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Summary - The canonical transformation converts t correlated traits into t phenotypi-
cally and genetically independent traits. Its application to multiple trait BLUP genetic
evaluations decreases computing requirements, increases the convergence rate of iterative
solvers and simplifies programming. This paper presents alternative ways to retain, at least
partly, these desirable characteristics in situations where the canonical transformation is
theoretically impossible: when some traits are missing in some animals (including when
a reduced animal model is used), when more than one random effect is included in the
model and when different traits are described by different models.

genetic evaluation / mixed model / computing algorithm / multiple trait / animal
model

Résumé - Généralisation de l’utilisation de la transformation canonique pour la

résolution des équations du modèle mixte multicaractère. La transformation canoni-
que remplace t caractères corrélés par t caractères génétiquement et phénotypiquement
indépendants. Son application dans des évaluations génétiques de type BL UP multi-
caractères diminue les besoins informatiques, accroît la vitesse de convergence d’algo-
rithmes de résolution itérative et simplifie la programmation. Cet article présente diffé-
rentes manières de conserver au moins partiellement ces caractéristiques favorables dans
les situations où la transformation canonique est théoriqv,ement impossible, c’est-à-dire

quand certains caractères sont manquants pour certains animaux (y compris lorsqu’un
modèle animal réduit est v.tilisé), quand plus d’un effet aléatoire est inclus dans le modèle
et quand différents caractères sont décrits par différents modèles.

évaluation génétique / modèle mixte / algorithme de calcul / évaluation multi-
caractères / modèle animal



INTRODUCTION

In routine genetic evaluations, theoretical considerations suggest that in situations
where records can be described as linear functions of fixed and random effects,
best linear unbiased prediction (BLUP) of genetic effects based on a multiple trait
animal model should be used (Henderson and Quaas, 1976; Foulley et al, 1982;
Quaas, 1984; Schaeffer, 1984). The inclusion of the known relationship between
traits in a joint analysis of these traits increases the amount of information available
and as a result, improves the accuracy of prediction and corrects potential biases
resulting from selection. van der Werf et al (1992) and Ducrocq (1994a) review
the benefits to be drawn from a multiple trait BLUP genetic evaluation. Flexible
general purpose packages, eg, PEST (Groeneveld et al, 1990; Groeneveld and Kovac,
1990) exist and are successfully used to solve complex multiple trait evaluations.
However, the simple iterative algorithms commonly implemented in such packages
can be extremely slow to converge when traits are missing for some animals or
when several random effects or groups of unknown parents are defined in the model
(Groeneveld and Kovac, 1992; Ducrocq, 1994a, b). Although generally acceptable
for data files of moderate size, slow convergence can become a limiting factor for
routine national evaluations.

In the particular case when the same model with only one random (genetic)
effect applies to all traits and no records are missing, a canonical transformation
of the t records of each animal into uncorrelated records replaces the large system
of multiple trait mixed model equations with a set of t simpler univariate systems
(Foulley et al, 1982; Quaas, 1984; Arnason, 1986; Thompson and Meyer, 1986;
Jensen and Mao, 1988; Ducrocq and Besbes, 1993). The resulting reduction in
computing costs is often drastic. However, the restrictions on the model and data
structure required for the implementation of the canonical transformation are
rarely fulfilled in practice. Other transformations have been proposed when some
traits are missing (Pollak and Quaas, 1982; Quaas, 1984) but it was found that

a strategy where missing values are iteratively replaced by their expectation and
therefore retaining the possibility to implement the canonical transformation is

clearly superior (Ducrocq and Besbes, 1993; Ducrocq, 1994a, b).
The purpose of this paper is to demonstrate that the basic objective of the

canonical transformation, ie, the reduction of a large linear system of equations into
sets of smaller, sparser systems can be achieved in even more general situations, eg,
with different models for each trait or with more than one random effect other than
the residual. For the sake of completeness, the simple canonical transformation is
briefly described with and without missing values on some traits. An extension of
the above-mentioned strategy for the missing values case to reduced animal models
is also presented.

MULTIPLE TRAIT MIXED MODEL EQUATIONS

First, consider the general situation encountered in multiple trait genetic evalua-
tions. For each trait i, i = 1, ..t, assume the linear model:



where yi is the vector of records for trait i; bi and ai are vectors of fixed and
random effects and Xi and Zi are the corresponding incidence matrices. Here, the
only assumption is that no more than one random effect other than the residual
ei is considered in the model. The variance-covariance structure for the random
effects is summarized as follows:

Concatenating the random (genetic) effects and the residuals for all traits into
vectors a and e, respectively, the Gij and RZ! blocks are grouped into matrices
G = Var(a) and R = Var(e). The (i, j) blocks of the inverse matrices G-’ and
R-1 are denoted Gij and Rij, respectively.

The submatrices Gij and R2! are functions of the pedigree and data structures
and of Go and Ro, the genetic and residual variance-covariance matrices between
traits. The general form of the mixed model equations is:

The number of equations and the memory requirements for such systems increase
with t and t2, respectively. Iterative solvers can be used but they are relatively
complex to implement in the general case. More importantly, convergence rate can
be extremely slow (Arnason, 1986; Groeneveld and Kovac, 1992; Reents and Swalve,
1991).



CANONICAL TRANSFORMATION

In this section, we consider the particular case where there are no missing records,
ie, each one of the recorded animals has a record on each of the t traits, and the
same model applies to all traits. Let y = (Y’ Y’ ... y’)’ be the vector including
all records for all traits and b = (b ...... bt)’ be the vector of fixed effects. Each
vector yi is of size N

Define Q to be a matrix such that QGoQ’ = D - 1, where D is a diagonal matrix,
and QRoQ’ = It. Such a matrix always exists. A way to compute Q can be found,
eg, in Quaas (1984) or Ducrocq and Besbes (1993).

Quaas (1984) described different ways to simplify the multivariate system [3]
transforming its coefficient matrix into a block-diagonal matrix. A first approach
consists in applying a linear transformation:

to the data vector y and to manipulate the model of analysis accordingly. This
leads to the transformed model:

where bQ = (Q Q9 IB)b, aQ = (Q Q9 I,V* )a and eQ = (Q Q9 IN)e. B and N* are the
dimensions of bi and ai, respectively. Then:

Since D and It are diagonal t x t matrices, the resulting system of mixed model
equations is block-diagonal and, therefore, the solutions for the fixed and random
effects for each transformed trait i can be obtained solving the univariate system:

where di is the ith diagonal element of D. The solutions on the original scale are
obtained by simple back-transformation:

For later use, we will now describe another enlightening way of obtaining this
result (Quaas, 1985, pers comm), through matrix manipulation of the multivariate



mixed model equations corresponding to model !4!:

Rewrite system [12] as Cu = W’y and define S = ( Q Q9 0 IB Q Q9 0 IN* ) and
S* = Q Q9 IN. Premultiply both sides of the system by S-’ = (S-’)’ and insert
I(B+Ar*)t = S-1S in the left-hand side and INt = S*-’S* in the right-hand side.
This results in:

and is equal to:

which simplifies again into univariate systems !14!.

Canonical transformation and reduced animal model

The canonical transformation applies without modifications to multivariate reduced
animal models (RAM; Quaas and Pollak, 1981). This will be illustrated here in order
to introduce notations for later use. Let the indices (p) and (n) refer to parent and
non-parent animals (NP + Nn = N*). One can rewrite model [1] as:

where K!n! is a matrix relating records of non-parent animals to their parents. A
typical row of matrix K(!) has two non-zero elements equal to 0.5 in the columns
corresponding to parents. For the t traits, with records ordered within trait:

The part of e* corresponding to non-parents includes the residual effect e(n) as well
as the mendelian sampling contribution !!n!. Let Var(e*) = R*. If em represents
the t elements of the residual vector e* for a particular animal m, we have:

When parents are not inbred, 8m = 0.75 or 8m = 0.5 depending on whether only
one or both parents are known. Let Dn be the diagonal matrix of size Nn with



diagonal element 6m

If App is the relationship matrix between parents, we have:

Then, after transformation of the data y !--> yQ (or after matrix manipulations
similar to !13!), system [21] can be partitioned into t univariate ’RAM’ systems to
solve. For the transformed trait i and defining SZ!!! = INn + diDn:

MISSING VALUES

As previously indicated, the transformation [6] or the matrix manipulation [13]
require identical incidence matrices X and Z for each trait. Therefore they cannot
be directly implemented when some recorded animals have missing values for some
traits. A simple strategy to avoid this constraint has been proposed by Ducrocq
and Besbes (1993) and Ducrocq (1994a, b) and is briefly reviewed here. The
underlying idea is to iteratively replace the missing values by their expectation
given our current knowledge of all parameters and to solve the resulting sytem
as if they were not missing, ie, applying the canonical transformation. It can be
algebraically shown that this technique leads to the same solutions for fixed and
random effects as the usual general approach. A formal justification results from
the use of the expectation-maximization (EM) algorithm of Dempster et al (1977).
Using subscripts a and {3 for observed and missing observations, respectively, and
assuming that, given a and b, the complete (= augmented) data vector y =

(y!, y) ) ’ follows a multivariate normal distribution with mean (It (9 X)b+ (It 0 Z)a,
the estimation of b and the prediction of a require the knowledge of the vector of
sufficient statistics T(y) where:



The vector y,3 being unknown, we replace T(y) at iteration k by its expectation
(E step):

where for observed records: . k (k) = ya and for animal m with missing records:

In the above formula, Rom,aa and ROm,¡3a are obtained from Ro by choosing the
rows and columns corresponding to missing and observed traits for animal m. Xm¡3
(respectively, Xma) are obtained from (It 0 X) by choosing rows corresponding to
missing (respectively, observed) traits for animal m. Similarly, am, and a&dquo;La are

the elements of am corresponding to missing and observed traits.
The M step consists in solving the mixed model equations in order to obtain

new values b!!+1! and a!!+1! for b and a. This is much simpler to implement than
in the general case because now a canonical transformation is possible: from the
records actually observed and the prediction of the missing ones at the current
EM iteration, transformed records on the canonical scale can be computed. After
solution of the mixed model equations on the canonical scale and backsolution
on the original scale, new predictions for the missing values are made and this
iterative scheme is repeated until convergence. In practice, it is not necessary to go
back to the original scale as updating can be done on the canonical scale. Consider
that all traits for animal m have been ordered such that observed traits precede

missing ones: C y&dquo;’’a J . If this is not the case, re-order ym, Q and R. PartitionYm¡3 
Q = ((aa Q¡3) and Q-1 = C Qa J . Then, the vector of observations for animal mQ,3
on the transformed scale at iteration (k) is:

but we have:

where bQ.&dquo;,, is, on the transformed scale, the vector of fixed effects pertaining to
animal m. Finally:



where Xm represents the rows of It 0 X pertaining to animal m. The matrices JQ!
(of size t x ta) and J Q2 (of size t x t) depend on the missing pattern only, and they
are computed only once for use at each iteration. Furthermore, each EM step can
be interlaced with the iterative procedure used to solve the mixed model equations.
This results in large savings in computing time.

Application to reduced animal models (following a suggestion from
R Thompson)

With the previous approach, in RAM situations, it is necessary to predict y;;,b
for all non-parent animals. This requires in [25] the knowledge of a!!>. This is in
contradiction to the original purpose of using a reduced animal model, which is to
solve a smaller system of mixed model equations with the additive genetic values of
the parent animals only. To avoid the computation of non-parent animals’ genetic
values, one can replace the E step:

L 1. 1 1

Then, for a non-parent m with missing records, and with parents ’sire’ and ’dam’:

Again, Rp.&dquo;,, aa and 7!.oTn,/3a; defined in [17] and [18] are obtained from 7Zo&dquo;, by
choosing the rows and columns corresponding to missing and observed traits.

These predicted missing values influence the right-hand side of the RAM equa-
tions, which after canonical transformation is of the form:

After each solution of the reduced system of equations, or after each iteration
completed, the missing terms in YQi(P) and YQi(n) of [30] are computed again given
the current values of b&dquo; and a(’)Q (P)Q*



MORE THAN ONE RANDOM EFFECT

The second necessary condition in order to apply the regular canonical transfor-
mation is the existence of only one random effect other than the residual. In this
section, this requirement will be relaxed. Consider for example a model with a di-
rect additive genetic effect and a maternal genetic effect. Assume the same model
for all traits (no missing values):

where m is the vector of maternal effects, M the corresponding incidence matrix
and:

The corresponding mixed model equations can be written:

Simultaneous diagonalization

A straightforward extension of the canonical transformation was suggested by Lin
and Smith (1990) in a particular situation: if G!,&dquo;,, = G&dquo;,,a = 0 and Gaa, Gmm
and Ro are proportional, then it is possible to find a matrix Q such that, after a
transformation similar to (6!:



The resulting system of mixed model equations is block-diagonal and simplifies to
t univariate systems:

Again, this result can be obtained via a manipulation of the system of equations
as in [13]. The conditions required to diagonalize three (or more) covariance matrices
are rather drastic. Misztal et al (1995) clearly showed that accurate results can still
be obtained when the true covariance matrices are replaced with simultaneously
diagonisable approximations of these matrices. However, this approach is not

applicable when the random effects are correlated (Gam -I- 0).

Block-iterative canonical transformation

A more general strategy consists in solving [34] block-iteratively (Hackbusch, 1994).
The diagonal blocks are chosen such that the canonical transformation can be
applied. Let Q and P be the transformation matrices such that:

Using these matrices, a manipulation similar to [13] can be performed to sim-
plify [34].

Define:

Premultiplying both sides by SQP and inserting the appropriate identity matrices
between the coefficient matrix and the vector of unknowns on the one hand and
before the data vector on the right-hand side on the other hand, we obtain:



Equation [40] simplifies to:

At each iteration, one can solve the univariate systems:

DIFFERENT MODELS FOR DIFFERENT TRAITS

A third requirement for the applicability of the canonical transformation is the
use of the same model for each trait. Again, several strategies exist to at least
partly retain the benefits of the transformation for computational simplicity. For
simplicity, assume here that in model [1], the incidence matrices Zi = Z are the
same for all traits i (no missing values on recorded animals) but that the incidence
matrix Xi can vary from one trait to another.

Block-iterative approach

In the general expression (3!, one can isolate in the coefficient matrix the diagonal
blocks corresponding to the fixed effects on the one hand and to the random
effects on the other. The off-diagonal blocks are moved to the right-hand side after



multiplication by the current solutions of the corresponding effects. For the fixed
effects part, the system remains multivariate:

But for the random effects block, it is possible to take advantage of the fact that
the incidence matrix is the same for all traits:

where y¡k+1J = yi - Xb¡k+1J. Applying the regular canonical transformation (as
in !6!) to (47!, the random effect block becomes a set of t univariate systems:

Gengler and Misztal’s approach

Gengler and Misztal (1996) proposed an approach that makes use of the algorithm
described for the missing values case (note: this approach was also found and used
by Goddard (1995, pers comm)). Their method is better illustrated using a two-trait
example:

Here, the vector f1 (with associated incidence matrix F) refers to fixed effects
influencing trait 1 only, h2 (matrix H) refers to those influencing trait 2 only and b
(matrix X) includes effects affecting both. Consider for example an animal m with
two recorded traits:

Gengler and Misztal (1996) duplicate all records and define a complete model
where all fixed effects influence all traits:



For the animal m above, this means the use of four records, two of them being
considered missing:

Here, dum refers to a dummy level defined for missing records only and different
from any level corresponding to observed records. After this artificial modification,
the same incidence matrices apply to all traits (for the first and second records
for each trait in [52], respectively) and a regular canonical transformation can be
performed using the approach described in the previous section to include missing
records. No additional coding is required as long as the initial code accepts multiple
records. All records are analyzed with the proper model.

An approach using constraints on unnecessary effects

We will slightly generalize Gengler and Misztal’s example described in [49). Consider
two groups of traits:

The idea here is to define the complete model [51] for all traits and to solve the
resulting mixed model equations under the constraints:

The full system of mixed model equations is:

Applying once more a block-iterative strategy for the solution of this system, we
can first solve:



This system has exactly the same form as described in [12] and can be trans-
formed into a set of t smaller systems by canonical transformation. The other two
blocks to solve are:

The constraints will be applied on these smaller systems. For example, for the f
block, we want to solve:

Note that the set of constraints can be written as:

To is a diagonal t x t matrix with diagonal element equal to one for each effect to be
constrained to 0 and equal to 0 otherwise. Solving [60] is equivalent to minimizing
the expression:

under the constraint (To 0 If) f = 0. Constrained minimization problems can be
solved using Lagrange multipliers. Let 71 be a vector of Lagrange multipliers. Taking
the derivatives of U + a’(T 0 If)f with respect to f and 71, we get the following
linear system:

Now, premultiplying both sides by:

and inserting:



the system becomes:

System [64] is of the form

and has a solution equal to:

Given the form of C and T and in particular C-’T’ = Q-TTo Q9 (F’F)-’ =
T’C-’, it follows C-’T’(TC-’T’)-T = T’(TT’)-T and [65] leads to the

expression:

which can be written more simply as:

where Wo is a t x t matrix computed only once and foQ are the unconstrained
solutions. These unconstrained solutions are obtained solving t simple univariate
systems. If more than one effect is included in f, the inverse of a full rank submatrix
of F’F is used in [66] or an iterative approach is used to obtain f¿!+1). .
A numerical example of the algorithm is given in the Appendix.

DISCUSSION

The systematic use of a canonical transformation to solve multiple trait mixed
model equations is desirable for several reasons, all relying on the computational
advantages it offers.

The resulting system is much sparser. Increased sparsity has a beneficial effect
on the convergence rate of iterative methods. This has been repeatedly found in
univariate evaluations (eg, when an equivalent model is used to increase the sparsity
of the coefficient matrix when groups of unknown parents are defined (Quaas, 1988))
as well as for multivariate analyses (Pollak and Quaas, 1982; Ducrocq and Besbes,
1993).

As a result of the block-diagonal structure of the coefficient matrix, the system
breaks down to several systems of smaller size. Again, this generally leads to faster



convergence in univariate (eg, with reduced animal models) as well as in multivariate
situations (Arnason, 1986; Ducrocq, 1994a, b).

Programming is easier, since each system is equivalent to a single-trait analysis.
Programming can be made more efficient: iteration on data (Schaeffer and

Kennedy) may be replaced by (possibly partial) storage of the coefficient matrices in
core. The system being smaller and sparser, a direct solution may become feasible in
some cases, possibly on parts of the system only. The search for optimized iterative
algorithms (eg, with optimum relaxation factors (Misztal and Gianola, 1987) may
become worthwhile.

The estimation of variance components is greatly simplified and less computer
intensive (Meyer, 1985; Jensen and Mao, 1988).

In this paper, it was shown that there are ways to retain at least partly
these computational advantages when the three main requirements for the regular
canonical transformation to be feasible are not fulfilled.
When data are missing, one can replace the missing records at each iteration by

their expected values given the current parameters; the extra coding is minimal;
the potential drawbacks, such as the need to backsolve for each non-parent solution
when a reduced animal model is used (Ducrocq and Besbes, 1993), can be avoided.
When more than one random effect other than the residual is included in the

model and a simultaneous diagonalization of all the covariance matrices between
traits is not possible, a canonical transformation can still be applied to the diagonal
block corresponding to each random effect. Block iteration is a well-known extension
of iterative techniques (Hackbusch, 1994). Although the procedure proposed here is
relatively simple, it is not guaranteed that such a strategy is always more efficient
than when other partitions of the coefficient matrix in [33] are used. Quaas (pers
comm) suggests than in some cases, it may be better to sort the equations in [33]
by traits within animal and to treat together all the equations referring to the same
animal in a block-iterative procedure. Direct and maternal effects of each animal
are then computed jointly instead of separately as in [42] and (43!. The behavior of
both strategies needs to be compared in real-life situations. This was not considered
here.
When the models describing each trait differ, three alternatives are proposed.

The first one relies on the same idea developed in the case with more than one
random effect: one can isolate in the mixed model equations a block on which
the canonical transformation can be applied. Most often, this will represent by far
the largest block, corresponding to additive genetic values. However, this implies a
specific coding for the solution of the remaining multivariate part [46].

The second approach (Gengler and Misztal, 1996) has the advantage of being
applicable without additional coding. Its drawbacks are the large increase in the
size of the data file (the initial size is multiplied by as many times as there are
distinct models) and the slower convergence resulting from the large number of
missing records whose values have to be computed at each iteration. It is not known
whether convergence is always guaranteed in practice.

The third alternative consists of creating a complete model including all fixed
effects of interest and constraining to zero the solutions of the unwanted effects
for each trait. Equation [67] illustrates the fact that this constraint is easy to

implement. Our limited experience indicates that convergence is reached at .about



the same rate as when the complete model is applied without constraints. It should
be noted, however, that this approach imposes a block-iterative solution of the
fixed effects one block at a time, which sometimes may be much less efficient than a
simultaneous solution of all fixed effects, for example using direct methods. Again,
it was not our intention to actually compare the practical performances of these
approaches because each one may be valuable in a particular context.

CONCLUSION

Multiple trait BLUP equations have been known for a long time (Henderson
and Quaas, 1976) but despite the desirable theoretical properties of the resulting
predictions and the huge progress in computing technology, their large scale
application is far from systematic, mainly because computing time remains a
limiting factor. Some of the strategies presented here may lack the flexibility or
simplicity required for easy implementation in a general purpose package for the
solution of multivariate mixed model equations, but they may lead to invaluable
savings in computing time (Ducrocq and Besbes, 1993; Ducrocq, 1994a, b), eg, for
routine national genetic evaluations. These savings can be further increased by the
use of more efficient single-trait solvers (Misztal and Gianola, 1987; Ducrocq, 1992;
Carabano et al, 1992).

Obviously, these different ways to generalize the use of the canonical transfor-
mation can be extended to more general situations with simultaneously missing
values, different models and more than one random effect. The strategies proposed
are complementary and can be combined in a straightforward manner. One excep-
tion that was not dealt with here is the case when the number of random effects
considered may vary between traits, for example, when only some traits may have
repeated observations (implying the prediction of a permanent environment effect)
or may be under the influence of maternal effects. However, the basic idea developed
can be extended to such a case: in the initial system of mixed model equations, the
blocks corresponding to each particular random effect can be isolated and a canon-
ical transformation can be applied to each of these blocks, through the matrix
manipulation described in !13!.
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APPENDIX

Numerical example for the algorithm using constraints on unecessary
effects

Consider a joint analysis of growth traits and leanness in turkeys. Body weight
is measured at 12 (BW12) and 16 (BW16) weeks of age. Leanness is assessed

through the measure of backfat thickness using an ultrasonic probe (ultrasonic
backfat thickness, UBT). The description model used for body weights includes a
contemporary group (hatch) as only fixed effect, while the UBT measure is also
affected by the operator effect. Consider the following records for four turkeys A,
B, C and D:

The incidence matrix F for the operator effect is:

0 = ( 492 
696 6 

Ro 645 
638 

5.8 
B

Go = 696 1058 23 and R,o = 638 1070 20

6 6 23 48 5.8 20 50



The matrix To is 1
Applying a block-iterative strategy, the solutions of the batch and animal effects

are obtained through a regular canonical decomposition and the solution of the
operator effect fQ on the transformed scale is given by [66]:

The solutions on the original scale are obtained by simple back transformation.
In particular f = (Q - 0 I f)fQ:

As expected, the solutions of the operator effect are zero for BW12 and BW16.


