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Summary - Three criteria for the quality of a genetic evaluation are compared: the
prediction error variance (PEV); the loss of precision due to the estimation of the fixed
effects (degree of connectedness) (IC); and a criterion related to the information brought
by the evaluation in terms of generalized coefficient and determination (CD) (precision).
These criteria are introduced through simple examples based on an animal model. The
main differences between them are the choice of the matrix studied (CD vs PEV, IC), the
method used to account for the relationships (CD vs PEV), the use of a reference matrix
or model (PEV vs CD, IC), and the data design (IC vs PEV, CD). IC is shown to favor
designs with limited information provided by the data and another index is suggested,
which minimizes this drawback. The behavior of IC and CD is studied in a hypothetical
’herd + sire’ model. The precision criteria set a balance between connectedness level and
information provided by the data, whereas the connectedness criteria favor the model with
minimum information and maximum connectedness level. Genetic relationships between
animals decrease both PEV and genetic variability. PEV considers only the favorable
effects on PEV; CD accounts for both effects. CD sets a balance between the design and
the information brought by the data, the PEV and the genetic variability and is thus a
method of choice for studying the quality of a genetic evaluation.

genetic evaluation / precision / mixed linear model / disconnectedness / genetic
progress

Résumé - Quelques considérations à propos des mesures de précision et de connexion
dans les modèles linéaires mixtes d’évaluation génétique. Trois critères d’appréciation
de la connexion et de la précision des évaluations génétiques sont étudiés et comparés.
Le premier critère est la variance d’erreur de prédiction (PEV), le second mesure la
diminution de la PEV quand les effets fixés sont connus (indice de connexion ou IC),
et le troisième est un critère de précision de l’évaluation, exprimé par le coefficient de
détermination généralisé (CD). Ces critères sont présentés à l’aide d’e!emples simples
basés sur un modèle animal. Ils se distinguent par le choix de la matrice étudiée (CD
versus PEV, IC), la prisé en compte de la seule structure des données (IC versus PEV,
CD), la présence d’une matrice ou d’un modèle de référence (PEV versus IC, CD), et la



manière de prendre en compte les relations de parenté entre animaux (CD versus PEV).
On montre comment IC favorise les situations où l’information apportée par les données
est faible. Un nouvel indice de connexion, s’attachant également à la seule structure des
données, est proposé, palliant cet inconvénient. L’intérêt d’IC et de CD est étudié sur
un exemple de modèle « troupeau Père », où les troupeaux sont de taille fixée, les pères
servent dans un seul troupeau, à l’exception d’un père de référence assurant les liaisons
génétiques entre troupeaux. CD permet d’optimiser le plan d’expérience par un compromis
entre connexion et information contenue dans les données, alors que l’utilisation d’IC
aboutit au choix d’un plan où les pères utilisés dans un seul troupeau ont un seul veau
par troupeau. Si CD et PEV sont équivalents pour des animaux non apparentés, PEV
privilégie les forts apparentements, qui diminuent la variance d’erreur de prédiction. Mais
les parentés diminuent également la variabilité génétique, ce que prend en compte CD.
Ainsi, on montre, sur un modèle animal strictement aléatoire avec même apparentement
entre animaux, comment PEV pezlt conduire au choix d’un plan minimisant le progrès
génétique. On retrouve dans ce cas simple la formule classique du progrès génétique, où
le CD généralisé joue le même rôle que le CD individuel d’un indice de sélection. CD,
compromis entre structure et quantité de données, d’une part, et variance d’erreur de

prédiction et variabilité génétique, d’autre part, est une méthode de choix pour l’analyse
de la qualité d’une évaluation génétique.
évaluation génétique / précision / modèle linéaire mixte / disconnexion / progrès
génétique

INTRODUCTION

The problem of precision and especially of disconnectedness in BLUP genetic
evaluation, is becoming increasingly important in animal breeding. Since the work
of Petersen (1978) and Foulley et al (1984, 1990), three papers have addressed this
subject: Foulley et al (1992), Kennedi and Trus (1993), and Laloe (1993).

In the context of genetic evaluation, disconnectedness is not clearly defined.
Sometimes, it is the lack of genetic ties between levels of fixed effects, and other
times it is defined as the inestimability of contrasts between levels of genetic effects.
Both definitions are somewhat incoherent, since, as Foulley et al (1992) wrote
&dquo;From a theoretical point of view, complete disconnectedness among random effects
can never occur&dquo;. These authors introduced the concept of &dquo;level (or degree) of
disconnectedness&dquo; by relating the prediction error variance (PEV) of the genetic
effects to the PEV under a reduced model excluding the fixed effects. They
suggested a global measure of connectedness among levels of a factor. Kennedy and
Trus (1993) suggested the PEV of differences in predicted genetic values between
candidates for selection as the most appropriate measure of connectedness. Lalo6
(1993) introduced the concept of generalized coefficient of determination (CD),
the CD of a linear combination of genetic values, and suggested a new definition
of disconnectedness among random effects: a design is disconnected for a random
factor if the generalized CD of a contrast between its levels is null. Some global
measures of the precision of an evaluation or of a set of evaluated animals were
suggested.



The aim of this paper is to compare the three methods, theoretically and with
some numerical examples based on animal models and sire models.

MODELS, NOTATION AND CRITERIA

Consider a mixed model with one random factor (and the residual effect)

where y is the performance vector of dimension n, b the fixed effect vector, X
the pertinent incidence matrix, u the random effect vector, Z the corresponding
incidence matrix and e the residual vector.

where A is the numerator relationship matrix, and the scalars U2 and ud are
the additive and residual variance components, respectively. BLUP (best linear
unbiased predictor) of u, denoted u, is the solution of (Z’MZ + !A-1)u = Z’My,
where A = o, e 2/0,2 a, and M = I - X(X’X)-X’ is a projection matrix orthogonal to
the vector subspace spanned by the columns of X: MX = 0.

The joint distribution of u and u is multivariate normal, with a null expectation
and variance matrix equal to

The distributions of ulû and u - u are multivariate normal: N(u, C°°Ue ) and
!V(0,C!&dquo;!), respectively.

The following is a second model:

With this random model, ul-ii - N(u, Cuuo,,2) and u - Û rv N(0, C!uO&dquo;;), with
r = (Z’MrZ + ÀA -1) -1 and Mr = I - 1(1’1)-11’, the projection matrix

orthogonal to the vector 1. This model can be considered to exhibit the infor-
mation provided by the data in order to predict genetic values, without any loss
due to the estimation of fixed effects, except the mean.

Criteria

Three criteria are proposed to judge the quality of the prediction of a contrast, ie,
a linear combination of the breeding values x’u, where x is a vector whose elements
sum to 0:
- PEV(x) (Kennedy and Trus, 1993). Comparisons between animals that are poorly
connected would have higher prediction error than those that are well connected.



This method is denoted PEV.

- IC(x), the connectedness index (Foulley et al 1992), ie, the relative decrease in
PEV when fixed effects are exactly known or do not exist (reduced model). It varies
between 0 and 1, and is close to 1 when the animals are well connected. This method
is denoted IC.

- CD(x), the generalized CD (Lalo6, 1993), which corresponds to the square of the
correlation between the predicted and the true difference of genetic values. This
method is denoted CD.

AN ANIMAL MODEL EXAMPLE

The examples from Kennedy and Trus (1993) are used to illustrate the three
measures. Consider an animal model for which there are two management unit
effects that are estimated from the data jointly with the genetic values of four
animals. All animals have single records. The first two animals (ui and u2) are
in unit 1, and the last two (u3 and u4) are in unit 2. Heritability equals 0.5 and
0&dquo;; = or = 1 (A = 1). Two cases are considered: (i) the animals are unrelated, and
(ii) animals are unrelated within management unit, but each animal has a full sib in
the other management unit; (Ul, U3) and (U2, U4) are full-sib pairs. Obviously, there
are no genetic ties between management units in case (i), and the corresponding
design is genetically disconnected. Four contrasts between animals are considered:
animals within a management unit (ul - U2), animals from different management
units (ul - u3 and u2 - u3) and genetic levels of the units (ui + u2 - u3 - U4)-
For each contrast, the above three criteria were calculated, and their values are
presented in table I. Some comments about these values allow the identification of
following problems.

First, IC could not detect any lack of genetic links between units. Its value was
0.5 in case (i) (unrelated animals) for U1 + U2 - u3 - u4. Kennedy and Trus (1993)
showed that PEV could detect lack of genetic links between units by a covariance
of 0 between the BLUE (best linear unbiased estimator) of these units.

Second, disconnectedness was detected by CD, which delivered null CD for the
unit comparison, whatever the case, ie, even if the units were genetically linked.
Here, the design was such that a difference of genetic levels between units could not
be predicted: Ul + u2 - u3 - u4 was always null, whatever the data, as proven in
Appendix 1. This concept of connectedness is not equivalent to the lack of genetic
links between management units, but to the lack of information provided by the
data (var(x’ulû) = var(x’u)). However, PEV showed that the genetic levels of the
units were more likely to be the same in case (ii) than in case (i), due to the genetic
links between units in case (ii): PEV = 4 in case (i) and PEV = 2 in case (ii).



Finally, the two methods (PEV and CD) accounted for relationships between
animals in different ways. Genetic links between units increased the CD of U2 - U3
(unrelated animals of different units), 0.45 (case (ii)) vs 0.25 (case (i)), but the
CD of ul - u3 (related animals of different units) decreased, 0.17 (case (ii)) vs
0.25 (case (i)). PEV decreased in both cases. This decrease was higher for related
animals, 0.83 (case (ii)) vs 1.5 (case (i)) than for unrelated ones, 1.1 (case (ii)) vs
1.5 (case (ii)). The two methods give, therefore, contradictory results. Indeed, the
more the animals were related, the lower the genetic variability of their comparison;
PEV(x) decreased, but so did x’Ax. The variance of x’u was proportional to
x’ Ax - APEV(x). If the relative decrease of PEV(x) were smaller than the relative
decrease of x’Ax, the variance of x’u would decrease, and hence the probability
that high differences between animals could be exhibited by the evaluation. For
instance, in case (i) (unrelated animals), PEV(x) = 1.5 and x’Ax = 2, while in
case (ii) (related animals), PEV(x) = 0.83 and x’Ax = 1. The decrease of PEV(x)
did not compensate for the loss of genetic variability, and CD(x) went from 0.25
(case (i)) to 0.17 (case (ii)).

OVERALL INDICES

The best model was different according to the contrasts; when CD was used, we
chose case (ii) for considering the contrasts ul - v,2 and u2 - u3, but case (i) was
the best for the contrast Ul - U3 - It could be interesting to extend these procedures,
defined here for a specific contrast, to a global measure of precision of an evaluation.
An overall criterion could be useful when optimizing a design or comparing the
precisions of different evaluations. Such overall criteria are derived on the basis of
the means of quadratic ratios. As shown in Appendix 2, the ratio of the quadratic
forms x’Bx/x’Cx is related to the generalized eigenvalue problem [B - pjc]cj = 0,
and two global means of these ratios of quadratic forms are the geometric and the
arithmetic means of the corresponding eigenvalues /ti.



Overall connectedness index

The ratio of quadratic forms here is x’cg!x/x’c!!x. The overall index sug-
gested by Foulley et al (1992) is the geometric mean of the eigenvalues of

rCiu _ !C&dquo;&dquo;]c, = 0 or

This index is suggested, using the Kullback information (Kullback, 1983) between
the joint density of the maximum likelihood estimator of b and u - u and the
product of their marginal densities that would prevail if the design were orthonormal
in b and u. All the indices of connectedness (IC and IC(x)) are strictly positive
and fi 1. The null value never occurs when dealing with random factors, because
the random effects are always estimable and the rank of both matrices equals n (eg,
Foulley et al, 1990). An IC(x) equal to 1 demonstrates that x’(u-u) is orthogonal
to the fixed effects and, for the global IC, that u - u is orthogonal to the fixed
effects.

Application of the overall connectedness index among sires in a reference sire
system based on planned artificial inseminations with link bulls has already been
undertaken in France (Foulley et al, 1990; Hanocq et al, 1992; Lalo6 et al, 1992).

Criteria of precision

Here, we devote our attention to the CDs of the contrasts between genetic values,
which could be summarized in the (n - 1) greatest eigenvalues ui of the generalized
eigenvalue problem (Lalo!, 1993):

Some properties of the solutions, written in ascending order, are briefly given
here. The pjs are located between 0 and 1: p2 K CD(x) ! !n; /-L1 is always null,
and the associated eigenvector ci is proportional to A-11; the other eigenvectors
correspond to contrasts, since (cf, Appendix 2 [A2.12]): c’Aci = 0 for i > 1 «

l’ A -1 ACi = 0 = 1’ci, ie, the definition of a contrast; CD(Ci) = /-Li’
Eigenvalues and eigenvectors for case (ii) are reported in table II. It could be

verified that eigenvectors corresponding to a null eigenvalue are respectively C1,
proportional to A-11, and c2, which corresponds to the genetic level comparison
of the units. The other eigenvectors correspond to contrasts. Moreover, any contrast
x’u can be written as a linear combination of the cis (i ranging from 2 to n) (cf,
Appendix 2 (A2.15!).



From Appendix 2 [A2.6], the CD of any contrast is a weighted mean of the
eigenvalues of !7!:

Two overall indices of precision can be computed:

These criteria have been used to validate the rule of publication of French beef
bull genetic values from field data evaluation (Lalo6 and M6nissier, 1995).

PEV

Kennedy and Trus (1993) did not suggest any overall criterion of precision. By
analogy, use of det(C°u)1!! is suggested.

The values of the different criteria are reported in table III. Null values of p2
showed that both designs were disconnected. P1 was the same for both cases, as IC
and det(C°u)1!! favored the design where animals are related.



CONCEPT OF (DIS)CONNECTEDNESS AND RANDOMNESS OF
GENETIC EFFECTS

Disconnectedness, as defined in the linear fixed model context (y = Xb-!-e) (use of
a generalized inverse of X’X Qe as the variance matrix of BLUE (b) - b, occurrence
of non-estimable contrasts, ’all or none’ characteristic), never occurs when dealing
with a random factor. Var(u - u) = C’uoe2 is always positive definite. However,
ACuu is upwardly bound by A, in the sense that, whatever x, AxCuux <1 x’Ax.

If the PEV of a contrast x’u reaches the upper bound x’Ax, CD(x) = 0 and:

Equation [13] implies that x’u does not follow a normal distribution, but a
point-mass distribution at 0: P(x’u = 0) = 1. In that sense, disconnectedness for
a random factor is an ’all or none’ characteristic concerning the distribution of the
predictors in the same way as for a fixed factor. If a fixed factor is disconnected, ie,
if a contrast between its levels is not estimable, then the CD of a contrast between
its levels is null when it is treated as random. Thus the following definition of
disconnectedness for random factors is proposed: a random factor is disconnected
when at least one contrast between its levels has a null CD. With this definition,
the status of a factor with respect to connectedness does not depend on the fixed
or random nature of this factor. Connectedness leads to the same consequences in
terms of the decrease of a matrix rank or probability laws in both random and fixed
cases. Because IC and PEV deal with Cuu instead of A-!C°u, they cannot exhibit
this kind of disconnectedness for a random factor. As shown below, IC is devoted
to the orthogonality between random and fixed factors and can detect perfectly
connected contrasts or designs, but not disconnected ones.

BOUNDARIES AND RELATIVE EVOLUTION OF CRITERIA

Lower boundary of the index of connectedness

Since C’u is positive definite, IC(x) is never null and the index of connectedness
never reaches the null value. It is interesting to characterize the lower boundary of
this index, and how it varies.

Consider a contrast x’u, and denote the generalized coefficient of determination
of x’u obtained with model [2] as CDr(x). CDr(x) can be considered as the amount
of information provided by data, independent of the design. A formula relating
IC(x), CD(x) and CDr(x) could be derived from [4] and [5]:

IC(x) has a minimal value when x is disconnected in the complete model [1]
(CD(x) = 0) and is equal to 1 - CDr(x), by applying [14]. Thus, the index of



connectedness of a disconnected contrast increases as the amount of data decreases,
contrary to the assumption of IC accounting only for the design.

The connectedness index of a contrast x’u is then located in the interval

[1 - CDr(x),1!. Particularly, when CDr(x) = 0, IC(x) = 1. This case occurs, for
instance, when considering a contrast between a sire and a dam known only by
their common progeny. Their predicted genetic values will always be equal whatever
the performances. Thus, the question of whether there is any assortative mating
cannot be answered. IC(x), however, is always equal to 1 and these animals would
be declared as perfectly connected and then comparable.

The same kind of result can be found again when working with a design as a
whole; consider a nested, balanced ’herd/sire’ model, with t progeny per sire, h
herds and n different sires per herd. This design is clearly disconnected.

Some values of pl and IC in relation to t are indicated in table IV, where h and n
are equal to 5 and 2, respectively. Heritability equals 0.2. Though all these designs
are disconnected, IC varies from 0.980 (t = 1) to 0 (t = oo). The greater the amount
of data, the lower IC. The design where t = 1 seemed to be very well connected,
the index of connectedness can not exhibit any disconnectedness and favors designs
with low precision. The variation of this index for similar disconnected situations
makes it unreliable for use.

Another index of connectedness is proposed, in order to study the causes of
low precision of an evaluation. This low precision could be caused by a lack of
information provided by the data or the design structure. It would be interesting
to determine the main cause of this low precision. This would allow the precisions
obtained in both reduced and complete models to be compared, on the basis of the
matrices A-C&dquo;&dquo; and A-Cr in order to avoid the above-described drawback of IC.
This new index is denoted ø(x) for a contrast x’u and is equal to CD(x)/CDr(x) or
to the ratio of quadratic forms x’(A-C°°)x/x’(A-Cr°)x. ø(x) is located between
0 (disconnectedness) and 1 (no impact of the fixed effects), whatever CDr(x). The
overall indices of connectedness are:



where plr and p2r are the overall criteria of precision P1 and p2 obtained with the
reduced model, respectively.

In the above sire model example, </J2 = 0, revealing again that the design is
disconnected. It can be shown in this example that <P1 = (n - 1)h/(nh - 1), ie, the
proportion of connected contrasts among all the contrasts. It does not depend on
the heritability or the amount of information provided by the data, ie, the number
of progeny per sire. For the situations reported in table IV, the values of <P1 and 4>2
are constant, and equal to 0.556 and 0, respectively, as the value of IC varies from
0 to 0.980.

These new indices obviously have the same limitations as the original one (they
only take into account the impact of the fixed effects, orthogonality is favored) and
can not be the only criterion used to judge a design. They could be used, however,
to see if a low value of a CD is caused by a small amount of data or by a poor
design, and also to evaluate the global loss of information due to the design.

Upper boundary of the index of connectedness: complete connectedness

Consider a completely connected design, ie, one whose overall index of connected-
ness is 1. Then, for any x, x’ ÀC!ux = X’!C°&dquo;X. Since both matrices are positive
definite, Cu’ = Cuu and, consequently, Z’MZ = Z’MrZ. It can be seen that the
condition of complete connectedness is independent of the relationship matrix. This
equality characterizes a design where, in a fixed effects model context, u is orthog-
onal to all other effects (except the mean). This kind of orthogonal design must
be complete with proportional frequencies (Coursol, 1980; Mukhopadhyay, 1983).
All the levels of the random factor must then be identically distributed among all
levels of all the fixed factors. For instance, for a sire model, the following equality
must be satisfied for any sire and any level of factors included in the model:

where noo is the total number of progeny, n2o the sire i number, nOj(k) the number
of the level j of the kth fixed factor, and nij(k) the sire i number in the level j of
the kth fixed factor.

Boundaries of the criteria of precision

The CD of a contrast is the square of correlation between x’u and xii, which varies
between 0 and 1. A value of zero indicates that the data does not provide any
information about the comparison: var(x’ulû) = var(x’u). The contrast between
genetic values cannot be predicted, and there is a disconnectedness, according to
Lalo6 definitions (1993). A value of 1 (which is never reached) would indicate that
the correlation between predicted and exact values was equal to 1, or that no more
information could be obtained from the data.

PEV

IC and CD measure the discrepancy between the real situation and a reference
situation. The values of the index of connectedness and of the criteria of precision



are located between 0 and 1. The theoretical interpretation of these values is that
the nearer a value is to 1, the better the situation would be. An IC of a contrast equal
to 1 demonstrates that there is no influence of the fixed effects on the prediction
of this contrast; a CD is the squared correlation between the predictor and the
real value; these values are interpretable. However, a value of a PEV alone cannot
be interpreted in itself. It must be compared with values of the same contrast in
other situations, or with other contrasts. For instance, in case (ii) of the theoretical
animal model example where the PEV between individual units was 2, this must
be compared to the value of the same PEV in case (i) (PEV = 4), or the covariance
between units must be considered.

AN OPTIMIZATION PROBLEM

Consider a model including the fixed effect ’herd’ and a random effect ’sire’. The
number of observations N is the same per herd (here, N = 60). There are two
natural service intraherd sires (t observations per sire) and a reference sire (m
observations per herd and sire) used in each herd, as shown in table V; N = 2 t+m.
The sires are not related and heritability equals 0.2. The problem is how to choose
m and t in order to obtain the most precise genetic values of the ten natural service
sires. In that context, where animals are unrelated, PEV and CD are equivalent. If
normed contrasts x’u (such as x’x = 1) are considered, without loss of generality,
the following results:

An increase of CD then corresponds to a decrease of PEV, and the use of both
methods leads to the same results. For this reason, we used IC and CD. IC, 01, <P2,
pl and pz were computed for the set of the ten natural service sires, and IC(x),
O(x) and CD(x) were computed for a contrast between genetic levels of two herds,
and with respect to different values of t and m. These results are given in table VI.

Criteria of connectedness

IC, 01 and IC(x) increase with m, starting from strictly positive values and reaching
their maximum value near 1 when m = 58 (table VI). <jJ2 and !(x) also increase



with m, but start from 0 when m = 0, exhibiting a disconnectedness, to a maximum
value near 1 when m = 58. All these criteria favor the less incomplete design, which
is also the design where the natural service sires have only one progeny. Whatever
the criteria used, studying only the structure of the design was insufficient to judge
the precision of an evaluation or to optimize a design.

Criteria of precision

Criteria of precision range from 0 when m = 0, exhibiting a disconnectedness, to
several maxima (m = 20 for p2, m = 16 for P1 and m = 30 for CD(x)). It was not
surprising that the maxima were different depending to the criteria because p2 is
more sensitive to a poor connectedness than pl, and reached its maximum value
for a more connected design than pi. The contrast of genetic levels between herds
was the less connected one, and it was most precise for a greater value of m. The
values of the criteria then decreased; the enhancement of connectedness no longer
compensated for the loss of information provided by the data. Unlike the indices of
connectedness, the use of criteria of precision led to optima that were compromises
between information from the data and the structure of the design.

Consider the contrast between genetic levels of two different herds, CD(x) _
0.180 in two cases:
- for t = 25, cjJ(x) = 0.317 (IC(x) = 0.527), with a poor level of connectedness,
about two-thirds of the information is lost, due to the design structure:
- for t = 5, !(x) = 0.863 (IC(x) = 0.986), the restrictive factor here is the amount
of information that can be obtained from the data.

This conclusion is obvious without using these criteria on simple designs, but
the interpretation of the indices needs to be as clear as possible when dealing with
more complicated ones.



LINKS BETWEEN IC, PEV, CD AND EXPECTED GENETIC
PROGRESS

Maximization of IC and genetic progress

Hanocq et al (1966) showed in a simulation study that a high level of connectedness
only slightly increases the genetic trend. In the extreme, if the factor ’year’
is included in the model and the corresponding design is completely connected
(IC = 1), all the sires must be used the same way in all the years (equation !17!).
Such a design surely cannot lead to any genetic progress, since animals born in
different years would be bred from exactly the same sires in the same proportions.

Behavior of PEV and CD on a hypothetical animal model where animals
are equally related

As noted before, CD and IC are equivalent when dealing with contrasts involving
unrelated animals, but they account for relationships differently. It would be

interesting to see what the differences are when one method is compared to the
other, particularly with respect to the genetic progress. Indeed, Kennedy and Trus
(1993) wrote &dquo;... minimization of PEV does not necessarily maximize rate of genetic
improvement because it may come at a cost of reduced selection intensity associated
with selection among related as opposed to unrelated individuals&dquo;. We will use a
hypothetical and unrealistic model to study the behavior of both indices according
to the relationships between animals.

For a ’mean + animal’ model, where the animals are equicorrelated with a
relationship coefficient r, and the number n of animals is large, we have (cf,
Appendix 3)

Here, PEV(x) and pl vary in exactly the same way according to r. To optimize
the design with PEV (minimization of PEV(x)) or with CD (maximization of pi)
leads to a maximal r or a null r, respectively.

The expression of the expected genetic progress is (cf, Appendix 3):

where iP T = ip(l- r )°.5 can be viewed as the reduced selection intensity associated
with selection among related animals (Kennedy and Trus, 1993), and pi is the

global criterion of precision. This expression is similar to the expression of the
expected genetic progress in the case of a classical selection index and made on a
large population of unrelated animals:

where ip is the selection intensity and CD the coefficient of determination of the
animal selection index. pi plays the same role in [21] as CD in (22]. The increase of



r induces a decrease of R, initially because of the decrease in the selection intensity,
as noted by Kennedy and Trus (1993), and secondly because of a decrease in the
precision pi. At the same time, the PEV decreases. In this situation, PEV and
genetic progress are in conflict.

CONCLUSION

Methods PEV and CD answer different questions. If the predicted value of a
contrast is null, PEV allows the appreciation of the likelihood of this result. The
probability that x’ulx’û=ü will be near 0 increases as PEV(x) decreases, because
xlulx,!!=0 - N(O, PEV(x)). The CD permits the determination of whether the
predicted value will be different from 0. In general terms, the probability that x’u
will be different from 0 increases with CD(x), because x’f - N(O, CD(x)x’Axo, a 2).
PEV is more related to the likelihood of the hypothesis ’all the animals are equal’,
and CD could be linked to the power of the test ’are the animals different?’.
This distinction is very important, since the main aim of genetic evaluation is
to discriminate between animals on the basis of their predicted genetic values, in
order to select the best ones.

While both methods are equivalent when animals are unrelated, they can, how-
ever, be in conflict in other situations. Genetic relationships decrease the PEV, and
also decrease the selection intensity and the genetic variability. PEV is minimized
when var(x’ulx’û) is a minimum, and CD is minimized when var(xulx’û)jvar(x’u) is
a minimum. PEV then favors contrasts between related animals, where var(x’ulx’û)
is small, as CD accounts for the decrease of var(x’u). CD combines both aspects,
genetic variability and PEV, and is therefore more related to genetic progress, as
shown in the theoretical example in the previous section.

The problem of (dis)connectedness is formulated differently according to a priori
knowledge about differences between the evaluated populations or genetic levels of
management units. First, if the differences are known or supposed to be, can they be
exhibited in the evaluation? This question can be answered by CD. Second, a priori,
there are no differences. Disconnectedness is then only a source of a decrease of
precision, and its study has no inherent interest. Its study may permit the choice of a
strategy for precision increase, either by connectedness increase or by an increase of
the amount of information provided by data. IC is not very appropriate to this kind
of study, mainly because it does not always exhibit disconnectedness and because
it decreases with the amount of information obtained from data. Large values of
this index could be due either to a good connectedness or to poor information.
Another index, devoted to the design structure and independent of the information
obtained from the data, was suggested to minimize this drawback. To look only
at the data structure is not sufficient. An orthogonal design could not lead to
any genetic progress. A genetic evaluation must be precise and discriminatory.
CD, which combines data structure and amount of information and also accounts
for both PEV and genetic variability, is a good method to select for judging the
precision of a genetic evaluation or to optimize corresponding designs.
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Appendix 1.

Proof that CD (x) = 0 ! xii = 0

The CD of contrast x is null if and only if the expectation under the distribution
of u of the Kullback information between the respective distributions of x’ulû and
x’u is null (Lalo!, 1993, formula 24): CD(x = 0 « E!(7 !g(x’u!u): f (x’u)! = 0.



I !g(x’u!u): f (x’u)! is a null or positive random variable (Kullback, 1983), and
its expectation is null if and only if it takes only null values. Then, whatever
u, I !g(x’u!u): f (x’u)! = 0. Then, the distributions of x’ulû and x’u are the same

(Kullback, 1983). Notably, their expectations are equal: E(x’ulû) = E(x’u) = 0 =
x’u, whatever u. Then CD(x) = 0 ! x’u = 0.

Appendix 2.

Ratio of quadratic forms and generalized eigenvalue problem

Let us consider a positive semi-definite matrix B and a positive definite matrix
C. We are interested in the ratio of quadratic forms x’Bx/x’Cx, and we want to
characterize this ratio in some manner. 

’

Since C is positive definite, a lower triangular and non-singular matrix L exists
such that C = LL’. Hence x’Bx/x’Cx = x’Bx/x’LL’x = y’L-’BL’-’y/y’y
where y = L’x. This ratio of quadratic forms is related to the standard eigenvalue
problem:

where pj and di are the eigenvalues and the eigenvectors of L -1 BL/-1, respectively.
The following equations recall the properties of the eigenvectors:

Eigenvalues and ratio of quadratic forms

The vector y can be written as a linear combination of the dis:

From the above properties of the eigenvectors, we get:

Thus, these ratios of quadratic forms are the weighted means of the eigenvalues
of L -1 BL’ -1. They are located in the interval (!1, ... , pn] of the eigenvalues sorted



in ascending order of L-1BL’-1. It seems natural to choose some means of the
eigenvalues as the global means of the ratio of quadratic forms, eg, the arithmetic
and the geometric means:

The geometric mean of the eigenvalues is:

The arithmetic mean of the eigenvalues is:

[A2.1] can be written as:

where ci = L!-ldi or di = L’ci, where ci is the eigenvector associated with tij.
Then, by premultiplication of both sides of equation [A2.9] by L, we get the

so-called generalized eigenvalue problem:

or

Properties of the eigenvectors of [A2.11] J

From the properties [A2.2] to [A2.4] of the eigenvectors of the standard eigenvalue
problem we deduce:

Appendix 3.

Expected genetic response from a BLUP evaluation on a ‘mean + animal’
model with equicorrelated relationship matrix

The general expression of the expected response to selection is (eg, Gomez-Raya,
1992):



where p is the proportion of animals selected, and Si,p = 1 if i is among the selected
animals. E(uj ] § ) being equal to !!i, we have:

If the animals are unrelated and if the selection is based on a classical selection
index with the same information per animal (mass selection, progeny selection with
the same number of progeny per animal), the ui are normally, independently and
identically distributed: fi N(O, Iu() or G - N(O, ICDor2); and we get the well-u 

a

known formula RP = Zp<7! = ipCDo.50&dquo;a, where ip is the selection intensity and CD
the coefficient of determination of the animal selection index.
We determine the expected response to selection in a simple random animal

model, where the animals are linked by the same relationship, in order to see the
impact of this relationship on the expected genetic progress, the criteria of precision
and the PEV.

First, we will report here some properties of special patterned matrices that
will be useful in the following. Let us denote Ka,b,.! the matrices of order n
such that Ka,b,n(i,i) = a whatever i and Ka,b,n(i,j) = b for i different from j:
Ka,b,n = (a - b)In + bJn. Kn denotes the set of the positive semi-definite matrices
Ka,b,n. Then, if Ka,b,n and Kc,d,n belong to K!,:

Ka,6,! + Kc,d,n belongs to Kn
Ka,6,n,Ko,d,n belongs to Kn
rKa,b,n belongs to Kn, if r > 0

if a,b,n exists, it belongs to Kn

Ka,b,.! has two eigenvalues (eg, Lalo6, 1993):

The multiplicity of J.L1 is 1, and the corresponding eigenvector is proportional
to 1; the multiplicity of p2 is n - 1, and the corresponding eigenvectors c’s are
contrasts (e’l = 0).

Equivalently, we have:
.. m. 1 B ..... ,

The eigenvalues of the product (or the sum) of two matrices belonging to K!, are
the product (or the sum) of the homologous eigenvalues of both matrices. Moreover,
the eigenvalues of the inverse of a positive definite matrix are the inverse of the
eigenvalues of this matrix.

Because of all these properties, working with the eigenvalues of this kind of
matrices greatly simplifies the algebra.

The model is y = Im+Zu+e, where the u are equicorrelated, with a correlation
r. n animals are included in the evaluation and are recorded. Z = In. The variance



matrix of u is equal to AQa K1,r,nO&dquo;; and

The matrix variance of u, (A - AC&dquo;&dquo;)o, a 2, must be expressed in order to get
the parameters used in [A3.11. On the other hand, we need the eigenvalues of
L-1 (A - ÀCUU)L-l, where A = LL’ in order to get the precision criteria. These
eigenvalues are also the eigenvalues of L’-lL -l(A - aCu°), ie, A-1 (A - aC°u).
Finally, the coeflicients of the PEV matrix Cuu are required.

Matrices CUu, (A - ÀCUU)a! and A-1(A - ÀCUU) belong to Kn, since they
are simple functions of A and Z’MZ, which are matrices belonging to Kn. The
calculation will be as follows:

(i) to get the eigenvalues of Z’MZ and A, using !A3.2!;
(ii) to get the eigenvalues of all intermediate matrices, using the above properties;
(iii) to get the eigenvalues of A-1(A-!C°&dquo;), and the coefficients of (A - ACu’ ) 2
using !A3.3!.

Eigenvalues of all these matrices are reported in table AI.

The space of contrasts between the n animals is (n - 1)-dimensional vectorial,
which is spanned by the (n-1) eigenvectors d2, ... , d! corresponding to the second
eigenvalue of C’u. Any contrast y’u corresponds to a linear combination of these
eigenvectors:



From [A2.6] we get:

The PEV of any contrast between animals is proportional to the second eigen-
value of C!! :

The (n - 1) greatest eigenvalues of A-1(A - ACuu) are all equal. Thus their
geometric and arithmetic means are equal to this eigenvalue:

The following can be deduced from the eigenvalues of (A - AC&dquo;&dquo;)c! and of
[A3.3]:

When n tends to infinity, a tends to (1 - r)plo,’ and b tends to 0. The uis become
independently and identically distributed, with a variance equal to (1 - r)pw;.
Then:

After the results of Owen and Steck (1962), as recently discussed by Phocas
and Colleau (1995), iP 1 - is the expectation of the upper p-fraction of a large
sample of equicorrelated multinormal variates, where each variate is with mean 0,
variance 1 and with a correlation r between variates.

The expected genetic gain is then equal to:

where ip,r = ip(1 - r)’-’ could be viewed as a selection intensity accounting for the
genetic relationship r between animals (Kennedy and Trus, 1993) and pi is the
overall precision criterion.


