimating crop parameters from remote sensing data and
using these parameters as a direct input to the growth
model (Maas, 1988). Crop parameters successfully used in
this method are measures of light interception by the
canopy, namely, leaf area index (LAI) and crop canopy cover.
In a second method, a time series of remotely sensed mea-
surements is used to calibrate the crop growth model.
Maas (1988) adjusted the simulated values of LAI to match
the LAI estimates from reflectance measurements observed
from the Landsat satellite. The LAI was correlated with
NDVI from imagery. The limitation here is that the regression
between NDVI and the LAI is not constant at all locations in
the same scene. This method is suitable for smaller study
areas such as a watershed. This second approach can be
improved by simulating LAI from satellite imagery using a
radiative transfer model (Verhoef, 1984). The simulation
requires satellite imagery with inputs of leaf optical prop-
erties and canopy geometry. Moulin et al. (1995) success-
fully used this approach, simulating LAI for wheat crop
from temporal variation of spectral reflectance at field and
local scales. Simulated LAI from SPOT satellite image was
directly linked to a model to predict crop yields.

The objective of this research is to test the applicabil-
ity of remote sensing data as a means of adjusting simula-
tions of crop yields at the local level. A radiative transfer
model provided the link between satellite data and crop
growth model. This procedure also provides a mechanism
for scaling-up from a point simulation to a spatial repre-
sentation of variability in crop yields at regional scales. A
geographic information system (GIS) is used to aggregate the
data layers for determining the yields at the sub-county
and county levels in North Dakota. This study initially
focused on the 1994 crop season, and after the successful
application of AVHRR data, three more years of data (1995,
1997, and 1998) were analyzed. The 1996 season was not
analyzed because of excessive cloud cover during critical
periods of crop development.

Materials and Methods
Study Area
Spring wheat is the predominant crop grown in the state of
North Dakota, located in the northern Midwestern region
of the U.S. Because spring wheat is grown under rain fed
conditions, the seasonal variability in rainfall patterns con-
tributes to the variability in crop yields from season to sea-
son. Other predominant crops cultivated in the study area
included spring barley, sunflower, and corn. Pasture is gen-
erally found on the less productive soils. Farmers grow
spring wheat in this area on soils dominated by loams and

clayloams with dark to black soil surface and limy sub-soils
or sandy loams and loams with sandy or gravelly substrata.
The total spring wheat acreage in North Dakota reported by
NASS/USDA was approximately 9.1 million acres (3.7 million
ha) in 1994 (NDASS, 1995).

This research was conducted in two phases. In the first
phase, the procedure of linking a radiative transfer model
with a crop yield simulation model was evaluated at the
sub-county level where yield data from local farms were
collected. For the first phase of this study, Sargent, Ran-
som, and Richland counties in the southeastern corner of
North Dakota were selected. The eastern part of the state
has a greater amount of spring wheat because the soils and
climatic conditions are less harsh than in the western
part of the state. The rainfall in eastern North Dakota from
April to September averages 355 to 457 mm. Sargent and
Ransom counties contain 120,000 acres (50,000 ha) each of
spring wheat and Richland county contains 210,000 acres
(85,000 ha) (NDASS, 1995). The Landsat TM data were used
in this phase of the study to evaluate the potential for inte-
grating parameters derived from remote sensing imagery
into crop yield simulation models.

In the second phase of this study, the integration of re-
mote sensing parameters with crop simulation models was
extended to the entire state of North Dakota. The NOAA
AVHRR provided almost daily coverage and was used for
monitoring crop condition in North Dakota.

Processing of Satellite Data 
Landsat TM image data for two clear days (28 May and
30 June 1994) over the three counties were processed. Imagery
was in the UTM projection, and registration to map control
points was accomplished by using the Land Analyses Sys-
tem software. Digital counts were calibrated to radiances to
obtain surface reflectance. The NDVI for each pixel was cal-
culated using the red and NIR reflectance as follows:

NDVI � (NIR � RED)/(NIR � RED). (1)

For Landsat, the red (TM3) and NIR (TM4) bands are 0.63
to 0.69 and 0.76 to 0.90 mm, respectively. The red (Band 1)
and NIR band (Band 2) for NOAA AVHRR are 0.58 to 0.68 and
0.725 to 1.1 mm, respectively.

For the second phase of the study, daily coverage of
NOAA AVHRR data (1-km resolution) was acquired for the
State of North Dakota. The first two bands of AVHRR data
were screened for clouds, calibrated, and corrected for at-
mospheric attenuations using the 6S model (Vermote and
Roger, 1996). The AVHRR swath is 2048 km in width and is
ideal for monitoring large areas. Only the center 1020 pix-
els were retrieved from this swath to minimize the distor-
tion of pixels at the edge of the scene. The registration
error of the AVHRR imagery is less than 1 pixel. 

Climate Data
Daily maximum and minimum temperatures and precipita-
tion were acquired from 79 stations. Stations are maintained
and operated by NOAA’s National Climatic Data Center
(NCDC). In the first phase of this study, daily weather data
were acquired from a total of five climate stations within the
three counties (Sargent, Ransom and Richland). Additional
weather data from stations in the surrounding counties were
also used to extrapolate data for locations in the three-
county area. Solar radiation data is generally not available
at the NCDC weather stations and were simulated using the
standard equations applied for specific geographic coordi-
nates. The ARC/INFO geographic information system (GIS) was
the platform for maintaining all the data layers and spatial
extrapolations were done within this environment.
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Soils Data
The major soil groups were identified from the General
Soil Map of North Dakota and from the County Soil Survey
Report published by the North Dakota Agricultural Experi-
ment Station and the Natural Resources and Soil Conserva-
tion Service (SCS, 1991). Soil physical and chemical prop-
erties were obtained from the EPIC soils database for North
Dakota. The digital form of the data was brought into the
GIS and general soil association polygons were identified as
the basic unit to run the crop growth model to obtain a re-
gional yield.

Soils in the three-county study areas are, generally,
nearly level to gently rolling with a thick black surface layer
with calcareous, claypan, or wet subsoils. Surface texture
varies from fine to coarse. Dominant soil groups in the area
are moderately well drained loams and clay loams (Forman-
Aastad, Barnes-Hamerly, Barnes-Svea, Garden-Glyndon,
and Overly-Bearden). Embden-Tiffany and Hecla-Hamar
groups are moderately well drained fine sandy loams with
rapid permeability and low water holding capacity. Renshaw
(fine loamy over sandy) is somewhat excessively drained
and has moderately rapid permeability. The Fargo series
consists of deep poorly drained fine texture soils with slow
permeability and high water holding capacity.

Data Organization
A geographic information system (GIS) was used to organize,
extract, and analyze the spatially distributed layers. The
predominantly spring wheat areas were delineated from the
land-use maps. The NDVI derived from satellite imagery was
used to develop the cell level averages to run the crop yield
model at county and state levels. The spring wheat crop
classification for the three counties and the state were ap-
plied to retrieve crop specific temporal NDVI data. A more
detailed description of the classification method is described
in the Results and Discussion section of this paper. NDVI
statistics of the wheat pixels were extracted for each soil
type for within-county crop model simulations. Weather
data required for the model simulations at the County and
State levels were generated by interpolating data from
weather stations. Soil class was the basic management units
for crop yield simulations. Crop yields were simulated at
10- by 10-km cells for the three-county study. Simulation
for the State was conducted using average data for the
county. Climate data for state-level simulation was based
on interpolation between stations within the state and sta-
tions located at the border areas outside the state.

The SAIL Radiative Transfer Model
A one-dimensional radiative transfer model, SAIL (Verhoef,
1984), provided simulated canopy reflectance in the direc-
tion of the sensor. Zara et al. (1998) used SAIL to simulate
LAI for pasture and range grasses from Landsat data. The
SAIL model required information on LAI, leaf angle distrib-
ution (LAD), leaf reflectance and leaf transmittance, and
background soil reflectance. In this study, leaf reflectance
and transmittance parameters for the Landsat TM data used
in this study for the visible band were 0.12 and 0.1, respec-
tively, and for the near-infrared (NIR) were 0.46 and 0.50,
respectively. Soil reflectance for the visible and NIR were
0.13 and 0.19, respectively. Earlier investigators have shown
that leaf optical properties differ among spring wheat vari-
eties (Pinter et al., 1985; Jackson et al., 1986). Other para-
meters required for the model included solar zenith and
azimuth angles, sensor view angle, and proportions of direct
and diffuse shortwave solar radiation. Solar angles are com-
puted as a function of latitude, date, and time of the satel-
lite overpass. The EPIC model simulated the daily LAI re-
quired as input to the SAIL model that simulated visible and

NIR bands for Landsat and AVHRR. In this research, optical
properties of spring wheat varieties grown in North Dakota
were selected based on prior studies.

Crop Growth Model Calibration
The EPIC model was selected for this research, and NDVI was
the remotely sensed data that was used to integrate spatial
information to the crop model. Crop simulation was con-
ducted at the sub-county level by organizing data layers of
climate, soil physical properties, surface reflectance, and
NDVI in a GIS within each soil type, represented by a sepa-
rate polygon. First, location parameters, weather data for the
1994 growing season, soils data, and crop specific parame-
ters provided in the EPIC model were used as inputs to the
model. In general, sowing and maturity dates of crops are
available at the county level but not for model simulations
at point locations. The model was initially run using the
reported state average dates for planting and maturity to
establish the number of growing degree days required from
emergence to maturity. Once the growing-degree-days (base
temperature of 0o C) is established, only the planting date
is required as input while maturity dates were automati-
cally determined according to the specified number of grow-
ing degree-days from emergence. The planting date used in
the study was the historic average date provided by the 1993
North Dakota State Statistical Report. The calibrated model
was then used for simulation for the 1994, 1995, 1997, and
1998 simulations.

For regional assessments, data required for compo-
nents such as tillage, erosion, and nutrient cycling was set
to optimum conditions, and the model was used to simulate
crop yields in response to soil moisture, temperature, and
other climatic factors. The advantage of the EPIC model is
that it can be set to run for minimum inputs to simulate
crop growth and development processes at a daily time
step for several different crops.

Model parameters are reinitialized in the calibration
procedure for the crop yield model. Calibrations were per-
formed for each soil association to adjust the maximum
potential LAI of the crop, the leaf area decline rate (RLAD),
and the time when green LAI begins to decline (DLAI). The
calibration procedure is shown in Figure 1. The crop model
is initially run with default parameters to generate LAI and
crop yield. The resulting daily LAI is an input to the SAIL
model to simulate reflectance in the RED and NIR spectral
range of Landsat TM or AVHRR data. NDVI values calculated
using simulated reflectance from the SAIL model are com-
pared with NDVI derived from satellite imagery. The EPIC
crop model parameters were adjusted for NDVI to be within
20 percent of the observed satellite data.

Results and Discussion
Crop Classification and Crop Data
Accurate location of the spring wheat in the county is an
important consideration in obtaining accurate results. In
the first phase of this research, the three southeast counties
were classified for land use and crop types using Landsat
TM data. USDA/NASS developed an accurate crop classifica-
tion using four dates of 1994 Landsat TM data in southeast-
ern North Dakota (Cook et al., 1996). The supervised clas-
sification was performed using ground information from the
NASS June Agricultural Survey (JAS), to establish crop cate-
gories and develop clusters for the classification. Spring
wheat was the most accurately classified crop within these
counties with an accuracy of 87.2 percent for the NASS JAS
data. The classification showed field boundaries that delin-
eate well the transition from one group of crops to the
other. Plate 1 shows the general phenological development
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of crops in the state of North Dakota. The categorization of
spring wheat developed from the NASS State Agricultural
Statistics segment data was relatively easier and more accu-
rate than for other crops because of the early planting and
maturity. Based on these analyses, a spring wheat crop mask
was generated from the Landsat TM classification.

The classification developed from Landsat data was ex-
tended to the state level using a signature extension tech-
nique that identified similar signature classes between
Landsat and AVHRR images (Stern et al., 2001). AVHRR data
were used to develop a similar crop mask from spring
wheat classification for the entire state of North Dakota.
Plate 2 shows the spring wheat crop mask based on the
percentage of spring wheat crop within a 1-km pixel. In
this study, only pixels that were categorized to have greater
than 50 percent spring wheat were used for retrieval of

NDVI values. To improve the classification, areas of inten-
sive agriculture defined by NASS stratum were used. The
AVHRR crop mask is used primarily to obtain a conserva-
tive assessment of temporal changes in spring wheat crop
within each county. Spring wheat crop acreage cannot be
assessed from AVHRR data because of the low pixel resolu-
tion. There was no attempt to separate the spring barley
and durum wheat crop cultivated in the state, contributing
to a much lower acreage compared to spring wheat.

Sensitivity Analyses
Remotely sensed satellite data enhanced crop yield simula-
tions in several ways. A sensitivity analyses was done to
understand the role of parameters that can be retrieved from
remotely sensed data. This would be the critical role of re-
motely sensed data in crop yield simulation for regional
yield assessment. NASS reports provide the average planting
dates only at the state level and not specific to a county.
The two model parameters, DLAI and RLAD, are first assessed
using remotely sensed satellite data prior to setting the
planting date. As part of the procedure to fit simulated NDVI
to a satellite observed value, the planting date is adjusted
for the grid or management unit in the case within county
simulations. When a suitable fit is attained, the planting
date is set. A sensitivity analysis is performed by selecting
a range of possible planting dates, potential maximum LAI
(LAImax), RLAD, and DLAI values for spring wheat cultivated
in North Dakota. The 1994 climate data used for these
analyses and the model responses may vary slightly from
one year to the next due to differences in the amount of
rainfall and the temporal variations.

Table 1 shows the effect of three planting dates on
spring wheat yields for different LAImax for three selected
counties. The range of LAImax expected under extreme con-
ditions of drought and ample water conditions are between
1.5 and 3.5, respectively, for a typical LRAD value of 1.5.
The yield (tonnes/hectare) variation for the same planting
dates across different  LAImax was greater than the variation
for planting dates between 10 April and 20 May. At later
planting dates the model consistently predicted slightly
lower yields, and these differences were greater at higher
LAImax . Total rainfall between January and August was
about 400 mm in 1994 and the soil moisture was not limit-
ing and therefore higher LAImax of 3.5 produced yields.
Yields for early plantings were uniformly higher than late
plantings because the grain fill periods occurred during
optimum temperature conditions in July rather than in
August.

The leaf area for grain crops declines due to leaf
senescence as the crop approaches physiological maturity.
Leaf senescence begins with yellowing of the older leaves
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Figure 1. Schematic diagram of model calibration with
satellite data and radiative transfer model.

Plate 1. The general crop phenology for the major crops
in north Dakota.

Plate 2. Classification of spring wheat as percentage of
the NOAA AVHRR pixel (1-km resolution).
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and proceeds from the lower leaves towards the top of the
canopy. In most grain crop, the LAI declines linearly after
grain filling begins. The model parameter DLAI defines the
point in the growing season when leaf area begins to de-
cline due to senescence. The typical range of DLAI for crops
is between 0.5 and 0.8, for leaf senescence beginning between
50 to 80 percent, respectively, of the crop season. Table 2
describes the effect of DLAI for different planting dates on
the final yields.

The combined influence of planting dates on the time
at which the green LAI begins to decline (DLAI) is shown
in Table 2. Later planting dates produced slightly lower
yields, which is probably a response to soil moisture con-
ditions, these differences are greater when LAI is higher. At
higher LAImax (3.5), there is a greater difference in yields
between DLAI for later planting dates. The influence of lim-
iting soil moisture conditions at mid-season may reduce
the potentially higher yields when the LAI is high. A crop
with an early planting date, and LAI of 3.5, requires a
greater amount of soil moisture throughout the season. Ad-
equate soil moisture during the vegetative growth period,

followed by limited available soil moisture, results in plant
water stress at grain-fill, thus reducing yields.

The effect of increasing LRAD (the leaf area decline
rate) parameter is shown in Table 3. For earlier planting
dates (10 April and 20 April) there is no significant differ-
ence in yields. However for a May planting date, there is a
decline in yields because the higher decline (RLAD � 1.5)
in LAI reduces the grain-fill period. The model response is
consistent and suggests that later planting dates reduces
yield because of lower moisture conditions.

Crop Yield Simulation
The use of remotely sensed imagery to monitor crop growth
and development has been demonstrated in many earlier
studies. Methods for using this information in crop models
to calibrate or modify simulations have been investigated
at field scale studies by Moulin et al., (1995). This research
proceeds to the next step in developing and adapting these
techniques of crop yield simulations to the regional level.
The 1994 North Dakota State Statistical Reports published
that planting dates for spring wheat began in mid April and
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TABLE 1. EFFECT OF PLANTING DATE ON SPRING WHEAT YIELDS FOR DIFFERENT LEVELS OF POTENTIAL MAXIMUM LEAF AREA INDEX (LAIMAX) FOR MODEL PARAMETERS
RLAD � 1.5 AND DLAI � 0.6

LAI � 1.5 LAI � 2.5 LAI � 3.5
County Planting Dates t/ha t/ha t/ha Harvest Dates

Cass 10 Apr 1.58 2.09 2.43 26 Jul
20 Apr 1.50 2.00 2.32 31 Jul
30 Apr 1.44 1.93 2.25 02 Aug
10 May 1.40 1.86 2.17 07 Aug
20 May 1.33 1.78 2.08 12 Aug

Pembina 10 Apr 1.81 2.40 2.74 07 Aug
20 Apr 1.77 2.36 2.71 11 Aug
30 Apr 1.73 2.32 2.68 14 Aug
10 May 1.72 2.29 2.65 20 Aug
20 May 1.73 2.30 2.67 25 Aug

Williams 10 Apr 1.84 2.45 2.84 30 Jul
20 Apr 1.73 2.32 2.70 04 Aug
30 Apr 1.69 2.27 2.65 06 Aug
10 May 1.68 2.24 2.60 11 Aug
20 May 1.61 2.14 2.47 17 Aug

TABLE 2. THE EFFECT OF PLANTING DATE ON SPRING WHEAT YIELDS FOR WILLIAMS COUNTY WHEN THE INITIATION OF LEAF AREA DECLINE (DLAI) IS SET TO BEGIN
AT DIFFERENT PERIODS DURING THE CROP SEASON. THE MODEL PARAMETER RLAD � 1.5

Parameter LAI � 1.5 LAI � 2.5 LAI � 3.5
DLAI Planting Dates t/ha t/ha t/ha Harvest Dates

0.50 15 Apr 1.65 2.21 2.58 31 Jul
25 Apr 1.54 2.07 2.43 05 Aug
05 May 1.50 2.02 2.37 07 Aug
15 May 1.45 1.94 2.27 17 Aug
25 May 1.36 1.83 2.14 23 Aug

0.60 15 Apr 1.89 2.51 2.92 31 Jul
25 Apr 1.79 2.39 2.77 05 Aug
05 May 1.76 2.35 2.73 07 Aug
15 May 1.71 2.26 2.60 17 Aug
25 May 1.58 2.09 2.41 23 Aug

0.70 15 Apr 2.14 2.83 3.26 31 Jul
25 Apr 2.05 2.71 3.12 05 Aug
05 May 2.02 2.67 3.07 07 Aug
15 May 1.94 2.54 2.88 17 Aug
25 May 1.75 2.29 2.61 23 Aug

0.80 15 Apr 2.42 3.17 3.63 31 Jul
25 Apr 2.30 3.02 3.45 05 Aug
05 May 2.26 2.96 3.37 07 Aug
15 May 2.12 2.76 3.08 17 Aug
25 May 1.91 2.47 2.77 23 Aug

IPC_Grams_03-905  4/15/03  1:19 AM  Page 6

670 J u n e 2 0 0 3



continued through the first week of June, and crop maturity
began in early July and continued through the end of
August. For areas in the southern part of the state where
the earliest sowing occurs, crops emerged by the first week
in May. Flowering occurred by the second week of June
and the crop reached maturity by the first week in July for
the earliest planting dates. Simulation of crop growth using
the earliest planting date and growing degree days of thir-
teen hundred from emergence to maturity agreed very well
with the observed data provided by NASS reports.

Model simulation of crop growth was calibrated with
remotely sensed data for the major soil types within each
county where spring wheat was cultivated. In the first phase
of this study, the crop yield simulations were conducted
for Sargent, Ransom, and Richland counties. Plate 3 shows
the STATSGO soil classification and results of yield simula-
tion with inputs from two Landsat images. Crop yield sim-
ulations were made at 10-km2 grids, and the results were
integrated to obtain yield for each soil class. The 1994
spring wheat yields for the three counties varied from 0.62
to 3.0 tonnes/hectare (t/ha), depending on soil types and
seasonal patterns of rainfall. Simulated yields were aggre-
gated to obtain the weighted county level yields. The model
was calibrated with the reported yields from four farms co-
operating with the NASS survey program.

The calibrated model was then used to simulate yields
for each county. The state-level spring wheat crop mask
was applied to obtain a county average NDVI from cloud-
free AVHRR images during the growing season. Simulations
were run for each county using the climatic data available
from NOAA stations within the county. Plate 4 shows the
results of the simulations for the 1994 season. The range
of yields was from 1.3 to 2.7 t/ha. In general, the eastern
part of the state had higher levels of yield than did the
western part, which has less annual rainfall. In 1994 the
rainfall was more sporadic, and there were counties with
higher yields in the western part of the state.

Figure 2 is the regression analysis of models simulated
and NASS reports on crop production for the four seasons,
1994, 1995, 1997, and 1998 shown with a 95 percent confi-
dence interval. Simulations were not conducted for the
1996 crop season because the three clear daily AVHRR im-
ages were not available during critical crop growth periods.
Comparisons of total production were made for each county
because this is the level at which NASS production is re-
ported. Analysis was performed for individual years to study
the consistency in model performance from one year to the
next when remotely sensed data were used in the model.

Figure 2a shows the range of R-square between 0.69 and
0.90 for reported and model simulations of crop produc-
tion without inputs from satellite imagery. The R-square
was between 0.8 and 0.96 for model simulations using
inputs from satellite imagery (Figure 2b). A closer evalua-
tion suggests that the simulations without inputs from
satellite imagery were not consistent from year to year
compared to results when remotely sensed inputs were used
in the model. Other model inputs may contribute to the es-
timates, and these errors may vary between seasons because
the model responses are based on environmental variables.
Among the four years studied, the lowest regression coeffi-
cient was for 1995 in both cases, with and without remotely
sensed data. Inputs from remotely sensed data to the model
adjusts the planting date and temporal dynamics of LAI that
is consistent with the actual crop growth conditions. These
are the major advantages in using satellite imagery which
may compensate for simulation errors associated with plant-
ing date, temporal changes in LAI, time of LAI decline after
its peak, and rate of senescence. The assumptions in these
assessments are that all spring wheat varieties cultivated in
North Dakota have the same average response to environ-
mental conditions and the same length of growing season.

The spring wheat production for counties are mostly
within 10 percent of the NASS reports. The outliers some-
times show large differences between reported model-
simulated productions (Figure 2b). Large differences may
be attributed to a combination of errors associated with mis-
classification using AVHRR data and model input parameters
such as planting dates. Yield reducing factors that may con-
tribute to errors in model simulations could be associated
with disease and pest infestation that are unaccounted for
in remote sensing or the crop model. Another factor that has
an effect on yield is the presence of weeds, which cannot
be assessed from lower resolution satellite imagery. A major
consideration to be noted is that NASS yield statistics are
designed to provide very accurate estimates at the State
level. County level yields are estimated and adjusted to sum
to the State level.

Conclusion
This research successfully demonstrates a method for inte-
grating remotely sensed data and a crop simulation for
monitoring crop growth and yields of spring wheat at the
county and state level in North Dakota. In the first phase
of this research, Landsat data were used to assess spring
wheat yields for three counties, and the model simula-
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TABLE 3. YIELD RESPONSE FOR WILLIAMS COUNTY AT SEVERAL LEVELS OF THE LAI DECLINE RATE RLAD WITH A CONSTANT DLAI � 0.6

Parameter LAI � 1.5 LAI � 2.5 LAI � 3.5
RLAD Planting Dates Day t/ha t/ha t/ha

0.50 10 Apr 100.00 2.00 39.40 45.40
20 Apr 110.00 1.91 2.52 2.91
30 Apr 120.00 1.86 2.47 2.84
10 May 130.00 1.84 2.42 2.77
20 May 140.00 1.73 2.26 2.57

0.60 10 Apr 100.00 1.91 2.53 2.94
20 Apr 110.00 1.81 2.41 2.80
30 Apr 120.00 1.77 2.36 2.74
10 May 130.00 1.75 2.32 2.69
20 May 140.00 1.67 2.20 2.52

1.50 10 Apr 100.00 1.84 2.45 2.84
20 Apr 110.00 1.73 2.32 2.70
30 Apr 120.00 1.69 2.27 2.65
10 May 130.00 1.68 2.24 2.60
20 May 140.00 1.61 2.14 2.47
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The 1-km resolution of the AVHRR data was obviously not
suitable for spring wheat classification. However, the sig-
nature extension technique developed from a combination
of Landsat classification and AVHRR data was suitable for
developing a spring wheat classification for predominate
wheat areas. Crop growth characteristics were monitored
from these selected areas to represent the county. Plant
disease and other yield reducing factors at the local level
cannot be detected due to the low resolution. Crop water
stress conditions that retard growth and promote early
senescence can be detected because they usually occur at
regional scales. Simulations conducted at the county level
were found to be suitable, and a four-year analysis of
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Plate 4. Spring wheat crop yields (tonnes/hectare) for
North Dakota for the 1994 crop season.

Figure 2. Regression of NASS reported spring wheat
production (tonnes � 103) and model simulations
(a) without remote sensing inputs and (b) with inputs
from remote sensing.

tions were adjusted to produce yield that matched with
farmer reported yields in the counties. The three optimum
periods when remote sensing data were most effective in
adjusting the model simulations are during the early vege-
tative phase, flowering, and senescence. The availability
of cloud-free satellite data during the critical periods gen-
erally dictates the optimum situation for model calibra-
tion. The success in using Landsat data was encouraging
for extending this technique using the lower resolution
AVHRR data for crop yield assessment in North Dakota.

Plate 3. Soil association map (a) from STATSGO for Ran-
som, Sargent, and Richland counties, and (b) the corre-
sponding yields simulated for the 1994 crop season.

IPC_Grams_03-905  4/15/03  1:19 AM  Page 8

672 J u n e 2 0 0 3



county-level yields suggests that this method improved
spring wheat crop production estimates. Results of the
simulations with and without the use of remote sensing
data suggest that remotely sensed data improves the con-
sistency of the predictions, and that significantly better
yields can be determined prior to crop harvest using re-
mote sensing data.
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