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Summary - This paper presents and discusses the estimation of genetic and residual
(co-) variance components for conformation traits recorded in different environments

using mixed linear models. Testing procedures for genetic parameters (genetic correlations
between environments constant or equal to one, genetic correlation equal to one and
constant intra-class correlations, homogeneity of variance-covariance components) are

presented. These hypotheses were described via heteroskedastic univariate sire models
taking into account genotype x environment interaction. An expectation-maximization
(EM) algorithm was proposed for calculating restricted maximum likelihood (REML)
estimates of the residual and genetic components of variances and co-variances. Likelihood
ratio tests were suggested to assess hypotheses concerning genetic parameters. The
procedures presented in the paper were used to analyze and to detect sources of variation
on conformation traits in the Montbeliarde cattle breed using 24 301 progeny records of
528 sires. On all variables analyzed, several sources (stage of lactation, classifiers, type of
housing) of heterogeneity of residual and genetic variances were clearly highlighted, but
intra-class correlations between environments of type traits remained generally constant.

heteroskedasticity / mixed model / genotype x environment interaction / EM
algorithm / REML estimation

Résumé - Hétérogénéité des variances de caractère d’animaux de race Montbéliarde.
Cet article présente et discute l’estimation des composantes de (co)variance (génétiques
et résiduelles) de caractères de conformation mesurés entre milieu! en situation d’hétéro-
scédasticité. Des tests d’homogénéité de certains paramètres (corrélations génétiques entre
milieux constantes ou égales à 1, corrélations génétiques égales à 1 et corrélations
intra-classes constantes, homogénéité des variances-covariances génétiques et résiduelles)
intéressant les généticiens sont également présentés. Ces hypothèses sont décrites par
un modèle père, unidimensionnel hétéroscédastique prenant en compte les interactions

génotype x milieu. Un algorithme itératif d’espérance-maximisation (EM) est proposé pour
calculer les estimées du maximum de vraisemblance restreinte (REML) des composantes
résiduelles et génétiques de variance-covariance. Un test de rapport des vraisemblances
restreintes est présenté pour tester les différentes hypothèses considérées. Les procédures
développées sont utilisées pour l’analyse des notes de pointage de quelques caractères de



morphologie de 24 301 performances d’animau! de race Montbéliarde issus de 528 pères.
Sur l’ensemble des variables analysées, différentes sources (stade de lactation, pointeurs,
type de logement) d’hétérogénéité des variances génétiques et résiduelles ont été mises en
évidence mais en général L’héritabilité du caractère reste constante d’un milieu à l’autre.

hétéroscédasticité / modèles mixtes / interaction génotype X milieu / algorithme
EM / estimation REML

INTRODUCTION

In many countries breeding values of dairy cattle are estimated using BLUP
(best linear unbiased prediction, Henderson, 1973) methodology after estimating
variance components via REML (restricted maximum likelihood, Patterson and
Thompson, 1971). An important assumption in most models of genetic evaluation
(in particular BLUP) is that variance components associated with random effects
are constant throughout the support of the distribution of the records. However,
the existence of heterogeneous variances for milk production and other traits of
economic importance in cattle has been firmly established and well-documented
(eg, for milk yield in dairy cattle: Everett et al, 1982; Hill et al, 1983; Van
Vleck, 1987; Meinert et al, 1988; Visscher et al, 1991; Weigel, 1992; Weigel
and Gianola, 1993; Weigel et al, 1993 or for growth performance in beef cattle:
Garrick et al, 1989). But research on heterogeneous variance associated with
conformation traits has been somewhat limited (Mansour et al, 1982; Smothers
et al, 1988). Some studies (Smothers et al, 1988, 1993; Sorensen et al, 1985) showed
that sire and residual variances for final type score decreased as herd average
increased but heritability remained constant. A number of possible causes for the
heterogeneity of variance components has been suggested, including a positive
relationship between herd means and variances, differences across geographical
regions, changes over time and various herd management characteristics. This
heterogeneity of variances can be due to many factors, eg, management factors
(feedstuffs, type of housing), genotype x environment interactions, segregating
major genes, preferential treatments (Visscher et al, 1991). If this phenomenon is
not properly taken into account, differences in within-subclass variances can result
in biased breeding value predictions, disproportionate numbers of animals selected
from environments with different variances and reduced genetic progress (Hill,
1984; Gianola, 1986; Vinson, 1987; Winkelman and Schaeffer, 1988; Weigel, 1992;
Meuwissen and Van der Werf, 1993). To overcome this problem, one possibility is to
take heteroskedasticity into account in the statistical model. In particular, potential
factors (regions, herds, years, etc) of variance heterogeneity can be identified and
they can be tested as meaningful sources of variation of variances (Foulley et al,
1990, 1992; San Cristobal et al, 1993).

The objective of this paper is to present a statistical approach for identifying
sources of variation (genetic and residual) of variances, find an appropriate model
which takes into account this heteroskedasticity, and to illustrate such an approach
in the analysis of conformation traits in the Montbeliarde cattle breed. A completely
heteroskedastic univariate mixed model allowing for genotype x environment inter-
action is used to identify various management factors associated with differences in
genetic and residual variance components. In particular, sire models with different,



simpler assumptions on genetic parameters (constant genetic correlation and/or
constant heritability) in heteroskedastic situations are described and tested using
the restricted likelihood ratio statistic. The estimation of parameters for each model
is based on the REML method using an EM algorithm. The objective here is not to
analyze all type traits and all factors available in the data file but to illustrate the
implementation of the methodology developed on a large data set. Only four type
traits of the Montbeliarde breed are described and analyzed with three potential
factors of heterogeneity. Finally, results of heterogeneity of variances detected on
these four type traits are presented and discussed.

MATERIALS AND METHODS

Data

Sires of the Montbeliarde cattle breed are routinely evaluated for several type traits
measured on their progeny, using best linear unbiased prediction applied to an
animal model (Interbull, 1996). Most cows are scored during their first lactation.
Type traits are measured or scored on a linear scale from one to nine. For each
animal, age at calving, stage of lactation at classification, year of classification,
type of housing and main type of feedstuffs are available. The file analyzed
included cows scored between September 1988 and August 1994 by technicians
from AI cooperatives or from the ’Institut de 1’elevage’. The data analyzed included
performance records on 24 301 progeny of 528 sires scored for 28 type traits. Each
sire had at least 40 recorded daughters (414 sires) and each classifier had scored at
least 15 cows.

Only four traits were analyzed and these were: one measured variable (height
at sacrum) and three subjectively scored type traits. The latter consisted of two
general appraisal scores of parts of the animal, one with high heritability (h2 = 0.47,
udder overall score) and one with low heritability (h2 = 0.18, leg overall score) and
rear udder height. The means and standard deviations for each trait analyzed are
presented in table I. It is suspected that some of the factors described in table II may
induce heterogeneous variances. For example, scores given by different classifiers are
expected to have not only different means but also different variances. Therefore,
a mixed linear model with the usual assumption of homogeneous variances may be
inadequate.



The subjective nature of several traits (leg overall score or rear udder height)
and the variability of scores caused by some factors (type of housing, stage of
lactation) lead to suspect heterogeneity of scores and as a consequence heterogeneity
of variances. In this paper, each variable is analyzed separately for each potential
factor of variation with a mixed model. For computational reasons, a sire model
with heterogeneous variances is preferred to the animal model used in routine
genetic evaluations. In order to improve the quality of the genetic evaluation, the
methodology developed in Foulley et al (1990) and Robert et al (1995a, b) is used
to detect potential sources of heterogeneity of variance for conformation traits.
The hypotheses of interest to be tested are the hypotheses of constant genetic
correlations and/or constant heritability between levels of factors of heterogeneity.
Each factor of heterogeneity is studied separately, one at a time, assuming that
it is the only possible source of heterogeneity. Variance components and sire

transmitting abilities are estimated applying classical procedures, ie, REML and
BLUP (Patterson and Thompson, 1971; Henderson, 1973) using a mixed model
including the random sire effect and the set of fixed effects described in table II.
The factors assumed to generate heterogeneity of variances and considered in the
present analysis are stage of lactation (8 levels), classifier (21 levels) and type of
housing (3 levels).

Because the factor ’classifier’ has many levels (21) and the number of records
for some classifiers is small, some classifiers are grouped into classes for reasons
related to computational feasability. A preliminary analysis using a completely
heteroskedastic sire model was performed assuming that the factor ’classifier’ was
the source of heterogeneity. On the basis of the estimated variance components,
four homogeneous groups (classifiers with similar means and standard deviations
were grouped) of classifiers were created. The problems related to grouping levels
of a factor will be discussed later on.

Models

In each analysis and for each model, one variable (type trait) and one potential
factor of variation are considered at a time. Following the notation of Robert et al



(1995a), the population is assumed to be stratified into p subpopulations or strata
(indexed by i = 1, 2, ... , p) representing each level of the source of variation. For
each factor suspected to generate heterogeneity of variances, dispersion parameters
of each type trait are estimated under the following five models.

Model a

Data are analyzed using a univariate heteroskedastic sire model with genotype x
environment interaction (Robert et al, 1995b). In matrix notation, this model can
be written as:

where yi is the vector (ni x 1) of observations in subclass i of the factor of

heterogeneity considered (i = 1, ...,p), (3 is the (p x 1) vector of fixed effects
with associated incidence matrix Xi, ui = (s)) and u2 = f hs!2!i} (j = 1, ..., s;
s = 528) are two independent random normal components of the model with
incidence matrices Zli and Z2i, respectively, and with variance-covariance matrices
equal to A and Ip 0 A, respectively. s* is the random effect of sire j such that

s) - NID(0,1) and hs!2!! is the random sire x environment interaction such that

hS(ij) N NID(0, 1). ei is the vector of residuals for stratum i assumed N(0, afl, In, ) .
21ila u 22i and u 2 are the corresponding components of variance pertaining to
stratum i. The sires are related via the numerator relationship matrix A (of rank
s). For instance, different environments i represent different stages of lactation.

Fixed effects (in 13) can be continuous or discrete covariates but without loss of
generality it is assumed here that they represent factors (discrete variables). The
fixed effects included in the model are age at calving, stage of lactation, class of
milk production of the herd (this effect characterizes the production level of the
herd) and classifier. All these effects are considered within year of classification.

Model b

Model under the hypothesis of homogeneity of genetic correlations between envi-
ronments (for all i and i’, p;;, = !!1’!ul!! = p). This model

Vl-g-.2-, 2 2 2Uii 1 ! + a!2i Vo 1,1 + a!2i’
defined in Robert et al (1995a) can be written as:

where the genetic correlation is p = !2 and A is a positive scalar. Under
I + A

this hypothesis, the interaction variance is proportional to the sire variance:

!2 u2c = ,B2a2 .
Model c

Model under the hypothesis that all genetic correlations are equal to one

(p = 1). This hypothesis is tantamount to a heteroskedastic model without any



genotype x environment interaction. This completely additive heteroskedastic
model can be written as:

Model d

Model under the hypothesis that all genetic correlations are equal to one (p = 1)
2

and constant heritability (for all i, h2 = &mdash;&mdash;*!&mdash;&mdash; = h2) between environments.UUli + Uei
!2

This hypothesis for all i is equivalent to considering: 7l = u2 U2li = T!. This model
!e,

can be written as: 
a! &dquo;

Model e

Homoskedastic model (for all i, (j!li = (j!1 et o, 2 =or’). This model can be written
as: for all i, 

&dquo; 

REML estimation using an EM algorithm

To compute REML estimates, a generalized expectation-maximization (EM) algo-
rithm is applied (Foulley and Quaas, 1994). The principle of this method is described
by Dempster et al (1977). Because the method is presented in detail in Foulley and
Quaas (1995) and in Robert et al (1995a, b), only a brief summary is given here.

Denote u* = (ul , L12 ) , 0’2 = {a2 } w2 {a2 } 0’2 = {a2} and
y = (U2 &dquo; (r2 6e)!. For instance, y = 2,i 1, 10,2,i 1, 10,2 is the vector of

genetic and residual parameters for the general heteroskedastic model (a). The
application of the EM algorithm is based on the definition of a vector of complete
data x (where x includes the data vector and the vectors of fixed and random
effects of the model, except the residual effect) and on the definition of the

corresponding likelihood function L(y; x). The E step consists of computing the
function Q*(1’I1’ltl) = E[L(1’;x)IY,1’[t]] where Y!t] is the current estimate of Y at

iteration [t] and E[.] is the conditional expectation of L(Y; x) given the data y and
Y = 1’lt]. The M step consists of selecting the next value 1’[tH] of y by maximizing
Q*(1’I1’[t]) with respect to Y. The function to be maximized can be written:

where EJ.’ !.! is a condensed notation for a conditional expectation taken with respect
to the distribution of x!y, y = y!t!.



For each[model [models (a)-(e)], the function Q*(yly[tJ) is differentiated with
respect to each element of y [eg, for model (a), y = (or u 21i, or2 u2i’ ore 2i )’] and the
resulting derivative is equated to 0: 8Q*(ylyltJ)/åy = 0. This nonlinear system is
solved using the method of ’cyclic ascent’ (Zangwill, 1969).

Under model (a) defined in (1!, the algorithm at iteration [t, l + 1] (tth iteration
of the EM algorithm and (l + l)th iteration of the cyclic ascent algorithm) can be
summarized as follows:

Let O&dquo;!;!}, Qut2l! and It&dquo;] be the values of parameters at iteration [t, !]. The next
solutions are obtained as:

Under model (b), the expressions for estimation of variance components are
given in Robert et al (1995 a, formulae 12 a, b, c). The EM-REML iteration for
parameters for the other models [models (c), (d) and (e)] is more easily derived
because these models are totally additive (ie, without an interaction term).

For model (c), the algorithm can be summarized as:

with e!&dquo;’+&dquo; = Yi - Xd3 - (7U¡i ZliU!, Formulae are the same as in Foulley and
Quaas (1995, formulae 7 and 8).

For model (d), the algorithm is:



For model (e), the algorithm is:

with e2t,l+1] - y2 _ Xi/3 - (T!;IH] ZliUi. This is an alternative to the usual EM

algorithm (Foulley and Quaas, 1995).
The estimation procedure of genetic and residual parameters consists in de-

termining, at each iteration of the EM algorithm, all conditional expectations of

expressions [7] to [15]. E! t’ (.) can be expressed as the sum of a quadratic form
and of a trace of parts of the inverse coefficient matrix of the mixed model equa-
tions (as described in Foulley and Quaas, 1995). A numerical procedure which does
not require the computation of the inverse of the coefficient matrix to obtain all
traces required is presented in the Appendix. This numerical technique allows a
considerable reduction of computing costs when the data set analyzed is very large.
Standard errors of parameters were not directly provided with standard EM and
their computations were too intensive (the data set was too large).

To summarize, the estimation of the genetic and residual parameters amounts
to two basic iterative steps. Using starting values of these genetic and residual

parameters ((T;!!], U2[0] and (T!jO]), the first step consists in estimating fixed
and random effects with the BLUP mixed model equations. Then, given these
conditionally best linear unbiased estimators and predictors (BLUE and BLUP),
the second step consists in computing genetic and residual parameters. Both steps
are repeated until convergence of the EM algorithm.

Note that the size of the system of mixed model equations [equal to the total
number of levels of fixed effects considered + number of sires * (1+ number of levels
of the factor of heterogeneity considered)] is very large. Its solution cannot be found
by direct inversion of the whole coefficient matrix of mixed model equations (C).
The use of specific numerical techniques (storage of nonzero elements only, use of
the procedure described in the Appendix to compute traces of products and use of
a sparse matrix package FSPAK: Perez-Enciso et al, 1994) and the analysis of the
particular structure of parts of the matrix C (whose number of nonzero elements
is very small) enables one to minimize storage requirements and computing times.
The computing procedure and the numerical techniques used are described in detail
in Robert (1996).

The iterative algorithm (EM) is simple but converges slowly. Convergence of
the EM algorithm can be accelerated (Laird et al, 1987) by implementing an
acceleration method for iterative solutions of linear systems:



where 1’! is the ith estimable parameter of y (sire, interaction or residual variance)
at iteration t, 1’iew is the new parameter at iteration t after acceleration and R is
the acceleration coefficient. This acceleration step should be applied only when the
evolution of solutions from one iteration to the next becomes stable. The optimal
frequency of these acceleration steps is not given by Laird et al (1987). In our
application, acceleration was performed when 0.80 < R < 0.94 with:

where p is the number of estimable parameters (Robert, 1996).
Programs were written in Fortran 77 and run on an IBM Rise 6000/590. The

convergence criterion used for the EM-REML procedure was the norm of the vector
of changes in variance-covariance components between two successive iterations.
Let y2t! be the vector representing the set of estimable components of variance at
iteration !t!, the stopping rule was:

Hypothesis testing

An adequate modelling of heteroskedasticity in variance components requires a
procedure for hypothesis testing. As proposed by Foulley et al (1990, 1992), Shaw
(1991) and Visscher (1992), the theory of the likelihood ratio test (LRT) can
be applied. Let L(y; y) be the log-restricted likelihood, Ho: y E Fo be the null

hypothesis and Hl: y E r - lo its alternative, where y is the vector of genetic
and residual parameters, r is the complete parameter space and ro is a subset of
it pertaining to Ho.

Let Mo and MI be the models corresponding to the hypotheses Ho and Ho U Hi,
respectively. The likelihood ratio statistic is:

Under Ho, ( is asymptotically distributed according to a xr with r degrees
of freedom equal to the difference between the number of parameters estimated
under models Ml and Mo, respectively. In the normal case, explicit calculation of
- 2MaxL(y; y) is analytically feasible (Searle, 1979):

where Const is a constant and ((3,u12,u2i) are mixed model solutions for ((3, u!, u!).
C is the coefficient matrix of the mixed model equations.



The main burden in the computation of -2L is to determine the value of InIC1. ] .

But using results developed in Quaas (1992) and in the Appendix, this computation
can be simplified

where the liis are the diagonal elements of the Cholesky factor L of matrix C.
The hypothesis of genetic correlations between environments equal to one is a

special case of the hypothesis of homogeneity of genetic correlations. This hypothesis
(for all i and i’, pz;, = 1) is especially interesting because it is equivalent to the
assumption of no interaction term, ie, A = 0. Some problems arise here because
the null hypothesis sets the true value of one parameter (A) on the boundary of
its parameter space (A = 0). The basic theory in this field was developed by Self
and Liang (1987) and applications to variance components testing in mixed models
have been discussed in Stram and Lee (1994). Contrasting models (b) and (c), ie,
testing Ho (!!1. ! 0 for all i and A = 0) against Hl (!!1. ! 0 for all I and A # 0)
corresponds to a situation which can be handled by referring to case 3 in Stram
and Lee (1994).

In this case, the asymptotic distribution of the likelihood ratio statistic under
hypothesis Ho does not have a chi-squared distribution anymore but is a mixture

of chi-squared distributions [!X6 + 2xi! with equal weight between the measure
of Dirac in 0 (Mass one at zero, Kaufmann, 1965) and a x2 with one degree of
freedom (Gourieroux and Montfort, Chap XXI, 1989). This means that the common
procedure based on rejecting Ho when the variation in -2L exceeds the value of a

x2 distribution with one degree of freedom and such that p(X2 1 > s) = a (a being
the significant level) is too conservative; or in other words, the threshold s is too
high. What is usually done in practice is to reject Ho for a value of the chi-square
such that p(X2 > s) = 2a (and no longer a) when A > 0.

RESULTS

Preliminary analyses

Type trait records were categorical either because they represent subjective scores
drawn from a limited list of possible values (one to nine) or because they resulted
from a measure with limited precision. In this paper, the analysis of such traits was
performed using a methodology designed for normally distributed random variables.
Therefore, before any analysis of heterogeneity of variances, it seemed essential
to study the distributions of the variables considered. In a first analysis, a fixed
model with homogeneous residual variances was used to analyze the distributions
of the residuals. On all variables analyzed, skewness and kurtosis coefficients of
residuals were not close to theoretical coefficients for a normal distribution. Some
usual tests [Kolmogorov test, Geary’s and Pearson’s tests (Morice, 1972)] were
used to analyze the normality of the distributions and most of them rejected the
hypothesis of normality. To make the distribution of the residuals of type trait
scores closer to normal, original scores were transformed using a normal score



transformation (Bartlett, 1947). Statistical results (means, standard deviations,
skewness and kurtosis coefficients) on residuals are presented in table III. Although
limited, some improvement toward normality was observed for the skewness and
kurtosis coefficients. Transformed variables were used in the following analysis.

Sources of variance heterogeneity

For some combinations of factors and variables (for instance, type of housing
and udder overall score), it would be unexpected that heterogeneity of variances
exists and is detected. If this were the case, biological interpretation would be
potentially difficult. However, all variables presented in table I were analyzed
separately in combination with each potential factor of heterogeneity: stage of
lactation, classifier and type of housing. For each variable and each factor of
heterogeneity considered, components of variance under each model proposed
[models (a) to (e)] were estimated. Tables IV, VI and VIII present results of
restricted likelihood ratio test for each variable analyzed and results are presented
by factor of heterogeneity considered. Tables V, VII and IX present estimates of
genetic and residual parameters of variables obtained under the simplest acceptable
model, ie, the final model accepted after all testing procedures.

Stage of lactation

Results of stage of lactation are presented in tables IV and V. Except for leg overall
score, the analysis of stage of lactation has concluded that heterogeneity of variances
existed for all variables analyzed but with constant genetic correlation between
levels of factor of variation for rear udder height (model b), with genetic correlations
equal to one for height at sacrum (model c) and with constant heritability also
(model d) for udder overall score. For leg overall score, the homoskedastic model



was accepted with a P-value equal to 0.20: variance in leg scores of animals seems
to be homogeneous whatever the level of stage of lactation considered.

Stage of lactation seemed to have a considerable effect on variances for udder
overall score and rear udder height (table V). Estimates of variance components
computed under model (d) and model (b) for these variables respectively, showed a
large variability of genetic and residual variances. For these variables, we could note
that residual variances were more important in early lactation (levels 1 to 3, equal
to about 1.4 and 1.0 for udder overall score and rear udder height, respectively)
and then regularly decreased as stage of lactation increased (about 1.1 and 0.7
for level 8). A biological interpretation could be put forward: at the beginning of
lactation, and especially for animals in first lactation, udders were filled up with
milk. Therefore, possible defects (bad udder support, teats far apart, bad direction
of teats) could be viewed more precisely and were strongly penalized. Then, as
stage of lactation increased, the udder became more flexible and less full; defects
were less obvious. Scores given by classifiers were less variable. There may also be
an effect of culling bias (the extreme cows could be culled and so the variation was
reduced).





For udder overall score describing udder in general, the genetic variances varied
in the same way as the residual variances since heritability was found to be constant
(equal to 0.47). The genetic correlation between levels of stage of lactation was found
to be equal to one. But for rear udder height, the genetic correlation was equal to
0.97 and the hypothesis of constant heritability was rejected. An important change
between estimates of parameters under models (a, b, c, d) and estimates under
the homoskedastic model was observed, which explained why this last model was
clearly rejected.

For height at sacrum, heteroskedasticity was surprising. This trait was objec-
tively measured by classifiers. Therefore it was expected that stage of lactation had
no impact on variances. Genetic and residual estimates of variance did not vary in
a clear manner and the interpretation was less obvious. Note that the hypothesis
of constant heritability was rejected with a high P-value (equal to 0.01) but the
genetic correlation was equal to one. Furthermore, the value of the likelihood ratio
statistic of model (e) against model (d) was clearly smaller than for udder overall
score for instance (6 = 12.19 against 78.97, respectively).

Classifiers

Results of this factor are presented in tables VI and VII. The analysis of the factor
’classifier’ leads to clear conclusions. The model finally accepted was the model
assuming genetic correlations equal to one and constant heritability (model d) for
udder overall score and height at sacrum. For leg overall score and rear udder height,
only the hypothesis of constant genetic correlations was accepted [model (b)]. For
all variables analyzed, model (e) was clearly rejected with values of the likelihood
ratio statistic always larger than 50.
When the trait definition was very subjective, as for rear udder height or leg

overall score, the attitude of classifiers varied a lot. The same trait did not seem
to be scored in a similar way by all classifiers. The analysis of rear udder height
clearly showed this situation. Genetic variances varied from 0.03 for classifiers of
group 2 up to 0.19 for others (group 3, table VII). The low genetic correlation
between classifiers may result from imprecise estimates of variances of a group
poorly represented. The scoring of groups of classifiers 2 and 3 seemed to be very
different from the scoring of the other groups. In the same way, the heritability of
rear udder height was not the same for all classifiers (from 0.18 to 0.72) and seemed
to indicate a problem for groups 2 and 3 (these two groups had genetic variances
and heritabilities very different from the other groups). This analysis revealed a
real problem of consistency regarding the definition of traits among classifiers. This
problem was already suspected by specialists.

The analysis of height at sacrum seemed to confirm inconsistencies between
groups of classifiers. The residual variances varied from 9.5 for group 4 to 14.4 for

group 3. In the same way, genetic and residual variances for all traits were smallest
for group 4. An explanation of this heteroskedasticity could be that classifiers could
have taken a variable number of measures or spent a variable amount of time in
measuring this height and generally measures were not exact.



Type of housing

Results are presented in tables VIII and IX. As intuitively expected, the factor
’type of housing’ did not lead to heterogeneity of variances for udder overall score.
In contrast, the high value of the test statistic for leg overall score, rear udder height
and height at sacrum led to rejection of the hypothesis of homoskedasticity. Only
the hypothesis of constant genetic correlation between levels of factor of variation
was accepted for rear udder height. For height at sacrum and for leg overall score, a
genetic correlation equal to one and constant intraclass correlation were accepted,
respectively.

For these last threee traits, results (table IX) clearly showed differences between
two groups of type of housing, loose housing and tie stall (levels 1 and 3) on the one
hand and free stall (level 2) on the other hand. In the first group, the genetic and
residual variances were similar. For leg overall score, the residual variances were
equal to 0.96 for levels 1 and 3 of type of housing against 0.81 for free stall. This
trait was subjective, representing the quality of legs of the animal and was generally
difficult to assess objectively (the heteroskedasticity detected with factor ’classifier’
was a clear example). In general, the quality of legs is closely related to the type of
housing which in turn might influence the classifier’s opinion: in loose housing or
tie stall (levels 1 or 3), cows have limited freedom. When a cow stands up, she does



not do it in a natural way. So by chance, she may be penalized or have received
a better score depending on the way she is standing. As a consequence, variances
were larger in this type of housing. But we cannot dismiss a more durable influence
of the type of housing on the feet of the animal. For the rear udder height, this
heterogeneity could be explained by the fact that a cow which did not stand up
straight, gave the impression that her udder was unbalanced even if it was not the
case.

Computational aspects

Convergence for calculating the EM-REML estimates was obtained after 35 to
50 rounds of iteration for the most complex models (model with interaction) and
only 25 to 35 rounds of iteration were needed to obtain the convergence with mod-
els without interaction terms. However, total CPU time to estimate all parame-
ters (estimation of genetic and residual parameters, evaluation of genetic values,
computation of the log-restricted maximum likelihood) was large, particularly for
heteroskedastic models with interaction. For instance, with model (a), 15 h of CPU



time were needed to estimate genetic and residual parameters within stage of lacta-
tion (eight levels) as a factor of heterogeneity. These procedures were computation-
ally intensive and may not be easily implemented in national genetic evaluations
using an animal model.

DISCUSSION AND CONCLUSION

Most studies on type traits consider that genetic and residual variances are

homogeneous. This assumption has not been questioned. However, the results of this
first analysis show that heterogeneity of genetic and residual variances exists on such
traits. Furthermore, the few studies taking into account heteroskedasticity in mixed
linear models assume constant heritability between environments (Koots et al, 1994;
Visscher et al, 1991, 1992; Weigel et al, 1994). The original aspect of this paper was
to present a way to test these hypotheses (homogeneity of variance components,
constant heritability, constant genetic correlation) and to detect sources of variation
on type traits. In that respect, our main concern focused on ways to find models as
parsimonious as possible to reduce the number of parameters needed to account for
heteroskedasticity. This paper was a large application of the approach developed
by Foulley et al (1994) and Robert et al (1995 a, b). Using sequential testing
procedures, a fitting model can be found for each variable and each factor of
heterogeneity considered. However, the overall type-I error rate resulting from the
application of such a procedure will be much higher than the significant level chosen
at each step.



In this paper, only four variables and three potential factors of heterogeneity
were presented, but other analyses with other traits (foot angle, udder balance,
etc) and other factors (type of feedstuffs, age at calving, year of classification, class
of milk production of the herd) were studied. Several heterogeneities of genetic and
residual variances were clearly detected. Three main conclusions can be drawn from
this analysis.

For most variables and most factors of heterogeneity considered, the homoskedas-
tic model was clearly rejected with large values of the likelihood ratio statistic. This
result clearly revealed the inadequacy of the homoskedastic model to study con-
formation traits. The model under the hypothesis of genetic correlation equal to
one and constant heritability seemed to always lead to a better fit than the ho-
moskedastic model for conformation traits.

Some combinations of factor x variable (leg overall score x type of housing,
udder overall score x stage of lactation, for instance) with obvious heterogeneity of
variances were clearly highlighted, but the likelihood ratio tests led one to accept
a very simple model: an additive heteroskedastic mixed linear model with constant
heritability (the genetic variance was proportional to the residual variance in the
same environment). This finding is important because this model does not involve
any interaction between genetic effects (sire effect) and the factor of variation, since



the hypothesis of genetic correlation equal to one is accepted in most of the cases
considered. Without an interaction term, heteroskedasticity could be more easily
accounted for in the current computing strategy used for routine genetic evaluations.
A pronounced effect of the factor ’classifier’ was found with genetic and residual

heterogeneity of variances and heterogeneity of heritability for variables subjectively
scored (rear udder height, leg overall score) but also for variables measured (height
at sacrum). A similar conclusion was drawn by San Cristobal (1992) and San
Cristobal et al (1993) with respect to the subjective appreciation of muscularity
development of beef cattle in the Maine-Anjou breed. The results obtained by
McGilliard and Lush (1956) showed that, on the same day, the scoring of different
classifiers agreed more than did scoring from the same judge on different days, the
correlation between classifiers on the same day being up to 0.74. They also found a
significant interaction between classifiers and years for the same cows, which may
mean that classifiers do not account for age in quite the same manner, or for the
physical aspect of a particular cow at different times. In our analysis, heritability
between classifiers varied considerably from 0.18 to 0.72 for instance, but standard
errors were unknown. One of the main problems with type classification is the
human inaccuracy involved in all subjective assessments. The main part of variation
due to classifiers may be due to different attitudes towards different cows, herds or

sires, or simply to human inconsistency.
Although computational effort is much larger to estimate genetic parameters

with genotype x environment interactions in heteroskedastic mixed models, the
model proposed here ui! _ !!l!s! + O&dquo;U2i(hs)ij offers great flexibility to define
selection criteria. In particular, selection for a general ability of bulls can be based
on predictions of the s! s.

For the factor ’classifier’, a precise redefinition of some elementary traits should
be considered because variances were generally more variable on elementary traits
(eg, rear udder height) than for the other subjective traits (for instance, udder
overall score or leg overall score). The approach used here can be a way to help
classifiers to homogenize their scoring techniques when the variability detected
between classifiers is very large. A posteriori, this analysis may allow an appreciation
of the consistency of the classifiers’ work and the quality of data collection. With
respect to the factor ’classifiers’, the grouping in four classes was only made for
computational reasons. The likelihood ratio statistic can be used to test the data
grouping, but the robustness of the grouping approach used here is questionable.

The analysis of ’height at sacrum’ raises some problems. In this analysis, this
trait was chosen as a test variable because it is measured and heterogeneity of
variances with any factor of variation was not suspected. From our results, the
data set must be reanalyzed to check whether these detected heterogeneities of
variance are linked to another underlying factor. Heterogeneity may also be due to
an inadequate model for means.

The approach presented here relies heavily on the assumption of normality of
the data. This was obviously not the case here for the original data since type traits
were recorded using scores varying from one to nine. A normal score transformation
was used to improve the shape of those distributions. Although limited, the effect of
this transformation to reduce skewness was real, which is crucial for the normality
assumption (Daumas, 1982). Nevertheless, there are still pending problems about



the way to handle such traits. Some of them might be also treated as ordinal discrete
data via a threshold liability model (Foulley and Gianola, 1996).

The procedure described here allows one to detect and to precisely determine
different sources of heterogeneity of type traits. Once factors of variation have been
detected separately, a possible extension could be to use a structural approach
combining these factors with a limited number of parameters. Such a method is
used on logarithms of variances as it has been used for decades on means (Foulley
et al, 1990, 1992; Gianola et al, 1992; San Cristobal et al, 1993). The procedure is
especially flexible owing to the possibility to incorporate prior information on some
factors of heteroskedasticity when few data are available per level, such as herds or
herd x years.-In the case of genetic correlations not equal to one (when genotype x
environment interaction exists, as in models a or b), the modelling seems more tricky
and computing costs are higher than in heteroskedastic models without interaction.
This problem does not have an easy solution and requires future research.

The inferential procedure chosen here is based on maximum likelihood theory
(under regularity conditions). An alternative approach would have been to consider
a full bayesian analysis using, for example, MCMC methods (Markov chain Monte
Carlo). For small sample inference, a solution may be provided by a posterior
distribution estimated by Monte Carlo methods. However, this procedure was not
used here since the data set was too large (24 301 progeny of 528 sires).

Although the methodology for heteroskedastic mixed models is appealing, meth-
ods of estimation of variance components must be adapted to be used in national
systems of genetic evaluations. Concrete and simple proposals to take into account
heterogeneity of variances in routine genetic evaluations should be made. Four pos-
sible approaches can be considered:

- an approach where only one factor of heterogeneity is defined. This factor

simply represents a combination of all factors of variation found to be significant
with the present approach but number of levels of the resultant factor can be very
large;

- an approach where the most important factor of variation is considered in the
heteroskedastic model and the other factors of variance heterogeneity are ignored;

- an approach proposed by Weigel (1992) and Weigel et al (1993) where a small
set of the data is analyzed to detect heterogeneity of variances and then correction
factors for the variances are developed;

- a structural approach as defined in Foulley et al (1990, 1992) and San Cristobal
et al (1993), especially when dealing with a constant heritability coefficient (Foulley,
1997), but attention must be paid to the feasibility of this method with large data
sets.
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APPENDIX

Numerical techniques used for the computation of heteroskedastic

genetic parameters

Notations

The mixed model equations for model (a), for instance, can be written as:

A natural partition of this matrix and these vectors leads to:



A-1 is the inverse of the numerator relationship matrix between sires and 0 is the
direct matrix product.

Because the number of levels of fixed and random effects in mixed linear models is

very large and the matrix C is sparse, the storage of all elements of matrix C should
be avoided. Advantage should be taken of the special structure of C. In fact, if the
matrix E is partioned according to level of factor of heterogeneity, it can be written
as a block diagonal matrix where each block is of the form (Z!i Z2;a!2i 0&dquo;;.2 +A-1).
The p blocks differ only by their diagonal elements and each block has few nonzero
elements (the matrix A-1 has less than 2% of nonzero elements). The matrix F
also has few nonzero elements.

Consequently, parts of matrix C are stored as follows:
- all elements of the rather dense matrix B are stored;
- for the matrix E, only the nonzero elements of the inverse of the relationship

matrix A-1 and all diagonal elements of matrices ZZZZ2i!!Zi!e!2 are stored;
- for the matrix F, only the nonzero elements are stored.

For this storage and matrix manipulations, the matrix package FSPAK (Perez-
Enciso et al, 1994) is used.

Computation of genetic parameters

We denote C-’ the inverse of the coefficient matrix of the mixed model equations:



The computation of genetic and residual parameters requires the computation of
conditional expectations presented in expressions (7) to (15). These expectations
are equal to the sum of a quadratic form and the trace of parts of C-1. For instance:

The quadratic forms are functions of the data (y) and BLUP estimates ((3, ui 1 l!2
The traces involve the product of matrices like Z!iZli and parts of the inverse of
the coefficient matrix. For instance, in the case of model (a), six traces, three ofthem involving products of symmetric matrices(X’Xj by Caa, Z!iZli by C!1!1 and
Z2iZ2i by CU2U2), are required for the computation of genetic parameters. These
three traces are:

Computing the following three expressions:

the three traces required in conjunction with tr 1, tr 2 and tr 3 can be easily
computed:

For computing the trace of these matrices, one can use the Cholesky decompo-
sition of the coefficient matrix C. For instance, for the computation of tr 4, we use
the decomposition of:



where hk is the kth column vector of H. The element (l, k) of each of these matrices
(XiXi, Xizli, ZiiZl2) is equal to the number of observations simultaneously
influenced by the effects corresponding to equations k and l. The trace tr 4 can
be computed using these expressions:

where U = LBTLB1H and ukk is the kth diagonal element of matrix U.
So, for k = 1 to nH where nH is the dimension of matrix H, the elements ukk

are obtained after solving
LB Vk = h! for vk,

and

LB uk = v! for uk, the kth column vector of matrix U.

Only the kth element of vector uk contributes to the computation of the trace.
The computation of elements of vector Uk can be stopped as soon as the kth element
of vector u! is found. The number of triangular systems to solve is equal to at most
twice the dimension of matrix H.

The procedure used for the computation of the other traces is identical. We use
the expression for the inverse of partitioned matrices to determine the inverse of
parts of the coefficient matrix (Graybill, 1983). In particular:


