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Abstract - Expressed sequence tags (ESTs) are partial sequences from the extremities
of complementary DNA (CDNA) resulting from a single pass sequencing of clones
from cDNA libraries, and different ESTs can be obtained from one gene. Sequence
information from ESTs can be used for deciphering the function and the organisation
of the genome. From a functional viewpoint, they allow the determination of the
expression profiles of genes in any particular tissue, in different conditions or status,
and thus the identification of regulated genes. In order to identify genes involved in
particular processes one can select a specific group of mRNAs. For such a selection,
classical techniques include subtraction or differential screening and new techniques,
using polymerase chain reaction (PCR) amplification, are now available. For studies
on the organisation of the genome the main use of ESTs is the determination of
chromosomal localisation of the corresponding genes using a somatic hybrid cell panel.
This chromosomal localisation information is needed to identify genes or quantitative
trait loci, according to the ’positional candidate’ approach. ESTs also contribute to
comparative genetics and they can help to decipher gene function by comparison
between species, even genetically distant ones. Thus, combining sequence, functional
and localisation data, ESTs contribute to an integrated approach to the genome.
&copy; Inra/Elsevier, Paris
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Résumé - Des étiquettes pour les gènes : une revue. Les « étiquettes » correspon-
dent aux séquences des extrémités des ADN complémentaires, obtenues de manière
systématique à partir d’une seule réaction de séquençage. Cependant, à partir d’un



seul gène plusieurs étiquettes différentes peuvent être obtenues : celles qui correspon-
dent aux deux extrémités de l’ADN complémentaire, aux ADN complémentaires de
tailles différentes synthétisés à partir d’un même ARN messager, et aux différents
ARN messagers issus d’une même séquence d’ADN génomique. L’identification des
gènes correspondants est faite par comparaison avec les séquences nucléiques ou
protéiques contenues dans les bases de données publiques (GenBank ou EMBL, Swis-
sProt), en utilisant des logiciels d’alignement automatique tels que FASTA ou BLAST.
Les séquences annotées des étiquettes sont stockées dans une base de données partic-
ulière, dbEST, et soumises régulièrement à des tests de comparaison avec les bases de
données citées. En raison de la présence d’une longue région non codante à l’extrémité
3’ des ARN messagers, les étiquettes de l’extrémité 3’ sont souvent non informatives.
La comparaison des étiquettes entre elles permet d’essayer de regrouper celles qui
peuvent appartenir à un même gène et de déterminer ainsi une séquence consensus,
plus longue et donc plus informative. Au niveau fonctionnel, les étiquettes perme-
ttent d’établir les profils d’expression des gènes d’un tissu donné dans différentes
situations physiologiques ou expérimentales et donc d’identifier les gènes qui sont
régulés. Ces profils sont établis en utilisant les étiquettes pour mesurer la fréquence des
différents ADNc dans une génothèque préparée à partir de ce tissu dans les différentes
conditions étudiées. Dans une nouvelle stratégie, la SAGE (Serial Analysis of Gene
E!pression), des étiquettes d’une dizaine de nucléotides sont collectées, mises bout
à bout et séquencées en série, ce qui permet d’accélérer l’acquisition de ces pro-
fils d’expression. Une autre approche est basée sur l’hybridation d’un grand nombre
de clones déposés sur une même membrane en nylon «filtres haute densité », ou,
dans un format miniature, sur une lame de verre, « microarrays». Pour identifier les
gènes impliqués dans des processus bien définis, différentes stratégies de soustraction
ou de comparaison permettent de sélectionner une population particulière d’ARN
messagers ; les techniques les plus récentes utilisent l’amplification par PCR. Au
niveau de l’organisation du génome, les étiquettes contribuent au développement de
la cartographie génique : les gènes correspondants sont localisés en utilisant un panel
d’hybrides somatiques, les amorces nécessaires pour amplifier l’ADN des hybrides
sont choisies grâce aux informations de séquence fournies par les étiquettes. Cette
information de localisation chromosomique est indispensable pour identifier les gènes
responsables des caractères étudiés par une stratégie de gène candidat positionnel.
L’utilisation d’étiquettes d’une autre espèce peut également permettre d’effectuer ces
localisations et donc de développer des cartes comparées entre espèces qui mettent en
évidence une certaine conservation de l’organisation des gènes sur les chromosomes.
Enfin, la conservation des gènes n’est pas limitée à la séquence et à l’organisation :
grâce aux étiquettes, des analogies fonctionnelles de gènes appartenant à des espèces
génétiquement éloignées ont été décrites et sont recherchées systématiquement pour
identifier la fonction des gènes. Ainsi, en permettant de combiner des données de
séquence, d’expression et de localisation chromosomique, les étiquettes participent au
développement d’une approche intégrée du génome. &copy; Inra/Elsevier, Paris
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1. INTRODUCTION

The identification of genes controlling economically important traits pro-
vides the basis for new progress in genetic improvement of livestock species,
complementing traditional methods based only on measured performance. The
identification of these genes, either major genes or quantitative trait loci ((aTL),
directly affecting variability in traits to be improved, is thus an objective to be



pursued, even though the use of linked genetic markers is an effective interim
solution [36]. The search for such genes has long been based on fundamental
knowledge of physiology, biochemistry or pathology which can lead to direct
specification of ’candidate’ genes. Today, thanks to the development of genetic
maps, the genes controlling such characters can be located by the approach of
’positional cloning’ based on the search for markers enclosing the gene more
and more closely [26].

Such location assumes the establishment of a genetic map by study of seg-
regation of markers over several generations, and of a cytogenetic map by de-
termination of the positions of the markers on the chromosomes. The markers
used are based on DNA polymorphisms: RFLP (restriction fragment length
polymorphism) and repetitive sequence polymorphism (minisatellites and mi-
crosatellites). Microsatellites, highly polymorphic and distributed throughout
the genome, have led to a remarkable advance in gene mapping: there were, in
1987, 42 markers in the pig, of which 20 gene markers were distributed in seven
linkage groups and 22 genes were localised [31]. Less than 10 years later, the
latest American map [79] which integrates the European [11] and Scandinavian
[33] maps, covers the pig genome with an average interval of about 2 cM; it was
established with 1042 loci of which almost 1000 were microsatellites. However,
these microsatellites are without known function, and the sequences used to
identify them are poorly conserved so that the information obtained with one
species cannot be transposed to another, and sometimes not even from one
population to another of the same species.

The combination of two pieces of information, that is the study of the co-
location of a gene identified by genetic methods and of a candidate designated
by knowledge of physiology or pathology, is defined as the ’positional candidate’
approach [14]: if, for a particular trait, the genetic linkage data implicate a
specific region of a chromosome, the genes located in this region are therefore
candidates for the character. Their role in the variation of the character
considered ought then to be analysed with, on the one hand, the identification
of a genetic polymorphism in the populations and, on the other, a functional
analysis.

The identification of candidate genes influencing important traits is ap-
proached through complementary DNA (cDNA), ’copies’ of messenger RNA
(mRNA). Devoid of intronic and intergenic sequences whose biological signif-
icance is still obscure, these mRNAs represent only a small percentage of the
total genome (about 3 % in mammals); by contrast, they contain the great
majority of information since they correspond to the proteins expressed in dif-
ferent tissues, the proteins responsible for the identity of these tissues. The
formal identification of genes proceeds by sequencing, but since there are some
50 000 to 100 000 genes in the mammalian genome this is still a tedious task.
An alternative approach is to sequence only fragments of these cDNAs: new
muscular proteins have thus been identified by sequencing 178 different cDNA
fragments (approximately 250 bp) from a cDNA library of rabbit muscle [75].
The development of techniques of molecular biology, particularly in the field
of sequencing, has helped to make this approach much more accessible. Thus
the sequencing of the ends of cDNA from different libraries, on 200 to 400
bases - the average number of bases read on a sequencing gel - allows different



transcripts to be identified. Such expressed sequence tags (ESTs) can thus be
obtained in a systematic manner (2!.
We address properties of these tags in the first part of this review before

considering, in the second part, their use in the functional domain; in the third
part, we consider their use in genetics. Most results in this area have been
obtained in man, and we will refer most often to this work. We will also use
illustrations taken from animals, in particular the pig, since our laboratory has
worked on the establishment of the genetic map and on the genetic analysis of
ovarian function in that species.

2. TAGS TO IDENTIFY GENES

2.1. One gene, several tags

The mature messenger RNA molecule is asymmetric: the 5’ end is charac-
terised by a particular structure, the ’cap’, and the 3’ end is prolonged by a
poly(A) sequence of 20 to 200 residues; this sequence is often used to bind,
by hybridisation, a complementary oligo(dT), which serves as a primer for the
synthesis of CDNA. In addition, a portion of variable length at each of the
two ends occurs either upstream of the initiation codon or downstream of the
stop codon and is not translated into protein; these are the untranslated, ’non-
coding’ regions (figure lA).

2.1.1. Several complementary DNAs for one RNA

Because of the frequent presence of secondary structures which block reverse
transcription to a variable extent, a messenger RNA can lead to different
incomplete cDNAs: a single transcript can then give cDNAs of different lengths
whose 5’ end is in the coding region; however, these different cDNAs initiated at
the poly(A) have the same 3’ end, which allows recognition of those derived from
the same messenger RNA. cDNA synthesis can also be initiated using random
oligonucleotides which hybridise at different sites inside the coding sequence of
the mRNA molecule; the different cDNAs obtained can thus overlap. Different
tags can therefore be obtained starting from a single type of messenger RNA
(figure 1B, C).

These tags permit identification of the corresponding messenger RNA by
comparison with the sequences of public databases for nucleic acid sequences
(GenBank/EMBL) or protein sequences (SwissProt). The identification is made
essentially by linking the coding sequence with known proteins; the non-coding
regions are thus a priori less useful. However, with such tags from the 3’ end,
Okubo and colleagues [69] were able to identify 22 % of their 984 clones,
although their sequences were voluntarily short (270 bp on average). At the
5’ end, the untranslated regions are shorter and the tags thus have a high
probability of corresponding to coding sequences.

Since a single transcript can give several cDNAs and thus different tags, it is
important to try to identify those which belong to the same clone or the same
transcript in order to cluster them and to try to obtain a longer sequence (THC,
Tentative Human Consensus, (7!; Unigene, (22!; Merck Gene Index, [1]). This
clustering is achieved by means of the comparison program BLAST (9!, and new





computer programs have been developed [24, 48]. Similarly, various programs
are available for the construction of consensus sequences [16]; Web server: see
table !. However, manual validation is indispensible to take account of different
possible sources of error, such as sequencing errors or alternative splicing (see
later). Such an analysis has been carried out for the tags obtained from libraries
of cDNAs from human muscle and brain [46]: about 19 000 sequences were
clustered into nearly 7 000 families.

2.1.2. Different messenger RNAs from the same gene

Starting from a single messenger RNA several complementary DNAs and
several tags can thus be obtained. In addition, a single gene - a DNA
sequence - can give several messenger RNAs through at least three mechanisms
(figure 1 A, B) .

a) In eukaryotes the mature mRNA is not a direct copy of the sequence of
the gene, since certain portions of the sequence, the introns, are suppressed
by a process of ’splicing’ leading to the joining of the other portions of the
sequence, the ’exons’, which are the only parts present in the final messenger
RNA. Cells possess mechanisms which allow them to produce several different
mRNAs starting from a single primary transcript: alternative splicing. This
process consists in the incorporation or the exclusion of one or more exons



in the mature mRNA, a combinatorial strategy which greatly increases the
possibilities of expression [85].

b) The location of the 3’ poly(A) sequence is determined by a polyadenyla-
tion signal, and several signals can co-exist, possibly located in different exons,
thus producing different messenger RNAs from the same gene.

c) Finally, the start of transcription occurs at a particular sequence, the
promoter, and some genes have different promoters, possibly in different exons,
so that from the same gene several different primary transcripts can be
synthesised. These primary transcripts can of course be subjected to alternative
splicing and/or alternative polyadenylation.

2.1.3. cDNA: a redundant representation of the genome

In a given cell, the different mRNAs are present in a variable number of
copies. Molecular hybridisation studies on messenger RNAs of HeLa cells [19]
or of different mouse tissues (liver, kidney, brain [40]) have shown that these
RNAs fall into three abundance classes:

- very abundant messengers, of about ten different types, each present in
the cells in thousands of copies;

- abundant messengers, some hundreds of molecular species, each present in
some hundreds of copies;

- rare messengers, thousands of different molecular species, with only a few
tens of copies per cell, or fewer than ten. This class can represent up to 50 %
of the total mass of messengers.

The mRNA populations are thus complex and the presence of many copies
of the same RNA entails the redundancy of cDNAs.

If the aim is to identify a large number of genes and thus to obtain a large
number of different tags from cDNA libraries, the redundancy will quickly
reduce the effectiveness of the search: the very abundant mRNAs will lead to

repeated production of the same tag, while it will be very difficult to obtain tags
corresponding to very rare messenger RNAs. For example, the determination
of 3 000 ESTs allows the identification of at least one transcript of 99 % of very
abundant messengers, more than 85 % of abundant messengers, but less than
5 % of rare messengers [53].

To alleviate this problem, a process of ’normalisation’ can be used. Its objec-
tive is to obtain a library in which all the cDNAs are present in approximately
equal quantities. The principle is to submit the population of cDNAs to a pro-
cess of denaturation followed by reassociation in such a way that the most
abundant molecular species reassociate more rapidly and can be partly elimi-
nated; in the remaining ’normalised’ population, the number of copies of each
of the more abundant species will have decreased by a factor of 1 000 to 10 000.
To facilitate the reassociation kinetics, and thus to increase the effectiveness of
the treatment, the size of cDNAs is usually reduced. In the approach developed
by the Scares group (86!, the normalisation is conducted starting from cDNA
cloned in single strand form. The synthesis of the second strand, of limited
length, is started at the 3’ end. This strategy thus conserves the advantage
of short sequences, but the normalised gene library is composed of full length
cDNAs already cloned. With some variations of this technique, 35 different
libraries have been successfully constructed !23!.



2.2. Identification and analysis of sequences

The identification of genes is carried out by comparison of their se-

quences with those contained in existing public databases such as GenBank
or EMBL. In August 1998, GenBank contained 2 532 359 sequences represent-
ing 1 797 137 713 bases, where man represents about 50 % of the total. The
EST sequences submitted to GenBank are kept in a specific database, dbEST,
and compared (using the BLAST program) regularly with databases of protein
and non-redundant nucleic acid sequences. The partial results of these searches
(15 best matches) are included in the commentary on the EST considered !21!.
At the end of August 1998, this database contained 1 785 394 entries. Among
the 117 species present, the most closely studied species are man (1 086 919),
mouse (353 450), Caenorhabditis elegans (72 569), the rat (57 274), Drosophila
(37 848) and Arabidopsis thaliana (37 445) followed, in the animal kingdom,
by the pig (2 365), the rabbit (1659), the chicken (304), the goat (245), cattle
(199), the dog (107) and the trout (89).

Sequence comparisons utilise different automatic alignment programs such
as FASTA [71] or BLAST !9!. These analyses result in a list of more or less
similar sequences, but, as we have already pointed out, these results require
’manual’ interpretation. The ’best’ results obtained by computer analysis must
be validated; criteria such as the length and the percentage of similarity of
these sequences, or even data on the evolution of the genes !32!, are used to
judge the pertinence of the identifications.

This identification of sequences would not be possible without the support
and development of computer technology, which permits, in addition to the
analysis of data, their management and access via the Internet. The role
of this technology has become so important that one speaks of research ’in
silico’ (’in silicio’ would be more correct) allowing new results to be derived
from information already accumulated. The data on sequence and function
provided by ESTs thus constitute primary material, and we cite here three
examples of this research which will also be illustrated later, in the framework
of comparative or integrated approaches.

ESTs permit a first approach to the analysis of the evolution of proteins or
certain protein domains. Thus, tags obtained from libraries of the human brain
[2, 3] and of the nematode C. elegans [95] have been compared systematically
among themselves and with sequences of yeast and Escherichia coli. Regions
conserved in the course of evolution, known as ’ancient evolutionary conserved
regions’ (ACR) have been detected in the corresponding proteins (38!.

From another perspective, the analysis of redundant human sequences
present in the database dbEST can allow the identification of new properties
of genes already well characterised, such as new alleles or a specificity of
expression. By comparing, for 15 genes, the genomic sequence with those
of tags, Wolfsberg and Landsman were able to demonstrate new profiles
of alternative splicing [98]. Similarly, the group of Pastan, starting from
already available sequences, has identified genes expressed specifically in the
prostate [92].



2.3. Applications

Developed extensively by the group of Venter (2-6!, this systematic approach
has culminated in the publication in 1995 of 174 472 human tags, derived from
300 cDNA libraries representing 37 different tissues or organs [7]. Another
project has been conducted by the University of Washington, financed by the
Merck company [1, 43]. Among other species, to cite only a few, studies are
proceeding on the nematode C. elegans [60, 95], the model plant A. thaliana
[28, 44, 66!, the pig [88, 97] and the goat (52!.

3. THE USE OF TAGS IN FUNCTIONAL STUDIES

In a particular tissue or cell type at a given time only some of the genes
are expressed, determining the specificity of the tissue; two different tissues
or cell types express different proteins whose synthesis is directed by different
messenger RNAs. Also, for each tissue, gene expression varies with physiolog-
ical, pathological or experimental conditions. Thus cDNA libraries mirror the
set of genes expressed in a given tissue and provide access to various modes
(tissue-specific, time-dependent, experimental) of gene expression.

3.1. Functional expression profiles

3.1.1. Numerical approach

The EST strategy shows here its full value: by simplifying sequencing it
allows the rapid building of a catalogue, even a partial one. The ’expression
profile’ established using tags will permit appreciation of the activity levels of
different genes, reflected in the frequency of appearance of the corresponding
tag (69!. By analysing the 3’ tags of about a thousand clones taken at random
from a cDNA library of a hepatic cell line, Okubo and colleagues showed that
52 % of messenger RNAs were redundant, representing 173 genes. Among these
redundant clones 55 corresponded to only three different species, in particular
to serum albumin produced in great quantity by the liver (21 clones out of
982).

Similarly, to demonstrate genes regulated by a growth factor, Lee and
colleagues have made a comparison of redundancy profiles obtained from
treated and untreated cells, each profile being the result of sequencing more
than 3 000 tags taken at random from the two libraries. The comparison of these
two profiles enabled them to identify around 600 different regulated messengers,
and the regulation of expression was checked for 15 sequences and validated for
12 of them (53!.

In a remarkable strategy, SAGE (serial analysis of gene expression), Vel-
culescu and colleagues [93] have developed this systematic determination of
profiles by using short tags which they sequence in series. These authors have
identified 289 transcripts whose expression level is different in normal and can-
cerous colon cells. This result was obtained by the analysis of 300 000 tags,
corresponding to 49 000 different genes whose levels of expression varied from
1 to 5 300 copies per cell (100!. This technique has also been applied to yeast,



where it has enabled the analysis of the quasi-totality of transcripts [94] reveal-
ing 4 665 different genes starting from 60 000 tags.

3.1.2. Analogical approach

A different approach is based on hybridisation used in conditions where the
intensity of hybridisation signals varies with the quantity of messenger RNAs
and thus reflects the activity of the corresponding genes. The simultaneous
hybridisation of a large number of clones permits information to be obtained
on the expression of numerous genes.

In ’high density’ filters the clones of a library are transferred to a single
membrane with a density of the order of 25 to 50 colonies per cm2 !54, 67,
73, 101!. The same principle, miniaturised, is used in ’microarrays’ [82] where
the density attains nearly 2 000 clones per cm2, and the simultaneous use of
two probes marked with different fluorochromes allows direct detection of the
regulated genes !83!. This technique has been successfully used to analyse the
expression of 6 000 genes of yeast, either in the course of growth or in mutant
strains !29!. Still in the course of development, this approach has without doubt
the promise of a great future.

3.2. Targeted research

As well as these global approaches, research can be targeted at a particular
group of messenger RNAs to identify the genes involved in a given process.
The selection of a messenger RNA subpopulation is classically performed
by subtraction or by comparison; very promising new approaches using the
polymerase chain reaction (PCR) are now available.

3.2.1. Subtraction

In the subtraction method, the aim is to enrich the cDNA population in
species specific to a particular tissue or cell type by eliminating sequences
common to several tissues or cell types and thus non-specific. The population
of cDNAs to be studied (target CDNA) is mixed with an excess of cDNA

(driver) in which the specific sequences are absent, the mixture is submitted to a
process of denaturation followed by reassociation, and the two-stranded species
are separated from the single-stranded species which have not rehybridised by
chromatography on a hydroxylapatite column. The molecular species specific
to the target are found among the single-stranded nucleic acids (80!.

3.2.2. Comparison: differential screening

In the approach by differential screening, two replicates of a classic cDNA
library are hybridised with two probes corresponding to the two populations
of messenger RNAs which are to be compared. The variations in abundance
of the messenger RNAs are deduced from the differences in intensity of the
hybridisation signals. This approach allows direct access to the messenger RNAs
which are regulated, but only from the abundant and very abundant classes
in the cells from which they come, because molecular hybridisation favours



the species which are most frequent. By contrast, the clones corresponding to
rare messenger RNAs give no hybridisation signal. This study of ’rare’ clones
has been applied to the mouse testis by H66g (45!, by screening the library
with cDNA probes prepared either from the testes or from other tissues (liver,
kidney, heart) of the mouse: redundancy is reduced and the number of different
sequences isolated is augmented.

3.2.3. New approaches

New strategies, having in common the use of PCR, now permit a large
number of tags to be obtained without the need to isolate complete cDNAs.
The amplification step also allows the use of small initial quantities of material.

With ’mRNA differential display’ [56] and AFLP (amplified restriction frag-
ment length polymorphism !13!) the cDNAs obtained by reverse transcription
are amplified by PCR using different primers. They are then separated into
different subgroups such that electrophoresis gives a profile of discrete bands.
These techniques allow direct comparison of several messenger RNA popula-
tions by analysing on the same gel the profiles obtained from the different
populations under study; thus, they give direct access to regulated messenger
RNAs and permit identification of messengers of low abundance. A subtraction
strategy is used in RDA (representational difference analysis !47!) and suppres-
sion subtractive hybridisation (SSH !30!) where the product subtracted is also
normalised. In these two methods PCR enables specific amplification of the
subtracted product.

3.3. An example of application

The value of the EST strategy is well illustrated by the work of Affara’s
group [8, 49] on the human testis, with the isolation of 359 clones among which
242 showed no similarity to known sequences. Analysis of the tissue specificity
of expression showed that of 80 clones analysed 20 showed testicular specificity,
either by exclusive expression or by the presence of a transcript of specific size.
The chromosomal localisation was determined using a panel of somatic hybrids
(see section 4.1). Among the ESTs identified by their similarity to genes of
other species - indicated between brackets - there were at least three sequences
related to testicular function: a heavy chain of dynein (sea-urchin) involved in
spermatozoon mobility, a molecule for sperm adhesion (guinea pig) involved
in the fertilisation of the oocyte by the spermatozoon, and a glycerol kinase
(Bacillus subtilis). A deficiency of this enzyme is implicated in an X-linked
hereditary disease, and a sequence homologous to that of the EST has been
found in the region of chromosome X which contains the locus for glycerol
kinase deficiency. This sequence is deleted in two patients suffering glycerol
kinase deficiency, indicating the probable origin of the genetic defect (81!.

ESTs thus permit the drawing up of a collection, more or less exhaustive,
of genes expressed in a given tissue, the establishment of an expression
profile indicating the level of activity of different genes, and the making of
comparisons between different tissues or different states of the same tissue.
This analysis of genes constitutes a first step towards the characterisation of
the ’transcriptome’ !94!.



4. TAGS AS AIDS TO GENETIC STUDIES

The main genetic application of ESTs is the chromosomal localisation of
genes, but, as well, information obtained from ESTs enables the approaches of
comparative and integrated genetics to be developed.

4.1. Chromosomal localisation and mapping the genome

To determine the localisation and order of genes and the distance separating
them, different approaches are used.

The genetic approach uses polymorphic markers to measure the frequency
of recombination. This strategy has had an explosive development with the use
of microsatellites, sequences of short repeated motifs (most often two or three
nucleotides). Their value lies in their high degree of polymorphism (number of
repeats) and their distribution, more or less homogeneous according to species,
over the whole genome. The map resolution so obtained is of the order of a cM,
that is, very approximately, one megabase.

The cytogenetic approach uses DNA probes to localise the corresponding
sequences by hybridisation to chromosomes spread in metaphase (in situ hy-
bridisation). The use of probes of large size (cosmids; YACs, yeast artificial
chromosomes; BACs, bacterial artificial chromosomes; PACs, Pl-derived arti-
ficial chromosomes) fluorescently labelled has allowed accelerated acquisition
of data as compared with radioactive probes. The resolution is of the order of
one chromosomal band or, very approximately, ten megabases.
New possibilities for mapping have appeared with the cytogenetic charac-

terisation of interspecific somatic cell hybrids. In these hybrids between rodent
cells and cells of the species of interest, a variable part of the chromosomes
(entire or not) of the species to be analysed is lost in a random manner. The
principle of localisation is then to seek cosegregation between a chromosome or
fragment of chromosome and the gene studied. The presence of the gene in the
different hybrids is shown by amplification of the DNA of the hybrid, using for
the PCR reaction a couple of primers specific for this gene. One thus obtains
an ’STS’ (sequence tagged site !70!), that is, a landmark on a particular chro-
mosome. The sequences of ESTs permit the design of such primers [96]. One
can then speak of eSTS (expressed STS !12!).

The ESTs obtained in the 3’ non-coding region are valuable for this purpose
because that region is less well conserved between species than the coding
regions [59] which limits the possibilities of amplification of the DNA of the
rodent (hamster or mouse). Furthermore, that region generally does not contain
introns [41, 59] which allows amplification of a fragment whose size is known
from the sequence of the EST. This strategy has been very quickly developed
in man !2, 51, 74, 96!. A panel of this type has been developed in our laboratory
for the pig [78, 99] and its use has enabled the location of numerous tags [25,
50, 89! .

Obtained on the same principle, irradiated hybrids permit more precise
localisation (resolution of the order of 100 kilobases) since irradiation of the
cells before fusion causes the fracture of chromosomal DNA into fragments
of several megabases. The outcome approaches that of genetic mapping since
the frequency of chromosome breakages between two points is measured. A



final approach is that of libraries of large DNA fragments, of the order of a
megabase, cloned in vectors of the artificial chromosome type (BAC, PAC,
YAC), ordered and grouped into ‘contigs’. These fragments have the advantage
of giving access to the genomic DNA and thus to the complete structure of the
gene (introns/exons, regulatory sequences, etc.).

These last approaches, YAC and irradiated hybrids, have produced a con-
siderable advance in human gene mapping: an international consortium of 18
laboratories has in this way placed on the human map more than 16 000 genes
- clusters (cf. section 2.1.1) - in relation to a frame of 1000 genetic markers
already mapped (84!.

These different approaches and the maps which result from them are

complementary: in an integrated mapping approach they allow in particular the
localisation on the cytogenetic map of markers already placed on the genetic
map. The chromosomal localisation of ESTs enables this map to be enriched
to make a map of expression or of transcripts [22] which makes possible the
strategy of the positional candidate gene [14, 27!, that is, the identification of
genes of interest whose presence in a particular region of the genome has been
shown by genetic methods.

4.2. Comparative genetics

Comparative mapping is illustrated by the identification of the gene for
halothane sensitivity in the pig with the gene for malignant hyperthermia in
[58, 57!. It is based on the partial conservation between species not only of the
sequence of genes but also of their organisation - linkage groups or syntenies
- on the different chromosomes (10!. Also, the localisation in different species
of mammals of a collection of genes covering the totality of the human genome
has been proposed (68]. In species of agricultural interest, a systematic study of
correspondences between different genomes, chromosome by chromosome, has
been made between man and cattle [42] and pigs [35, 37, 77!. The information
concerning the pig is available on the Web server of the laboratoire de G6n6tique
Cellulaire (table 7). A study of comparative mapping data is proposed for the
site of the MGD database (Mouse Genome Database; table !. For each gene of
the mouse for which a homologous locus has been identified in other species,
the corresponding localisation data are indicated, and more than 50 different
species are represented in the database [20, 65!.

ESTs also contribute to this comparative mapping by allowing the local-
isation of the same gene in different species even if, at the 3’ end, sequence
conservation is poor; preliminary results obtained at the Genethon and in our
laboratory indicate that primers established from the sequence of human 3’
tags to permit their amplification by PCR are usable in other species, in a
proportion of a few percent for pigs (G. Gyapay and Y. Lahbib-Mansais, pers.
comm.).

It is then possible to know, for a given region of, for example, a pig
chromosome, the genes located in the equivalent region in man and use these
genes as ’positional candidates’ in the pig.

As well as mapping, the comparison of genes of different model species can
enable remarkable progress in understanding their function, benefiting from
the knowledge of such model species as yeast and drosophila [90, 91!. Despite



the genetic distance between the species, certain genes have retained a function
so close that mutations cause similar phenotypic changes in species as distant
from one another as man, mouse and drosophila [63, 76!.

This original approach has been well used by the group of Ballabio [15].
It consists of screening the dbEST database [21] to find mutant genes stored
in the drosophila genetic database [18, 34!. The human ESTs corresponding
to genes unknown in man, but known in drosophila, have been named DRES
(drosophila-related expressed sequences). The corresponding clones have been
isolated, sequenced and located precisely on the chromosomes; the genetic
diseases whose genes are located in the corresponding regions have then been
identified by interrogating the database MIM (Mendelian inheritance in man
!61!; table 1). Certain DRES clones then become promising positional candidate
genes, in particular if the phenotype of the mutant in drosophila resembles
that of the human disease. For example, DRES9 is homologous to the gene
’drosophila retinal degeneration B’ and is located in lql5 where at least three
types of human retinopathy have been assigned. The human ESTs which
show similarity to drosophila mutant genes can thus provide information on
the possible phenotypic consequences of poor functioning of these genes. This
systematic search has enabled identification of human ESTs corresponding to a
given protein in drosophila (!39!; table 1). Even if the sequence similarities and
functional resemblances are not sufficient arguments to designate the gene(s)
responsible, this information permits the designation of candidates, which a
functional and genetic study will later allow to be accepted or rejected.

The same approach has been developed with respect to yeast, allowing the
cloning of human mitochondrial RNA polymerase [87]. It is also used in the
framework of the XREF project where the search for homology is made starting
from a non-redundant database of proteins of different model organisms: Mus
musculus, Drosophila melanogaster, C. elegans, Saccharomyces cerevisiae and
E. coli !17!. This research, with regular updates, is also accessible on the World
Wide Web (table !. Applied to genes identified by positional cloning, this
approach has enabled the presence of orthologous genes to be demonstrated,
in particular in C. elegans and, to a lesser extent, in S. cerevisiae [64]. The
study of protein motifs has similarly enabled the identification in several of
these genes of specific domains (an ATP binding site in a gene for colon cancer,
an exonuclease domain in the protein of Werner’s syndrome).

4.3. Integration of data

BodyMap is a database combining information, both qualitative and quan-
titative, concerning the expression of human genes, identified or not. In this
expression map, the genes are assigned to the tissues in which they are ac-
tive rather than to chromosomes. This database, fed by sequence data of 3’
tags obtained from cDNA libraries !69!, allows the determination of an expres-
sion profile of the gene of interest. In August 1998 it contained 10 896 entries,
corresponding to 39 tissues or cell types (table 1).

The ’Cancer Anatomy Genome Project’ of the American National Cancer
Institute has as its objective the identification of all the genes expressed
in cancer cells, in order to produce a molecular characterisation of them



(!72!; table I). The expression profiles will be correlated with the anatomical-
pathological characteristics of the tissues with the aim of improving the
diagnosis, prognosis and treatment of tumours. The programme proceeds by
the construction of cDNA libraries for the five principal cancers (colon, ovary,
lung, prostate, breast) from normal cells up to metastases. The gene libraries
will then be sequenced following the EST strategy in order to establish ’digital
differential displays’, differential profiles indicating the relative expression levels
of the different genes.

More ambitious still is the project ’IMAGE’ (integrated molecular analysis of
genomes and their expression; table 1 !55!) to put together resources and results
with a view to the constitution of a universal gene library, that is, a collection
of clones containing the cDNAs corresponding to each of the transcripts of
the human genome. The resources consist of the cDNA libraries of different
human tissues, ordered, from which it is possible to obtain either individual
clones or high density filters. The results, sequences, chromosomal locations
and expression profiles are collected in public domain databases. This strategy
was first applied to muscle and to brain !12! and then developed for 35 different
gene libraries [23]. The problem remains, in particular in the framework of
this project, of the management of a larger and larger quantity of information,
scattered among different sources or Internet sites. With a view to better access,
a series of programs has been conceived to integrate the different pieces of
information associated with the IMAGE clones !62!.

5. CONCLUSION

Paraphrasing Henri Poincar6 (Science and Hypothesis) &dquo;science is built with

facts, just as a house is built with stones, but an accumulation of facts is no more
a science than a pile of stones is a house&dquo;, we can say that &dquo;an accumulation of

sequences or markers is not a genome&dquo; . The systematic sequencing and location
of a very large number of genes constitutes a step which is indispensible, but
insufficient, for the understanding of the organisation and functioning of the
genome.

From the perspective of ’genomics’ the compilations published by Venter’s
group and by the International Consortium are undoubtedly major events,
but to deepen our knowledge of the genome it is necessary to go further,
towards ’functional genomics’. The approach through the use of ESTs, coupled
with different strategies of random sampling, of selection, of subtraction or
comparison, permits us to follow effectively the expression of numerous genes
in different physiological conditions, such as cellular growth and organogenesis,
or pathological conditions such as the development of cancers.

In the field of livestock improvement, selection would become more effective
if the choice of animals were made on their genotypes and not only on their
phenotypes, as shown by the example of halothane sensitivity, and it is desirable
to extend this strategy to different traits of economic importance. To achieve
this objective it is necessary to know the gene or genes responsible for the
character under consideration, and the strategy of ’positional candidate’ is

currently the most promising. From this viewpoint, ESTs are the best method of
obtaining the catalogue and localisations of genes implicated in a given function
and, in consequence, of providing a list of candidate genes for major genes or



for (aTLs identified by genetic methods. The strategy of establishment of such
catalogues is a long-term project and is still poorly developed in livestock, but
comparative mapping allows this handicap to be overcome: comparison with
the human map where very numerous ESTs have been localised allows genes
located in equivalent regions to be designated as candidates.

In a few years, ESTs have achieved considerable development in man and
have made a major contribution to knowledge of the genome, both at the level
of sequencing and at the level of the physical map. The integration of these data
with data, still very fragmentary, concerning the places and modes of expression
of genes will permit the understanding of the genome in its structure and its
function. Such an approach has already led to the identification of the genes
responsible for certain genetic diseases of mankind. Its application in domestic
animals, in particular in the domain of identification of the genes implicated in
economic traits, is rich in promise.
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