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Abstract

Chemical analysis is a crucial but often expensive and time consuming step in the characterisation of soils.
Mid-infrared diffuse reflectance (MIR-DRIFT) spectroscopy coupled with partial least square (PLS)
analysis was used to determine macro- and micronutrient concentrations of a range of alkaline soils from
southern Australia. Solid phase associations of macro- and micronutrients were also investigated using the
mineralogical information contained in the infrared spectra of soil samples. Results showed that MIR-PLS
analysis is a powerful and rapid technique for the accurate prediction of more than 15 chemical properties
from each soil sample spectrum. Correlation coefficients for MIR derived concentration versus laboratory
determined values were greater than R2 = 0.80 for soil moisture, calcium carbonate concentration, total
concentration of Mg, K, S, Fe, Al, Mn, Zn, Cu, and oxalate-extractable Al, Fe, Mn, and Si. In calcareous
soils, sulfur was associated with carbonate and conversely Mg was more related to the clay concentration
of soils. Micronutrients such as Fe, Zn, Mn, and Cu were positively associated with smectite/illite in the
clay fraction and negatively with kaolinite. The potential use of these results in partitioning model to assess
plant available micronutrients pools is discussed.

Additional keywords:  alkaline soils, mid-infrared spectroscopy, carbonates, clays. 
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Introduction

Alkaline soils represent an important proportion of world soils but are often associated with
fertility problems such as sodicity and nutrient deficiencies (Matar et al. 1992; Ford et al.
1993). Calcarosols, Vertosols, and alkaline Duplex soils, as defined by McKenzie et al.
(1999), are amongst the most common Australian alkaline soils. These soils represent the
majority of soils used for grain production in southern Australia. For example, highly
calcareous soils cover an area >1 million hectares and they produce 40% of South
Australia’s wheat crop (Holloway et al. 2001). In Victoria, alkaline sodic soils, i.e. Duplex
soils or cracking clays, represent 50% of the total agricultural area (Ford et al. 1993;
Peverill et al. 1999). The major constraints for agricultural productivity associated with
alkaline soils include micronutrient deficiencies (Zn, Cu, Mn, Fe) and/or toxicities (e.g. B),
a constant need for inputs of N and P, and poor soil physical structure resulting from
sodicity.

The agronomic potential of soils can be partly assessed using chemical analyses.
However, current methods for the determination of chemical characteristics and nutrient
concentrations in soils are both time consuming and costly. Also, chemical extractions,
generally performed to assess soil fertility, are often poor predictors of the bioavailability
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of many elements (Simpson et al. 1997; Saggar et al. 1999). Consequently there is an
increasing need to develop a rapid method to accurately assess soil chemical characteristics.
However, total concentrations may not adequately describe the relationships between
macro- or micronutrients and major soil chemistry. It may be more appropriate to model the
nutrient and micronutrient concentrations according to their relationships with soil
mineralogy, e.g. clay, iron oxides, and with the type of organic matter in order to predict
element availability. Soil fractionation procedures and sequential extractions have been
developed to address these problems (for example Chang and Jackson 1957, for
phosphorus). However, the numerous procedures available in the literature all suffer from a
lack of specificity for the extracting solution used (Barbanti et al. 1994; Flores-Vélez et al.
1996). Consequently, the distribution and binding of chemical elements among different
soil mineral phases remains difficult to determine.

Mid-infrared (MIR) spectroscopy offers a potential alternative and a much faster and
cheaper method for determining soil macro- and micronutrient concentrations. MIR has
been widely used in soil chemistry to separate and identify soil organic compounds
(Schnitzer 1965). More recently, partial least square (PLS) regression has been used for
the quantitative prediction of organic carbon and nitrogen concentrations in peats
(Holmgen and Norden 1988). However, only a few studies have reported the use of
MIR-PLS analysis for soil chemical characterisation. Janik et al. (1995, 1998) and Janik
and Skjemstad (1995) have used MIR diffuse reflectance (DRIFT) spectroscopy coupled
with PLS analyses to predict major elemental composition of a large range of Australian
soils determined by X-ray fluorescence (XRF), and other common laboratory
measurements such as pH, organic carbon, carbonate, and clay concentrations. However,
no published report exists on the success of MIR-DRIFT to predict micronutrient
concentrations in alkaline soils and on the use of the supplementary mineralogical and
organic information offered by MIR to determine the soil constituents with which
micronutrients are associated. 

The aims of this study were (i) to assess the validity of using MIR-DRIFT spectroscopy,
coupled with PLS, to determine chemical characteristics, and nutrient and micronutrient
concentrations of highly contrasting alkaline soils from southern Australia, and (ii) to use
MIR-PLS analysis to determine the major mineral phases responsible for retention of
nutrients and/or pollutants in alkaline soils. 

Materials and methods

Soil samples

Surface soil samples (10 cm depth) from 48 alkaline soils were collected from southern Australia. Soil pH
measured in 1:5 soil :water extracts according to Rayment and Higginson (1992) had a mean of 8.48 ± 0.41.
Most of the soils collected had been cropped for at least 25 years and had received regular applications of
macronutrients (especially P and N) and micronutrients (mainly Zn) at variable rates. Sampling was
performed mainly in 2 regions, i.e. northern agricultural South Australia (upper Eyre Peninsula) and
western Victoria. These regions have a Mediterranean climate with mean annual rainfall ranging from
300 mm/year for upper Eyre Peninsula to 500 mm/year for western Victoria. 

Of the 25 soils collected from western Victoria, 6 were from the Wimmera area and classified as Grey
and Brown Vertosols (Isbell 1996), 9 were from the southern Mallee and were classified as alkaline Duplex
soils, 6 were from the central Mallee and were identified as Sodosols, and 4 were from the northern Mallee
and were classified as Vertosols for two of them and as Red Brown Calcareous soils for the two other.
According to the classification of Isbell (1996), the 23 soil samples collected from Upper Eyre Peninsula
were classified as Supravescent and Hypervescent Calcarosols. The soil samples were air-dried and sieved
to <2-mm before storing at room temperature prior to analysis.
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Chemical soil analyses

Concentrations of nutrients and micronutrients in soils were determined after extraction and microwave
heating following the USEPA SW 3051A method (USEPA 1993). Ca, S, Na, B, Al, Fe, K, Mg, P, Mn, Cu,
and Zn were determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES).
Oxalate-extractable Al (Alox), Fe (Feox), Mn (Mnox), and Si (Siox) were determined according to the method
of McKeague and Day (1966). Organic carbon and organic P were measured following the procedures of
Heanes (1984) and Walker and Adams (1958), respectively. Analyses of CaCO3 were performed according
to the procedure of Martin and Reeve (1955). Air-dry moisture and moisture content at 120 cm
water-tension (water holding capacity, WHC) were determined following methods 2A1 and 2C1
respectively by Rayment and Higginson (1992).

Clay fraction extraction and characterisation

The clay fractions (<2 µm) were extracted using a procedure according to Jackson (1956) and the clay
concentration of the soils was then deduced from the total amount of clay collected from each soil sample.
Iron and aluminium oxy-hydroxides were extracted from the clay fractions when sufficient clay was present
(i.e. 32 samples) by using a citrate bicarbonate dithionite (CBD) solution according to McKeague and Day
(1966). Fe and Al concentration in the extracts were measured by ICP-AES analysis. Concentrations of
nutrients and micronutrients were also determined on the clay fractions using the procedures described
above for the whole soil sample. 

X-ray diffraction (XRD) analyses were performed on some clay fractions using a Philips PW1800
microprocessor-controlled diffractometer with Co Kα radiation, and graphite monochromator. Quantitative
analysis of the XRD data was performed using the commercial software package SIROQUANT from
Sietronics Pty Ltd. 

Infrared analysis

All spectra were recorded on a rapid scanning Fourier Transform Spectrometer (BioRad FTS-175C)
scanning at 1 scan/sec, with an extended range KBr beamsplitter and Peltier-cooled DTGS detector, and
with a full spectral range of 8300–470 cm–1 at 8 cm–1 resolution. Sampling was by diffuse reflectance from
the powdered sample surface using an off-axis diffuse reflectance accessory (Harrick DRS-3SO). Spectral
frequencies were referenced against an internal He-Ne laser to give a precision of 0.01 cm–1. A KBr blank
was used to test spectrometer performance and as a reference for the sample spectra. Acquisition and
processing of each spectrum took about 1 min per sample over 60 co-added scans. The sample absorbance
spectra were directly acquired in IBM-PC Grams-32 format (Galactic NH). 

Subsamples of soils used for chemical analysis were ground in an orbital mill with a stainless steel ball
(Siebtechniqe) to obtain a minimum particle size of 100 µm for MIR analysis. A comparison of 2 methods
was then used for MIR: (i) after 1 min of grounding, soil samples were directly scanned by MIR as neat
powders using the diffuse reflectance infrared method outlined by Janik et al. (1995), or (ii) 0.1 g of soil
samples was diluted with 1 g powdered KBr (10% w/w) and ground for 1 min. All samples were then
immediately transferred to a sample holder and the surfaces of the powders were levelled. Spectra of all
clay fractions were determined only on neat samples. 

The specific software used for both principal component analysis (PCA) and partial least squares (PLS)
was PLSplus/IQ V4.05 (Galactic) within Grams-32 (Galactic NH). The spectra were averaged over
successive 3 points segments, in order to reduce computation time. The optimum frequency range (4000–
1030 cm–1) and number of PLS terms (factors) were determined empirically to give maximum
cross-validation R2 values which corresponded to the minimum standard error of cross-validation (SECV).
In this paper, all references to regression coefficients (R2) were determined following cross-validation.
Spectra were baseline corrected and mean centered.

Partial least squares and principal component analysis

The procedure for PLS analysis was adapted from the PLS1 method of Haaland and Thomas (1988).
Essentially, an X data variable array and corresponding properties are transformed into a smaller set of
mutually orthogonal factors, which are used as subsequent predictor variables. These factors are
characterised by loading vectors which include a loading for each reflectance value (eigenspectra), loading
weights which represent the importance in the spectra with respect to concentration, and scaling terms for
the loading called scores. The original spectrum for each sample in the X array can be reconstructed from
a linear combination of loadings and scores. Most of the spectral and property information is represented
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by the first 2 loadings. The scores can be used to provide scatter plots maps of the sample variability or
combined with the PLS regression coefficients to yield predictions, whilst loading weights give qualitative
information on the correlation between the spectra and sample properties or concentrations. Although the
first loading weight is in essence a spectrum of the ‘pure’ soil components correlating most strongly with
the soil properties, subsequent loading weights show variation within this ‘pure’ component spectrum, i.e.
minor components or frequency shifts and aberrations.

A PCA using the Grams PLSplus-IQ self-prediction option for a maximum of 23 factors was performed
for the 48 neat soil samples (no outliers removed). The 4000–1030 cm–1 portion of the spectra was used
and only 2 principal components were needed to account for 90.4% of the variance.

Calibration for the determination of soil properties by PLS were carried out by means of the
‘leave-one-out’ cross-validation procedure, a method based on the algorithm developed by Haaland and
Thomas (1988). 

Six different types of calibration were performed. The first type was a calibration between the
laboratory-determined analyses and the analyses derived from MIR spectra of the whole soils (Table 1). The
same types of calibrations were then performed for samples with and without carbonate (Table 2). The third
type of calibration was performed between the laboratory-determined analyses of the clay fraction and the
MIR-derived analyses from the spectrum of the clay fraction (Table 3). A calibration was then set up with
measured laboratory analyses of the whole soil and the analyses derived from MIR of the clay fraction
(Table 3). The 2 last calibrations were performed between the measured laboratory analyses of the whole
soil and the MIR derived analyses from the spectrum of the clay fraction without carbonate and after a CBD
extraction, respectively (Table 3). 

Results and discussion

Assessing a grouping of the soil samples with common mineralogy

PCA was carried out using the PLSplus/IQ software so that sample variability according to
their spectra could be assessed. The results of the PCA are depicted in Fig. 1, which shows
a plot of scores for the principle component PC1 versus PC2 for the full set of neat soil
spectra. PC1 was characterised by strong peaks at 2600–2520 and 1800 cm–1 due to
carbonates (data not shown) and PC2 by positives peaks at 2000–1860 cm–1, which can be
associated with quartz (Nguyen et al. 1991). Peaks due to clay minerals were also observed
at 3620, 3450, 3300, and 1200 cm–1 (data not shown) (Fig. 1). In spite of the relative small
number of samples used in the training set, the PCA analyses demonstrated that only 2
factors would adequately describe over 90% of the variance. For the present study, fewer
than 11 factors were usually sufficient to describe the model (Table 1).

The laboratory data from the 48 soil samples used in this study showed a wide
distribution of physical and chemical properties (Fig. 1 and Table 1). Samples from the
central Mallee exhibited the highest amount of sand, whereas those from the Eyre Peninsula
were the most calcareous, and Wimmera and southern Mallee soils had high clay
concentrations (Fig. 1). These results agree well with the proportions of the major phases
(clay and carbonate concentrations) of the soils (Table 1). PCA coupled with near-infrared
(NIR) spectrum has been used by Stenberg et al. (1995) to improve field-sampling
protocols. They concluded that this method could reduce by up to 70% of the cost
associated with specific soil analyses and was a useful tool for the selection of field sites.
However, these authors made their evaluation with the emphasis on 5 specific soil
properties important for soil fertility, i.e. clay concentration, soil organic matter, CEC, pH,
and base saturation. Their results revealed that none of the methods tested were ideal for all
5 parameters. They finally proposed a peripheral selection from a 2-dimensional PCA plot
and pH data. In the present study, the use of PCA loadings allowed the determination of the
major mineral or organic constituents of the soil, together with a grouping of the soils as a
function of their major mineralogical characteristics. The method improves the accuracy of
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the sampling technique, by an objective selection of the soil samples directly from the
mineralogical information contained in the IR spectrum. 

Effect of sample preparation techniques on PLS quantification 

Regression coefficients for PLS cross-validation (R2) are presented in Table 1 for the neat
and KBr dilute samples. All samples were considered for PLS analysis and no outliers were
identified or omitted. Of the 19 laboratory-determined soil characteristics presented in
Table 1, only 4 relationships had R2 values <0.80 for the neat and dilute samples.
Differences in regression coefficients between dilute and neat samples were generally low
as indicated by the F-test values (Table 1), with only 1 analysis exhibiting a statistical
difference at P ≤ 0.05. Janik et al. (1995, 1998) and Nguyen et al. (1991) have stressed the
advantages of analysing neat samples by MIR as it reduces sample preparation time, and
eliminates weighing errors. However, to our knowledge no comparison of neat or KBr
incorporated (dilute) soil samples has ever been published for the determination of soil
properties by MIR-PLS. Our results prove that MIR of neat samples correlates well with a
wide range of chemical analyses except for the determination of water holding capacity in
soils (Table 1). However, even if the MIR-PLS regression coefficient, using the dilute
method, was better in this case than for neat samples, there are several problems using the
dilute method. The dilute method may have interferences that influence the regression
coefficients, such as matrix effects that cause ion exchange (Piccolo and Stevenson 1982)
or adsorption of water onto the particles used for the dilution, i.e. KBr. Consequently, taking
into account the reduced sample preparation time and the elimination of possible artefacts
resulting from the addition of KBr to the sample, there are significant advantages in
utilising the neat sample method. 

PLS quantification of macro- and micronutrient concentrations

Regression coefficients (R2) for nutrients such as Mg, K, and S were >0.80 (Table 1). In
contrast, the R2 for P, one of the more important nutrients, was only 0.60. Likewise,
regression coefficients for organic carbon and organic phosphorus were <0.60. However,
Janik et al. (1995, 1998) found a good correlation (R2 = 0.92–0.93) for the determination
of organic carbon in soils by MIR-PLS analyses. The reasons for the poor regression

E E

E

E

E

E

E

E
E

E E

E

E

E

E

E
E

E
EEE
E

W

W
WS

S
S
S S

SS
S

S

W
W

W

C
C

C

C

C

C

NNN

N

E
(Carbonate)(Clay)

(Sand)

PC1

PC2

Fig. 1. Plot of the principal 
component analyses (PCA) score 2 
v. score 1, where carbonate and clay 
peaks are strong in score 1 and sand 
in score 2. The full soil spectra set, 
i.e. 48 samples, was considered. 
The letters indicate the region of 
sampling: (E) Eyre Peninsula; (W) 
Wimmera; (S) Southern Mallee; 
(C) Central Mallee; and (N) 
Northern Mallee.



Assessing soil properties by MIR-PLS 1347

coefficients for organic C and P in these alkaline soils are unclear. It is known that
carbonates adsorbed strongly near 2900 and 1450 cm–1, a similar region to that of organic
C. It is not unreasonable, therefore, that there might be significant interferences in these
spectral regions leading to a decrease in the predictions accuracy for organic C. In the case
of organic and mineral P, the range of concentrations studied was wide. Consequently, due
to the variable nature of P associations in soils, such as Ca-P, Fe-P, Al-P compounds, there
are few uniform phases which can be identified by MIR within this soil set. 

Regressions obtained in this study are limited to alkaline soils. As shown in Table 1, the
values of standard errors of cross validation (SECV) are generally larger than the minimum
concentrations, so predictions for unknown samples at low concentrations should be
interpreted with caution.

Micronutrient concentrations correlated highly with spectral features determined by
MIR-PLS (Table 1). Janik et al. (1998) reported that DTPA-extractable Fe, Mn, Zn, and Cu
were difficult to predict by MIR-PLS with regression coefficients (R2) of 0.55, 0.57, 0.24,
and 0.20, respectively. They concluded that MIR was unlikely to provide quantitative data
when (i) the soil property being predicted was not related to the major constituent of the
soil, or (ii) the soil solution concentrations were too low, or not in equilibrium, with the
solid phases. DTPA extractions were probably less related to the soil constituents than those
using stronger extractants such as oxalate. In addition, oxalate extractions are well known
as extractants for the amorphous fraction of iron and aluminium oxides in soil and
consequently are directly related to soil mineralogy (Schwertmann 1964). 

The correlations of spectral features with micronutrient concentrations were
surprisingly good, considering the low elemental concentrations (Table 1). For example, Cu
and Zn concentrations ranged from 3 to 22 and 4 to 41 mg/kg, respectively. Such small
changes in concentration over a wide range of alkaline soils cannot be measured directly by
MIR, and the correlations are probably related to other soil properties involving the major
soil components. Malley et al. (1999) have shown that NIR was able to predict Mn
concentration in 28 Canadian soil samples from 3 boreholes down to a depth of 10 m.
However, all their soils were from one soil type and one location and it was concluded that
their results could not be used for prediction in other soil types or location. 

Compounds consisting of metal cationic species such as Mn, Cu, Zn, and to a lesser
extent Al and Fe can absorb strongly in the mid- and near-infrared wavelength bands. Their
direct detection at such low concentrations (<100 mg/kg), however, is probably not
possible. The good regressions obtained may be due to the association of these metals with
strongly O-H absorbing groups, such as those present at the surface of clays or organic
matter (Krischenko et al. 1992), or to their association with CO3

2– groups (Ben-Dor and
Banin 1990). Nevertheless, Fig. 2 shows a linear plot of the data along the regression line
for Fe, Cu, Zn, and Mn, and a similar relationship was obtained for Al, Feox, Alox, and Mnox.
The SECV values (Table 1) were generally lower than the minimum measured
concentrations for Mn, Zn, and Cu, which indicates the high quality of the regressions over
the range of concentrations studied. 

Figure 3a depicts the first loading weight for Fe. This loading weight is characterised by
the spectral signatures of soil components correlating with Fe concentration, e.g.
Fe-oxy-hydroxides and Fe substitution within carbonates and clays. This loading weight
was also characteristic for the other trace elements (Cu, Zn, Mn), which are apparently
associated with similar soil mineralogy. As already shown by Janik et al. (1995), generally
the first few PLS loading weights are sufficient to describe the main relationships between
soil mineral phases and measured chemical properties. The first weight spectrum for Fe,
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typical of those for the other metal concentrations in soils (Fig. 3a), showed strong positive
peaks, which after comparison with standard materials (Fig. 4) were attributed to 2:1 layer
alumino-silicate clay minerals such as smectites, illites, and interstratified illite/smectites
and kaolin/smectites. These clay phases are characterised by broad bands near 3632 cm–1,
between 3500 and 3200 cm–1, and near 1260–1191 cm–1, and a small but sharp peak due to
kaolinite at 3698 cm–1 (Fig. 3a). Dominant negative peaks in the first loading weight
spectrum were assigned, according to Fig. 4, to lime (calcium carbonate), with peaks at
2875 cm–1, 2590–2516 cm–1, 1795 cm–1, and 1494 cm–1. 

To confirm the correlation effect of high carbonate concentrations on the loading weight
of some of the samples, an additional PLS analysis was performed using only those samples
with no detected carbonate (Fig. 3a2). The first loading weight for Fe, depicted in Fig. 3a2
and also typical of the first loading weights for the other trace metals, was now dominated
by positive peaks due to clay minerals at 3641–3597 cm–1, 1630 cm–1, and at 1194 cm–1,
and according to Fig. 4 negative peaks due to quartz (sand) near 2238 cm–1 and
1993–1791 cm–1 (Nguyen et al. 1991). Minor negative peaks characteristic of alkyl species
for organic matter were observed near 2925–2856 cm–1, and near 3711–3700 cm–1 and
3625 cm–1 for kaolinite. The clay mineral peak at 3597 cm–1 was near 3605 cm–1 for the
Fe-rich Mulloorina illite illustrated in Fig. 4. This result suggested that trace metal
concentrations were positively correlated with clay minerals, most probably smectite and
Fe-rich illite, and inversely correlated with quartz, carbonate when present, and organic
matter. 

The second loading weights for Fe, Mn, Cu, and Zn are illustrated in Fig. 3b. These are
characterised by strong positive peaks at 1993–1812 cm–1 due to quartz and weaker peaks
near 3700 cm–1 and 3600 cm–1 due to kaolin and illite, respectively. The kaolin peak is
particularly strong for Mn and Cu, and almost absent for Zn, suggesting a slightly different
relationship with soil clay. The appearance of positive quartz peaks may be explained by an
attempt by the PLS procedure to account for non-linearity in the intensity of the
mid-infrared diffuse reflectance spectra due to quartz of varying particle size, but this
explanation is purely conjecture. As for the first loading weight, negative organic alkyl
peaks can be observed for all metals.
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Effect of CaCO3 concentrations on PLS quantification

The regression relationships for micronutrients may have been affected by a dilution effect
due to the quartz, carbonate, and clay concentrations of the sample. Soils having a low
concentration of clay were also those with the lower total micronutrient concentrations
(Fig. 5). In addition, samples with the highest amount of sand also contained the lowest
amount of clay and, to a lesser extent, carbonate (Fig. 1). Consequently, the dilution effect
by sand and/or carbonate could possibly explain the resulting regressions. To test this
hypothesis, the MIR-PLS relationships were split on the basis of the carbonate
concentrations of the samples. The median value of 2% CaCO3 was chosen arbitrarily to
split the data set into 2 portions, as it allowed for a similar number of samples in the 2 new
data subsets (Table 2). For neat samples with <2% CaCO3, the regression relationships were
significantly better for organic carbon, organic phosphorus and magnesium, and conversely
poorer for potassium, sulfur, oxalate extractable Al and, as expected, CaCO3. Thus, the
presence of CaCO3 adversely affected the relationship between spectral data and organic
carbon regressions. The large difference obtained for the regression coefficients of organic
carbon (Table 2) may be explained by a lack of specificity of organic carbon peaks in the
presence of high levels of CaCO3. The poor R2 value for sulfur in less calcareous soils, and
inspection of the first and second weight loading for S regression coefficients (data not
shown), indicated that S was mainly correlated with CaCO3. Since the regression for S,
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Alox, and P in samples with >2% CaCO3 (Table 2) was better than that for calcium
carbonate-poor soils (Table 2), this confirmed the important role of CaCO3 concentration
on these regressions. For P, higher regression coefficients could be obtained using a more
appropriate calibration set. Effectively, at high concentrations of P and in presence of
calcium carbonate such as in calcareous soil, the formation of Ca-P compounds is likely
(Freeman and Rowell 1981). These precipitations may cause the MIR spectra to become
atypical of the remaining calibration set leading to difficulties in predictions. The
regression coefficients for metals such as Cu, Zn, Al, and Fe were statistically independent
of the CaCO3 concentration. For Mn, the R2 was only 0.58 for samples with >2% CaCO3
compared with 0.88 for samples with <2% CaCO3. Consequently, the high Mn correlation
may have resulted from a dilution effect of carbonate on quartz, i.e. when the CaCO3
concentration increases, the quartz and clay concentrations decrease. Another possible
explanation was that Mn could be occluded in calcium carbonates particles and just not
seen by MIR in calcareous soils. However, these explanations are inconclusive, as the
differences between regression coefficients for Mn were not statistically significant
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(Table 2). Even if the regression coefficients for Zn, Cu, Al, and Fe were not influenced by
the carbonate, dilution by quartz remains one possible explanation for the good regressions
obtained. In addition, trace metal concentration was mainly related to the clay concentration
of the soils (Fig. 3). However, as the correlation between laboratory-determined clay
concentration and laboratory-determined metal concentrations for the 48 soils (Fig. 5) was
lower than the regression coefficients determined between MIR-PLS derived metal
concentrations and laboratory-determined metal concentrations (Fig. 2), we can thus
conclude that clay concentration was not the only property which influenced the
relationship. It appears from Figs 3 and 5 that the type of clay, e.g. smectite, illite, or
kaolinite, also plays an important role in the determination of metal concentrations in
alkaline soils.

Assessing solid phase associations of nutrient and micronutrient 

Table 3 represent the regression coefficients obtained from the regression of (i) measured
laboratory concentrations of the clay fraction correlated with the MIR-derived
concentrations from the spectra of the clay fraction, (ii) laboratory analyses of the whole
soil with the analyses derived from MIR of the clay fraction, (iii) measured laboratory
analyses of the whole soil with the analyses derived from the MIR spectra of the clay
fraction without carbonates and after a CBD extraction, respectively. The observation of the
clay fraction spectra (data not shown) indicates that only 23 clay samples were totally free
of CaCO3 after extraction.

A large part of the chemical elements was removed during extraction of the clay fraction
(Table 3). In most cases >30% of the trace elements were lost probably by an exchange
process with the concentrated NaCl and CaCl2 solutions used during extraction. In addition,
successive extractions were performed leading to desorption of exchangeable ions. This
may also explain the high losses of chemical elements observed. The regressions obtained
from MIR-PLS analysis performed between clay fractions and chemical analysis of the clay
fraction were high for all the elements that are typical of the clay structure such as Fe, Al,
and to a lesser extent K and Mg (Table 3). In the case of Zn, Cu, and Mn, the regression
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coefficients were poorer when the MIR-PLS analyses were performed between the clay
spectra and laboratory clay analyses rather than the clay spectra and the laboratory whole
soil analyses (Table 3). However, considering the fact that even when the regressions were
performed between the clay spectra and the laboratory whole soil analyses, the R2 values
were always >0.50, it was thus concluded, as expected, that the clay fractions played a major
role in the retention of Zn, Cu, Al, and Fe in these soils. 

For calcareous samples, regression relationships for S, Alox, Feox, Mnox, Siox, and Feox
(Table 3) with infrared spectral characteristics of the clay fraction were 10–53% better than
the regressions for the clay spectra without carbonate and laboratory determined whole soil
analyses (Table 3). These data confirmed the role of CaCO3 in the retention of these
elements in soil. For sulfur (S), for example, the regression coefficient (R2) was 53% better
in the samples containing CaCO3, thus confirming the association of S with CaCO3 as
previously suggested. The most likely form of S in these soils is gypsum, co-precipitated
with the CaCO3. Conversely, the regression for Mg was 53% better when performed from
the clay fraction spectra without carbonate (Table 3), thus confirming the same tendency
already observed in Table 2. The large difference between regressions performed between
clay spectra and whole soil analysis and CDB-clay spectra (Table 3) with
laboratory-determined whole soil analysis strongly suggests that a substantial proportion of
Mg was associated with iron or aluminium oxides possibly as well as within clay minerals.
All the regressions performed with oxalate-extractable elements improved by 20–30% in
soils containing CaCO3 compared with soils without (Table 3).

The presence of carbonate did not affect regressions from the MIR-PLS analyses
performed between the clay spectra and the laboratory whole soil analysis for Mn, Cu, and
Zn (Table 3). The weight loadings of these micronutrients (Fig. 6) confirm that they were
mainly associated with clay minerals. The first weight loading for Fe, depicted in Fig. 6,
was similar to that of Mn, Cu, and Zn (not shown) and showed positive peaks due to an

37
16

36
39

35
99

29
84

28
84 18

50

16
33

14
84

12
32

11
14

36
96

36
54

36
23

4000 3500 3000 2500 2000 1500 1000 

12
0414

37

15
6316

98

Lo
ad

in
g 

w
ei

gh
t 

Wavenumbers (cm−1)

5

1

2

3

4

OM 
I/S

K K 
OM 

I/S

I/S

Fig. 6.  First weight loadings for (1) iron and second weight loading for (2) iron, (3)
copper, (4) zinc, and (5) manganese obtained from the PLS analyses of the clay
fraction without carbonates and soil data. Minerals were identified as illite (I),
smectite (S), kaolinite (K), calcite (C), quartz (Q), and iron oxide (Fe-O).



Assessing soil properties by MIR-PLS 1353

Fe-rich 2:1 layer alumino-silicate clay mineral indicated by peaks near 3600 cm–1, 1633
cm–1, and near 1232 cm–1. In the second loading weight, negative peaks, suggesting a
negative correlation with metal, were observed at 3696 and 3623 cm–1 for kaolinite and
2930 and 2860 cm–1 for organic matter. Sharp, strong negative peaks were observed in the
second loading weight for all metals at 3696 and 3623 cm–1 due to kaolinite, near 1698 and
1563 cm–1 due to organic matter, and near 1204 cm–1 due to kaolinite. Additional positive
peaks at 2984 and 2884 cm–1 suggested some contamination by acetate used in the
preparation of the clay fractions. 

XRD (data not shown) of the clay fractions showed that samples with high
concentrations of metals, such as Mn, Cu, and Zn, had a low concentration of kaolinite and
a higher concentration of smectite. This is consistent with the infrared results, which
suggested a positive relationship with smectite/illite and negative relationship with
kaolinite. Traces of hematite were identified by XRD, but not in sufficient amounts to be
quantified. Essentially, the XRD results confirmed the spectra observed in Fig. 6.

In this study, there appeared to be no association between micronutrients, and Cu and
organic matter. Previous studies have reported that organic matter, and its differing
constituents (humic and fulvic acids), have been found to strongly bind Cu, and
consequently influence Cu availability for plants (Petruzzelli and Buidi 1976; Peverill et al.
1999). However, most of the work previously performed on the dynamics of copper in soils
was focussed on the available, or exchangeable, pool of Cu. This pool represents only a very
small fraction of the total copper in soils. As IR peaks corresponding to organic matter were
very small, they were considered to have an insignificant influence on the PLS analyses for
the regressions for Cu. It was therefore concluded that the clay concentration, and
particularly the type of clay, has more influence on the distribution of Cu concentrations in
these alkaline soils than organic matter. 

The regressions obtained from the laboratory-determined whole soil analysis and MIR
spectra of the clay fraction after CDB extraction (Table 3) were considerably poorer for Cu,
Zn, and particularly Mn after removal of the iron and aluminium oxides. Even if these
elements were mainly associated with the clay mineral as interlayer cations (smectites) or
with the clay mineral lattice, iron and/or aluminium oxides in the clay fraction also play an
important role in the retention of micronutrients and especially Mn. The CBD extraction
does not completely remove all the Fe and Al present (analyses not shown); a portion of
these elements appears to be incorporated within the clay structure. Consequently, in the
clay fraction, the relationships between the major structural elements such as Fe, Al, and Si
remained; however, the regression coefficients were poorer as expected. 

Use of a partitioning model to predict metal availability

The regression relationships determined by MIR-PLS allows the rapid analysis of soils to
determine total concentrations of several micronutrients. In terms of soil fertility, total
concentrations are not sufficient in themselves, but combined with models of metal
availability (Sauvé et al. 2000), the technique offers the possibility of rapidly determining
concentrations of available micronutrients or contaminants in soil solution. The model
proposed by Sauvé et al. (2000) uses the total concentration of elements in soils, pH, and
soil organic matter in the Eqns 1 and 2 for Zn and Cu, respectively:

log10 (Zns) = –0.55 ± 0.04 * pH + 0.94 ± 0.08 * log10 (total Zn) – 0.34 ± 0.12 (1)
* log10 (SOM) + 3.68 ± 0.31
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log10 (Cus) = –0.21 ± 0.02 * pH + 0.93 ± 0.05 * log10 (total Cu) – 0.21 ± 0.02 (2)
* log10 (SOM) + 1.37 ± 0.14 

with soil organic matter (SOM) expressed as %C, and total element concentration (total)
expressed as mg/kg of dry soil (from Sauvé et al. 2000). Zns and Cus are the concentrations
of Zn and Cu in solution as mg/L, respectively.

Figure 7 shows the relationships of MIR-derived total concentrations of Cu and Zn
versus dissolved Cu and Zn as deduced from the Eqns 1 and 2. The same relationships with
laboratory-measured concentrations are also reported. In both cases, the regression
coefficients (R2) were reduced by using the MIR-derived total concentration values instead
of the measured concentration. However, even with the reduced R2, the relationships
between MIR derived total concentration and dissolved concentration in soils remains good
(Fig. 7) and constitutes a convenient and practical rapid means of evaluating the mobile
pools of metals or nutrients. 

Conclusions

This study demonstrated that MIR-PLS analysis is a powerful and rapid technique to assess
the grouping of soil samples on the basis of their common mineralogy. In addition, in
alkaline soils from southern Australia, with the exception of mineral and organic P and C,
the regression relationships of the macro- and micronutrient concentrations could be
correctly predicted by this technique. The loading weight indicated that micronutrients
were associated with the clay fraction and dependent on the type of clay present. A positive
correlation was found between micronutrients, such as Cu, Zn, Mn, Fe, and smectite/illite,
and conversely, a negative relation with kaolinite. Manganese was exclusively related to the
content of iron and aluminium oxides, whereas Cu and Zn were related to these to a lesser
extent. Inspection of the PLS weight loadings enabled us to conclude that, in calcareous
soils, sulfur (S) was associated with carbonate and conversely that Mg was more related to
the clay concentration of soils. Taking into account that soil sample preparation with
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MIR-PLS analysis takes only about 2 min for scanning and predictions of ground samples,
and that more than15 chemical properties can be predicted using this technique, MIR-PLS
analysis provides a rapid and inexpensive technique for the assessment of several key soil
characteristics. In addition, by using MIR-PLS and a partitioning model such as the one
described by Sauvé et al. (2000) for metals, the potential bioavailability of several metal
micronutrients could be rapidly determined. For the present study, the relatively small
numbers of samples used to model the PLS analyses was clearly sufficient as a research or
pilot study on Australian alkaline soils. However, many more samples, including a larger
variety of soil types, would obviously have to be included for use as an established
analytical technique. 
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