
HAL Id: hal-02683793
https://hal.inrae.fr/hal-02683793

Submitted on 1 Jun 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Genetic parameters of the twisted legs syndrome in
broiler chickens (meat-type chicken, unordered

categorical trait, multinomial logistic transformation
Elisabeth Le Bihan-Duval, Catherine C. Beaumont, J Jacques J. J. Colleau

To cite this version:
Elisabeth Le Bihan-Duval, Catherine C. Beaumont, J Jacques J. J. Colleau. Genetic parameters of the
twisted legs syndrome in broiler chickens (meat-type chicken, unordered categorical trait, multinomial
logistic transformation. Genetics Selection Evolution, 1996, 28 (2), pp.177-195. �hal-02683793�

https://hal.inrae.fr/hal-02683793
https://hal.archives-ouvertes.fr


Original article

Genetic parameters of the twisted
legs syndrome in broiler chickens

E Le Bihan-Duval C Beaumont JJ Colleau2

1 Station de recherches avicoles, Institut national de la recherche agronomique,
37380 Nouzilly;

2 Station de génétique quantitative et appliquée, Institut national
de la recherche agronomique, 78352 Jouy-en-Josas cedex, France

(Received 14 November 1994; accepted 15 December 1995)

Summary - Genetic parameters of two types of angulations, described in the twisted
legs syndrome as ’valgus’ and bilateral or unilateral ’varus’, were investigated in two
commercial broiler strains. In the first line, 14 264 chickens of both sexes born from 111
sires, 76 maternal grandsires and 768 dams were studied. In the second line, corresponding
figures were 8 164 chickens of both sexes born from 94 sires, 71 maternal grandsires and
553 dams. Chickens were classified at 6 weeks according to the type of pathology. Since
deformities under study were unordered categorical traits, a generalized linear model using
a multinomial logistic transformation as link function was applied. Location parameters
were estimated by ’maximum a posteriori’, and variance components by ’maximum
marginal likelihood’ using a tilde-hat approximation. The model of analysis took into
account the fixed effects of the hatch and the sex as well as the random effects of the

sire, maternal grandsire and dam within maternal grandsire. ’Pseudoheritability’ of latent
susceptibility to valgus was equal to 0.16 and 0.29 in lines A and B respectively, when
estimated from the sire/maternal-grandsire component, and to 0.40 and 0.35 respectively,
when estimated from the dam component; for varus, estimates of the pseudoheritability
were equal to 0.21 and 0.24 in lines A and B when estimated from the sire/maternal-
grandsire component and to 0.30 and 0.26 when estimated from the dam component.
Higher values of the dam heritabilities could suggest the existence of maternal or
dominance effects. The average estimated genetic correlations between valgus and varus
obtained from sire/maternal-grandsire and dam components were small to moderate
(-0.31 in line A and 0.07 in line B). This agrees with clinical and anatomical evidence
which suggests that each deformity could be linked to distinct causes. Moreover, this result
questions the practice of pooling deformities when selecting against leg disorders.

meat-type chicken / twisted legs / genetic parameter / unordered categorical trait /
multinomial logistic transformation

Résumé - Paramètres génétiques des déformations du syndrome pattes tordues du
poulet de chair. Les paramètres génétiques des deux types de déformations osseuses
rencontrées dans le syndrome des pattes tordues, les valgus et varus, ont été estimés



dans deux lignées de poulet de type chair. Les différents défauts ont été diagnostiqués
à l’âge de 6 semaines sur 14 26g animaux des deux sexes issus de 111 pères, 76 grand-
pères maternels et 768 mères dans la première lignée et sur 8164 animaux des deux sexes
issus de 94 pères, 71 grand-pères maternels et 553 mères dans la seconde. Les caractères
étudiés correspondant à des données discrètes exclusives et non ordonnées, un modèle
linéaire généralisé utilisant la transformation logistique multinomiale a été appliqué. Les
paramètres de position ont été estimés par le « mode a posteriori », et les composantes de la
variance obtenues par une approximation « tilde-chapeau » du « maximum de vraisemblance
marginale». Le modèle d’analyse comportait les effets fixés des lots d’éclosion et du
sexe ainsi que ceux aléatoires des père, grand-père maternel et mère intra grand-père
maternel. Les « pseudohéritabilités» de la sensibilité au valgus pour les lignées A et B
étaient respectivement de 0,16 et 0,29 pour la voie père/grand-père maternel et de 0,l,0
et 0,35 pour la voie mère; pour le varus, les pseudohéritabilités étaient respectivement
dans les deux lignées de 0,21 et 0,24 pour la voie père/grand-père maternel et de 0,30
et 0,26 pour la voie mère. Les valeurs plus élevées des héritabilités mère pourraient
suggérer l’existence d’e,!’ets maternels ou de dominance. La moyenne des estimations de la
corrélation génétique entre sensibilités au valgus et varus obtenues par les voies père/grand-
père maternel ou mère était égale dans la lignée A à (-0, 31 et dans la lignée B à 0, 07.
Ceci confirme les résultats concernant les différences cliniques et anatomiques entre les
deux tableaux cliniques suggérant que valgus et varus pourraient correspondre à deux étio-
pathogénies différentes. Enfin, ce résultat remet en cause l’utilisation de la note globale de
présence/absence du syndrome pattes tordues comme critère de sélection.

poulet de chair / syndrome pattes tordues / paramètre génétique / caractère

polytomique non ordonné / transformation logistique multinomiale

INTRODUCTION

Selection of meat-type chickens has been aimed until now mainly at increasing
growth rate. Phenotypic change of growth rate during the past 40 years has been
spectacular: according to L’Hospitalier et al (1986), who compared eight commercial
crosses from four countries, mean daily gain between hatching day and 42nd day
increased from 20 to 47 g/day between 1962 and 1985. Even if this increase can
be partly explained by improvements in nutrition and management, it seems that
a great part of the progress is due to selection. Annual genetic gain for body
weight measured at 6 weeks estimated in two commercial meat-type strains on
large data sets, was equal to 94.6 g for the sire strain and to 72.6 g for the dam
strain (Jego et al, 1995). However, leg disorders have appeared at higher frequencies
concomitantly to this selection on growth performance. Hartmann and Flock (1979)
compared the incidence of twisted legs in commercial lines between 1963-1968 and
1977-1978. Between these two periods, the incidence measured on male offspring at
slaughter had increased from 20 to 32% (70% when including slight deformities).

Leg disorders have important economic consequences, such as a decrease of body
weight (Hartmann and Flock, 1979; Leenstra et al, 1984; Leterrier and Nys, 1992),
and culling of the most affected birds. Furthermore, as discussed by Sorensen (1989),
decreasing leg disorders should contribute to improving animal welfare. Twisted legs
are one of the most frequent deformities among leg disorders (Stuart, 1989). The



goal of this study was to estimate in two meat-type strains, genetic parameters
of the two main deformities observed in this syndrome, ie, ’valgus’ and ’varus’
angulations.

Different angulations were scored as disjoint categories, and a multinomial
sampling model was assumed. Since usual linear methods are not optimal for
such traits, the generalized linear model theory (McCullagh and Nelder, 1989) was
employed. Because scoring was considered as an unordered polytomy, a multivariate
logit transformation (Cox, 1970), previously applied in a mixed-model context
by Gianola (1980), provided the relevant link function between continuous latent
variates and expected occurrences.

MATERIALS AND METHODS

Animals

The present study was conducted on 14264 chickens born from 111 sires, 76
maternal grandsires and 768 dams in line A and 8 164 chickens born from 94 sires,
71 maternal grandsires and 553 dams in line B. Both male and female animals
were considered. Chickens in the A and B lines were kept on the floor in 14 and
11 hatches respectively. Animals were examined for twisted legs at 6 weeks of age
and the gravity of the deformity was recorded as mild or severe. According to
the suggestions of Leterrier and Nys (1992), ’valgus’ and ’varus’ angulations of
the tibiotarsal articulation were distinguished. The former is often bilateral, and
displaced tendons are observed only in the most severe cases. The latter is most
often associated with a medial tendinous displacement. ’Unilateral’ or ’bilateral’
varus were further distinguished as suggested by Riddell (1983) and Leterrier and
Nys (1992), but these data were pooled for the analysis. All animals were thus
classified as healthy, valgus or varus.

Statistical model

Let 7ri = (7ril, !i2, ... , !ri!)’ be the vector of the probabilities of the different discrete
categories in the ith (i = 1, ... , s) stratum (ie, combination of levels of the factors
involved in the model). Because an animal can only be assigned to one category at
a time, the probability of observing n2k animals in the kth (k = 1, ... , c) category
was assumed to be given by the multinomial distribution:

where ni. was the total number of observations in the ith stratum.

McCullagh and Nelder (1989) distinguished between ordinal and nominal poly-
tomous data. In the ordinal case, various categorical responses can be classified and
considered as expressions of a single latent variate in reference to several thresholds.
In the nominal case, such a classification is impossible. This is clearly our situa-
tion because physiological studies on leg disorders have led to the conclusion that



valgus and varus could correspond to different defects (Leterrier and Nys, 1992;
Riddell, 1992), ie, each of them would be related to one specific susceptibility. In
this case, the appropriate link between the latent risk variates and the observations
is less easy to set up than in the threshold model. The aforementioned logit multi-
nomial model corresponds to one possible situation, in which discrete expression
corresponds to the result of a competition between latent variates: Gianola (1982),
Judge et al (1985), and Albert and Chib (1993) remind us that the discrete observed
code corresponds to the largest value among the c underlying logistic latent suscep-
tibility variates. Let us assume these c standardized logistic latent variates to be
yi ! Y2’ ... , Y! with means Jli, Jl2, ... , Jl!, so that y* = !,2 + e2 , with Var(ei ) _ 7[2/3
and Cov(Ei, Ej) _ !r2/6. The differences between the variates Yj and a given variate

Yi (j ! i) are still logistic variates with the same standardized variance and covari-
ance (Johnson and Kotz, 1970). Assuming that y* is the largest amongst all the y*
values, the probability of observing the ith category corresponds to:

When p) and pg are known, the probability of such an event is given by the
cumulative distribution function (denoted by F) of the c &mdash; 1 variates E! - E! (i 34 i), 1
following a multivariate standardized logistic distribution. Indeed, y) < yi implies:

p) + éj < f-Li + El and E* - 6* < pg - f-Lj. Therefore (Johnson and Kotz, 1970):

Considering category c as a reference, and after reparameterization, one can write:

Similar developments can be found in Bock and Jones (1968) and Gianola (1982).
Since only c &mdash; 1 categories are independent, only c &mdash; 1 logits corresponding to the
differences between the expectations of the various logistic latent variates and the
expectation of the logistic latent variate chosen as the reference can be estimated.

Provided that the baseline ’risk’ associated with the healthy category (noted
here as the cth category) was chosen as this reference, the probabilities of response
for the ith stratum are:

where !,2k = log(7rik/7ric) was the kth (k = 1,..., c &mdash; 1) logit for stratum i.
Hence,



and, as

Inferences on location and dispersion parameters pertain to latent susceptibility
variates related to each deformity (ie, ’latent valgus’ and ’latent varus’), bearing
in mind that these parameters depend on the relevant deformity and on the
reference category. For this reason, reference to valgus and varus hereafter should
be considered as applying to the corresponding latent variables.

Genetic model

The genetic model used for logits assumed additive genetic effects and no maternal
effects. In this context, the statistical model used for logits, assuming three
categories, namely valgus, varus and healthy, can be represented by:

where !! is an (s x 1) vector, bk a (p x 1) vector pertaining to the fixed effects of
the hatch (numbers of levels were 14 and 11 in lines A and B respectively) and sex,
Ulk a (q, x 1) vector pertaining to random effects of sires and maternal grandsires
and u2k a (q2 x 1) vector pertaining to random effects of dams (within maternal
grandsires) on the kth logit. X, Zl and Z2 are, respectively, (s x p), (s x ql) and
(s x q2) known incidence matrices. Sire elements of the vector uik represent one
half of their additive direct genetic value. The maternal grandsire effect represents
a quarter of his additive genetic value, so that it is expressed as 0.5 times the
corresponding sire effect. Therefore, Zl = Zs+0.5 ZMGS, where Zs and ZMGS were

incidence matrices pertaining to sires and maternal grandsires respectively, with the
appropriate number of zero columns to give them the same (s x ql) dimensions.
Elements of the dam within maternal-grandsire vector U2k represented one half
of her additive direct genetic value for trait k deviated from the contribution of
her sire effect, which itself was equal to one quarter of his genetic value (eg, see
Manfredi et al, 1991).

As usual, genetic effects of male and female ancestors were assumed to follow a
multivariate normal distribution with E(ul) _ !J, E(u2) _ ! and

with uí = (Uíl’ Uí2) and u2 = (u21, u22). G1 and G2 are (2 x 2) matrices of
the genetic variance-covariance components for the male ancestors (either sires or
maternal grandsires) and dam within maternal grandsire effects respectively. From
previous considerations, it can be shown that element (i,j) of G1 (denoted glij)
and element (i, j) of G2 (denoted g2ij) have expectations respectively equal to
1/4 and 3/16 of the genetic variance (or covariance) pertaining to logits i and



j. Al is the relationship matrix among sires and maternal grandsires of recorded
animals. This was computed by considering relationships created by common male
ancestors occurring in the pedigree (Henderson, 1975); there were totals of 376 and
357 male breeding animals in lines A and B respectively. A2 was the relationship
matrix among the dams created by considering relationships due to common female
ancestors available in the pedigree information, ie, totals of 1625 and 1466 females
in the two lines respectively.

The linear logistic model presents peculiarities in contrast to the probit model
for ordered categorical data. In the latter, the residual variance is equal to 1, and
the marginal distribution of the underlying variate is normal. In the logistic dis-
tribution, the residual variance is !r2/3, as noted earlier. Although the conditional
(given the random effects) distribution of the latent variate is logistic, the uncon-
ditional distribution is not, because the random effects are normal. However, the
total variance in the latent scale decomposes additively. Because distribution of the
unobserved latent variate corresponds to the sum of a normal logit and a stan-
dardized logistic residual, we shall use the term ’pseudoheritability’. In this study,
pseudoheritabilities based on the variance components were: hii = 4gi2i/a!2, and
h2i = (16/3)g2ida;i where the phenotypic variance a!2 = gl2i (ie, variance be-
tween sire groups) +1/4glii (ie, variance between maternal grandsire groups) +g2!i
(ie, variance between dam groups within maternal grandsire) +7[2/3 (ie, residual
variance), ie, 2. = 1.25g,ji + g2iz + !2/3. Genetic correlations were calculated as
glij / (glii gljj )°.5 and g2ij / (g2ii g2jj )°.5 respectively, from sire/maternal-grandsire
and dam components. As mentioned above, the residual correlation is forced to be
0.5 in the logit model. Consequently, phenotypic correlations (not given) should be
considered as pseudocorrelations.

Estimation of location parameters by maximum a posteriori (MAP)

Location parameters were defined as 0’ = (b’, a’), with b’ = (b’, b’) and
a’ = (ul 1 1, u21, U!2’ U22) where b and uij are defined in equation [3]. Following
a Bayesian approach, they were estimated by maximizing the log of the posterior
density for known dispersion matrices GI and G2 according to Bayes theorem:

Such an estimation is therefore MAP. As prior information about the distribution
of b was considered to be vague, the a priori density of b, p(b), was flat. From !4!,
the log of the a priori density of a is:

where Ea was obtained from £u after sorting by trait.
For given b and a, the probabilities of each category in each population can

be obtained from expressions [2a] or !2b!; equation [1] then gives the conditional
probability of the observed data. Hence, the logarithm of the posterior density is



equal to:

Because finding the mode of L(0]£a) led to non-linear equations, the iterative
Newton-Raphson algorithm was used; first and second derivatives of L(9) with re-
spect to fixed and random effects are described in AP!e!cdix A. After rearrangement,
the system of equations providing solutions is:

where Z = [ZlZ2] and E&dquo;’ contained elements of Ed corresponding to traits 1
and 1’. Wkk(k = 1, 2) and Wkk’(k = 1, 2; k’ = 1, 2; k’ 34 k) were (s x s) diagonal
matrices:

Vfl was obtained by

where Vk was an (s x 1) vector,
Conditional probabilities !rik(k = 1, 2) were calculated from !2a!, using estimates

of b and a obtained at the round t. As already described in analyses of discrete
traits with a threshold model (Gianola and Foulley, 1983), the system of equations
providing MAP estimates can also be written in a form similar to linear mixed-
models equations; indeed, the right hand side of [6] can be expressed as:



where the yj’s are the following working variates:

Foulley (1993) presented similar results when reviewing methodologies pertaining
to generalized linear models.

Estimation of variance-covariance components

As proposed by Foulley et al (1987) in the case of the multivariate threshold model,
the dispersion parameters can be estimated by maximizing their marginal posterior
distribution using a flat prior for these parameters. Because of computational
limitations, the tilde-hat approach of Van Raden and Jung (1988) for linear models
was used in the present study instead of a more desirable expectation-maximization
algorithm approach. This method, extended to a multitrait analysis, is described in
Appendix B; approximate (or ’tilde’) solutions for the genetic effects were computed
as:

where D! is the inverse of the block diagonal part of the coefficient matrix

pertaining to the genetic effects of sex k, which is obtained from the coefficient
matrix in [6] after absorbing all the other effects and considering a block per
breeding animal (so that approximation for u is better than when using a diagonal
matrix since it takes into account correlation between the traits); Rhsk is a vector

corresponding to the right-hand-side terms in [6] after absorption of the fixed effects
and the effects of the ancestors of the other sex.

Expectation of the quadratic form Qkz! = GkiA§!3k; (k = 1, 2) is analogous to
the form obtained by Van Raden and Jung (1988):

where Dkjm is the submatrix of Dk(k = 1, 2) pertaining to traits j and m, and
M!,&dquo;,,L is the submatrix of the absorption matrix pertaining to traits m and t. This
algorithm did not recover standard errors, and methods based on second derivatives
should be considered. An even better description of uncertainty could stem from a
Monte-Carlo Markov chain implementation but would imply heavy calculations.

Numerical aspects

As described by Manfredi et al (1991), the complete analysis required three
levels of nested iterations: outermost iterations for estimation of the variance
and covariance components, the Newton-Raphson iterations for estimation of the
location parameters of the model and innermost iterations for solving the system
of linear equations corresponding to one iteration of [6]. In our case, this system
was solved using a Gauss-Seidel algorithm; these innermost iterations, as well



as iterations, for the calculation of the MAP estimates, were continued until the
following condition was reached:

Outermost iterations were stopped when the following condition was satisfied:

where gkt2! was the estimate of the covariance component relative to sire/maternal-
grandsire (k = 1) and dam within maternal grandsire (k = 2) effects and pertaining
to traits i and j at the round t.

RESULTS

frequencies of the deformities

Valgus and varus deformities were first diagnosed at 3 weeks; incidences at this age
are reported in table I (severity was not recorded at this early age). Frequencies at
the age under study, 6 weeks, are reported in table II. While valgus incidence was
already high at 3 weeks in both lines and sexes, varus deformity rarely appeared at
this age. At 6 weeks of age, both sexes differed in the incidence of valgus deformity,
which was twice as high in males (respectively equal to 63.0 and 63.8 in lines A
and B) as in the females (respectively equal to 33.8 and 35.1 in lines A and B); this
resulted from different frequencies of severe cases, which were more than 30% in
the males and close to 6% in the females. Although prevalence of varus increased
with age, this defect was markedly less developed than valgus deformity at 6 weeks.
Total frequency of varus defects was rather homogeneous between sexes; incidences
varied, according to line and sex, from 7.3 to 12.4% (table II). Moreover, very few
severe cases of varus deformities were diagnosed at 6 weeks.



Estimates of variance and covariance components

Estimates of variance and covariance components are presented in table III: esti-
mates of heritabilities and genetic correlations are given in table IV. These results
support the hypothesis that the twisted legs syndrome exhibits a genetic compo-
nent, although the precision of our estimates is unknown. For valgus, estimates
of the sire/maternal-grandsire pseudoheritabilities were equal to 0.16 and 0.29 re-
spectively. Dam pseudoheritabilities were equal to 0.40 and 0.35 in the two lines
respectively.

For varus, estimates of the sire/maternal-grandsire pseudoheritabilities were
equal to 0.21 and 0.24 respectively. Estimates of dam pseudoheritabilities were
0.30 and 0.26 for the two lines respectively.

Estimates of the genetic correlation between valgus and varus were negative
in line A and equal to -0.19 when estimated from the sire/maternal-grandsire
component and -0.43 when estimated from the dam component. In line B, the
genetic correlation estimated from the sire/maternal-grandsire component was
positive and equal to 0.23, but the genetic correlation estimated from the dam
component was negative and equal to -0.10.



DISCUSSION

Deformities measured in the present study could not be considered as ordered
categorical traits; therefore, use of the threshold model developed by Gianola
and Foulley (1983) was precluded here. In contrast, the multiple logistic model
is appealing for unordered categorical traits. Whereas many applications of the
threshold model in animal breeding with a mixed model are now reported in the
literature, use of the logistic model in this area is rare; it has been restricted until
now to cattle breeding for analysis of survival data (measured as an ’all-or-none’
trait) by De Lorenzo and Everett (1986) and for analysis of unordered categorical
responses with a mixed model by Gianola (1980). In the latter case, logits pertained
to ratios of observed counts and not to ratios of probabilities.

Previous studies of the genetics of twisted legs syndrome have not taken
advantage of advances in methods of analysis of discrete traits. Moreover few
estimates of genetic parameters are available in the literature. However, all studies
conclude that twisted legs are heritable. Hartmann and Flock (1979) estimated
the heritability of twisted legs by the analysis of variance proposed by Robertson
and Lerner (1949). Estimates ranged between 0.10 and 0.30 for the first period
under study, and between 0.40 and 0.51 for the second period, for male and
female offspring respectively. Leenstra et al (1984) compared three lines selected
for increased body weight at 6 weeks or decreased incidence of twisted legs or
for both. After three generations of selection, they obtained a significant’ decrease
of twisted legs in both lines selected against this disease. Mercer and Hill (1984)
provided estimates of heritability of ’splay’ and ’bow’ deformities, analogous to
valgus and varus respectively, in three meat-type strains. Both full and half-sibs
analyses were conducted. Using the proband method (Falconer, 1965), heritability
of splay (or valgus) deformity ranged between 0.14 and 0.29 when estimated from
half-sib analysis; the mean value for this angulation was 0.21. When computed
from dam components, heritability estimates ranged between 0.20 and 0.26 with a
mean value of 0.23. For bow leg (or varus), heritability estimates were more variable
between lines and ranged between 0.05 and 0.26, with a mean value of 0.11 when
obtained from paternal half-sib analysis. When full-sibs were considered, estimates
were between 0.18 and 0.24, with a mean value of 0.20. With the exception of



valgus in line A based on the sire/maternal-grandsire component, our heritability
estimates were slightly higher than those reported by Mercer and Hill (1984).

In their study, Mercer and Hill (1984) indicated that leg problems (including leg
and keel defects) were positively correlated but noticed the possible exception of
bow and splay deformities. The means of the estimates of the genetic correlation
obtained by an analysis of variance were -0.12 and -0.06 when based on half-
sibs and full-sibs respectively. Our estimates of the genetic correlation between
valgus and varus also appeared to be very small or slightly negative. These values
cannot be attributed to the fact that valgus and varus are mutually exclusive: the
logistic model takes this into account. Indeed, when simulating data (on two traits)
whose underlying variates were positively correlated, the mean of the estimates
of this parameter was positive (and close to the true value, when incidences of
the two traits were higher than 0.10). When considering leg defects, a positive
genetic correlation would correspond to a favourable situation in which selecting
against one of the deformities would allow a decrease in incidence of all the various
deformities (and thus an increase in the incidence of healthy animals as shown by
the expression for the probability of this category given in [2b]). This situation
was not encountered because valgus and varus seemed, according to our estimates,
to be approximately independent. This was also supported by studies on clinical
and anatomical differences between the two deformities (Leterrier and Nys, 1992)
which suggested that they correspond to different aetio-pathogeneses. However, the
results obtained here cannot be considered as clear evidence that valgus and varus
should be recorded separately for selection purposes. This should be established
from considerations of selection responses which are beyond the scope of the
present paper. It should be noted that, for the purpose of this study, unilateral
and bilateral varus were grouped. Indeed, previous analyses suggested substantial
genetic correlations between both defects: estimates obtained with a sire model
ranged between 0.69 and 0.75. This result supports the observations of Leterrier and
Nys (1992) of the clinical similarities between these two deformities. However, more
intensive research on larger data sets and considerations of responses to selection
should make it clear whether or not our grouping procedure was fully optimal.
A sensible question to be answered is whether mild or severe expressions of the

same deformity should be considered as different traits and the list of logits modified
accordingly. Preliminary analyses according to a simplified model (ie, a sire model)
were carried out in the males for each of the two selected lines. Estimates of the

genetic correlation between susceptibilities to mild or severe defects appeared very
high, between 0.88 and 0.91 in line A, and between 0.73 and 0.96 in line B. These
results justify classification of mildly affected birds as ill. It made it possible to group
together mild and severe symptoms, which avoided very extensive computing costs
and the consequences of extreme levels of incidence observed for varus deformities.

In this analysis leg defects of both males and females were considered as the same
trait. Since the incidence of deformities and the balance between mild and severe
forms varied significantly according to sex (as shown specially for valgus in table II),
suggesting genetic determinisms possibly different between sexes, a preliminary
analysis was conducted to estimate genetic correlations between susceptibilities
of males and females. A sire model was used because convergence on genetic
parameters could not be reached with a sire, maternal grandsire and dam model.



Whatever the deformity, genetic correlation between susceptibilities of males and
females was very high: estimates were between 0.71 and 0.88 in line A, and between
0.71 and 0.91 in line B. This result suggests that genes common to both sexes are
involved in susceptibility to twisted legs syndrome, although the moderate accuracy
of our estimates (standard deviations were between 0.05 and 0.16 in line A, and
between 0.04 and 0.24 in line B) does not exclude the possibility of specific genetic
effects for each sex, and particularly of sex-linked effects. Sexes were pooled together
when considering genetic effects but distinguished when considering fixed effects.
A discrepancy between sire/maternal-grandsire and dam heritabilities was ob-

served; the latter were higher. In the same way, in the study of Mercer and Hill
(1984), heritability obtained from full-sibs correlations was usually greater than
heritability given by half-sibs analysis. Because permanent environmental maternal
effects are unlikely in present systems of chick rearing, this trend could suggest the
possible existence of genetic maternal additive effects and/or dominance effects.
Genetic maternal effects could be assessed from a sire, maternal grandsire and dam
within maternal grandsire model in which sire and grandsire variances would be
distinguished, as in Manfredi et al (1991). However, the estimation of variance-
covariance components for direct and maternal effects requires the estimation of
the covariance between sire and grandsire effects, which is available only if some
male ancestors are sire and grandsire at the same time. Here, there were very few
(less than five) such ancestors. Further investigations on more comprehensive data
sets should allow testing of the hypothesis of the presence of maternal or dominance
effects.
No explanation has been found yet for the origin of the twisted legs syndrome.

It is highly probable that some of the genes coding for bone, tendon or cartilage
growth and quality may be involved in variations of susceptibility to these disorders.
Polygenic determinism was assumed in the present study; testing the hypothesis of
the involvement of a major gene would be interesting although no evidence of such
stems from our analysis.

CONCLUSION

These results indicate that selection against the various types of twisted legs can
be effective. It is likely that a simplified selection scheme based on the presence
or absence of twisted legs would reduce valgus deformity because of its larger
incidence, while changes in incidence of varus would most probably be small or even
unfavourable because of the negative genetic correlation between the two defects.
However, further work is now needed to derive the expected response to selection
on unordered categorical traits. Indeed, genetic parameters on the logit scale are
not connected to response to selection in the same way as in the Gaussian situation,
primarily because the observed response arises from a competition between latent
variates. Moreover, before defining the best breeding strategy to implement in
practice, further investigations should be carried out in order to estimate genetic
relationships between these deformities and traits of economical importance, such
as growth rate and meat conformation traits.
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APPENDIX A

Derivation of the MAP estimates for given dispersion parameters

MAP estimates of 0 maximize the logarithm of the posterior density L(0 ) written in
!6!. Setting the first derivatives to 0 leads to a non-linear system. Since expressions
of first and second derivatives were straightforward, estimates were computed using
an iterative Newton-Raphson algorithm. We denoted the two components of L( 0 ) ,
neglecting the constant term, by Li(0) and L2(0) with

First derivatives

Noticing that: log(1I’ik) = !Cik + log(1I’ic) (k < c), L1(9) can be written as:

Considering any parameter A, we have:



Then,

One can easily infer from [A3] that the first derivative with respect to the fixed
effects for the kth (k = 1, 2) trait is:

where xi is a (p x 1) vector containing the elements of the ith row of the (s x p)
incidence matrix X.

[A4] can be written in matrix form as

where Vk is the (s x 1) vector:

Similarly:

First derivatives of L2(9) with respect to ak(k = 1, 2) are:

where E!j’ is the submatrix of Ea pertaining to traits j and j’.

Finally, 
c5!!!) is obtained from [A5], and 

c5!!!) from the addition of [A7] andbbk bak
[A8].

Second derivatives

Working on any parameter -y, the following result holds:

Using [A5] and [A6]



Using [A9], second derivatives are thus:

where

and

where

Similarly, second derivatives with respect to the ak vectors are:

In the same way, derivatives of L1 (e) with respect to bk and a’ are given by:

where Wkk’ is defined as previously for k = k’ [Allb] or k # k’ [A12b].
Finally, differentiating 6L2(0)/6ak with respect to ak’ leads to:

The coefficient matrix &mdash;!L(9)/68!0!, described in [7], was built using equations
[All] to [A16].

APPENDIX B

Extension of the tilde-hat method to a multi-trait analysis for variance-
covariance components estimation

For the sake of simplicity, equations are presented in the case of a model with
one random factor (u). After absorbing fixed effects, MAP estimates of the genetic
effects were computed iteratively from:



where M is the absorption matrix, ZT is the (s(c &mdash; 1) x q(c &mdash; 1)) block diagonal
matrix Z = I(c-l) 0 Z, and y is the vector of working variates here defined for any
value of c, y’ = [y!, y! - -., y[_ i [B1] was expressed as:

or, equivalently:

Tilde-hat solutions were computed from:

where D is the inverse of the block diagonal part of B if sorted by sire and grandsire.
As suggested by Van Raden and Jung (1988), (c &mdash; 1) x c/2 quadratic forms were
considered:

Expectation of qij = G[A!!3; was based on the following developments. From
(B4!, q2! was:

where D!! was the (q x q) submatrix of D pertaining to traits j and k, Rhsk was

the (q x 1) vector containing Rhs terms pertaining to the kth trait. Considering
(B2!, [B5] could be rewritten as:

where Bkl contained the elements of B relative to traits k and l, and ill were MAP
estimates for the lth trait. From the previous result, it can be shown that:

Asymptotically, (0)y,0,G)-!(0,H(e)) where H(9) =-{Ey(82L(8)/88 b0’)}-1.
It should be noticed that in our case, for a given 0, b2L(0)/b0 b0’ does not

depend on y (in contrast with the threshold model) but only on overall population
sizes and 0 (therefore, Newton-Raphson and Fisher-scoring methods would yield
the same iterates). An approximation to H is H(0) where 0 is the vector of the
MAP estimates. Therefore, Var(u) = G 0 A - C where, as defined previously, C
is the part of H pertaining to u. Consequently:



where gli is the (co)variance component between traits l and i.
Recalling that,

where M!L is the submatrix of M pertaining to traits k and 1 and g!l is the (k, 1)
element of G-1 (k = 1, 2; 1 = 1, 2), [A8] can be partitioned into:

The last two terms cancel each other out; recalling that G-1G = 12 and
2 2

BC = I2q, £ 9!!91i and ¿BklCli are equal to 1 and Iq when k = 1 and are
1=1 1=1

equal to 0 and 0 otherwise, respectively. Therefore, expectation of qij is:

This result is analogous to the result of Shi et al (1993) but a little more

complicated since the tilde solutions are no longer obtained using a diagonal matrix
but a block-diagonal matrix, where blocks pertain to breeding animals.


