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Introduction

Increasing social demand has impelled the development of
new methods for assuring the traceability of food products
from source through processing. In the meat products sector
the development of characterisation techniques is often prob-
lematic owing to heterogeneity of animal tissues and diver-
sity of modes of production. The objective of this work was
to test Curie point pyrolysis combined with mass spectrom-
etry as a method for characterising commercial lamb car-
casses derived from different production systems using three
predominant types of animal feed; pasture, concentrate, and
milk. For this purpose, samples of fat tissue, relatively
homogeneous and easy to take, were collected from lamb
carcasses. 

The Curie point pyrolysis – mass spectrometry method
was chosen as a rapid way to “fingerprint” the overall com-
position of the matrix of products. These “fingerprints” were
obtained by filtering positive ions produced after thermal
fragmentation (pyrolysis) and electron impact fragmentation
of the matrices studied. Combined with real-time data analy-
sis, this method has proved to be a powerful characterisa-
tion tool, and has already helped to solve problems of clas-
sification and recognition in various agrifood sectors [1-4].

Materials and methods

Animal material

The study was conducted on 120 commercial lambs of
12 different breed types and grown under a wide range of

conditions representative of the current European produc-
tions systems. Six European countries supplied the lambs:
France, Greece, Iceland, Italy, Spain and the United
Kingdom. These lambs were distributed into three groups
according to the predominant type of feed consumed before
slaughter: group C: Concentrate (n = 40), group P: Pasture
(n = 60) and group M: Milk (n = 20). Table I presents the
distribution of the animals according to type of feed, coun-
try of origin, breed type and sex condition. There was a large
within-feed type variability, the lamb age ranging from 12
to 1 year. 

Sampling procedure and storage 

From each lamb carcass, 25 g of fat tissue were taken from
the subcutaneous fat in the rump region. Samples were
wrapped in aluminium foil, vacuum-packed in polyethylene
bags and stored at –20 °C until analysis.

Sample preparation for Py-MS

Extraction of lipids

To obtain homogeneous samples representative of fat tissues,
analyses were carried out on a solvent-extracted lipid frac-
tion. The extraction (3 h at 20 °C) was carried out on 0.5 g
of tissue placed in a 20 ml glass tube containing 15 ml of
hexane.

Deposition of samples on pyrolysis foil 

This operation consisted in depositing a few microlitres of
liquid sample on a clean iron-nickel foil (SS Scientific Ltd;
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Hellingly BN27 4DU, UK). The foil was then dried in an
oven and placed in silica pyrolysis tube (Ets. Maillière;
63170 Aubière, France) using a stainless steel depth gauge
to position it 10 mm from the tube outlet. For air-tightness
during pyrolysis, a Viton O-ring (SS Scientific) was placed
around the tube. Different methods for direct and indirect
deposition of tissue lipids were tested to obtain a signal
(Total Ion Count or TIC) between 1 and 2.106 counts. By
direct deposition, 1 µl of lipids in hexane solution (i.e. an
average lipid mass of approximately 30 µg) was placed on
the iron-nickel foil. This deposit was then oven dried for
2 min at 100 °C to eliminate residual hexane before pyrol-
ysis. For the indirect deposits, 2 µl of an aqueous suspen-
sion of talc, calcium carbonate, silica or magnesia, or solu-
tion of sucrose and ovalbumin was first deposited on the
foil. After drying the deposit for 7 minutes at 100 °C, 1 µl
of the lipids in hexane was placed on the dried spot and the
foil was dried again for 2 min at 100 °C.

Pyrolysis - mass spectrometry

The analyses were performed over a period of one week,
taking care to distribute the samples of the three feed types
evenly over the analysis days. For each lipid sample three
consecutive replicate pyrolysis runs were carried out. The
pyrolysis mass spectrometer used was a Cp-PyMS RaPyD
400 Horizon Instrument. The tube carrying the foil was
heated at 530 °C for 3 s during the pyrolysis, with a tem-
perature rise time of 0.6 s. This pyrolysis temperature was
chosen because it gave a balanced fragmentation of glucidic,
lipid and protein fractions. The pyrolysate then entered an
expansion chamber (heated at 160 °C), whence it diffused
through a molecular beam tube (170 °C) to the ionisation
chamber of the mass spectrometer (180 °C). To minimise
secondary fragmentation of the pyrolysate, the ionisation
method used was low-voltage electron impact ionisation
(34 eV). Non-ionised molecules were retained on a cold trap
cooled by liquid nitrogen. The ionised fragments were

focused by the electrostatic lens of a set of source electrodes,
accelerated, and directed into a quadrupole mass filter. The
ions were separated by the quadrupole according to their
mass-to-charge ratio, and detected and amplified with an
electron multiplier. The mass spectrometer scanned the
ionised pyrolysate 65 times during the pyrolysis. Data were
collected over the range 49 < m/z < 241 atomic mass units
(a.m.u.). Spectral information on ion counts for the individ-
ual masses scanned, and the total ion count for each
analysed sample were recorded. The mass spectrometer was
calibrated using the chemical standard perfluorokerosene
(ref. number 32,835-9; Sigma - Aldrich).

Data analysis

The analyses yielded a primary data matrix, M0, containing
191 variables or fragments in the range 49 < m/z < 241
Dalton and 360 observations or analyses (120 samples × 3
replicates per sample).

Pre-treatment of data

Before constructing fat tissue classification models, a
sequence of four steps, described in figure 2, was necessary,
namely normalisation, elimination of aberrant data, elimina-
tion of drift due to the “analysis day” effect, and median fil-
tration of replicates. At each of these steps, principal com-
ponent analysis (PCA) was used to visualise the structure of
the data set. 

The normalisation of the data involved expressing, for
each mass spectrum, the individual mass fragments Fi in per-
centages of total ion count. The procedure, used classically
for the analysis of Py-MS data, corrects for differences in
the mass of the sample deposited manually on the metallic
foil. As the total abundance of the spectra is very closely
correlated with the mass pyrolysed, normalisation allows the
shape of the signal to be considered rather than its intensity.
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Table 1. Distribution of the lambs according to the predominant type of feed consumed before slaughter, country of origin, type of breed
and sex condition.

Type of feed Country (number) Breed Sex condition

Group C France (n = 10) Lacaune female
(Concentrate, n = 40) Greece (n = 10) Karagouniko entire male

Spain (n = 10) Rasa Aragonesa entire male
Italy (n = 10) Appenninica entire male 

Group M Greece (n = 10) Karagouniko entire male
(Milk, n = 20) Spain (n = 10) Churra entire male

Group P France (n = 10) Texel, Ile-de-France female
(Pasture, n = 60) Iceland (n = 10) Icelandic entire male

Iceland (n = 10) Icelandic female 
Italy (n = 10) Bergamasca castrated male
UK (n = 10) Suffolk x Mule castrated male
UK (n = 10) Welsh Mountain entire male 



Matrix M1 containing 191 normalised mass fragments and
360 observations was thus obtained.

The elimination of aberrant data was performed from a
PCA of the normalised data. All data points more than three
standard deviations away from the mean of the first three
principal components were thus eliminated. By this criterion,
one fat sample was found to be aberrant for all three pyrol-
ysis replicates, and two other samples for two of the three
pyrolysis replicates. In all, nine mass spectra corresponding
to all three replicates of all three aberrant samples were
eliminated from the data set. Matrix M2 containing 191 nor-
malised mass fragments and 351 observations was thus
obtained from matrix M1.

The elimination of the drift linked to the “analysis day”
effect was easily achieved because the analysis of fats from
the different countries and three feed types were spread
evenly over the different analysis days. To eliminate the
daily drift of the abundance of each of the 191 normalised
mass fragments Fi (N), the Ri ratio of the overall mean of the
351 analyses to the average of the daily analysis of each 
Fi (N) was calculated. The abundance of each Fi (N) was mul-
tiplied by the corresponding ratio Ri. Matrix M3 containing
191 normalised mass fragments corrected for the daily drift
Fi (N, DD) and 351 observations was thus obtained from
matrix M2.

Median filtering of the replicates per mass fragment was
performed to retain the more robust median of each of the
three replicates rather than the mean [5]. Matrix M4 con-
taining the median of the replicates of each of the 191 nor-
malised mass fragments corrected for the daily drift 
Fi (N, DD, Med) and 117 observations was thus obtained from
matrix M3, and used to build classification models for the
three animal feed types. 

Classification operations

After a step to select the relevant information the samples
of each group were classified by DAs and ANNs.

A limited subset of relevant mass fragments extracted
from the M4 matrix, was selected by stepwise discriminant
analysis (SDA) [6] to classify fat tissues according to the
three types of animal feed. The selection (p < 0.05) afforded
a matrix M5input containing 20 mass fragments and 
117 observations. This matrix was used to build classifica-
tion models based on linear (DAs) or non-linear (ANNs)
methods. 

DAs [7] yielded the percentage of samples correctly clas-
sified by cross-validation of the models, and visualised the
classification performance from the coordinates of the sam-
ples on the canonical axes (M6DAestimate).

For classification by ANNs; the algorithm used was stan-
dard back propagation [8]. The structure of the network used
to classify fat tissue samples consisted of three layers con-
taining 20 inputs (20 selected variables of the
M5input matrix), and one hidden layer containing 15 nodes
and three outputs (M6output matrix). The M6output matrix is a

disjunctive table containing three binary variables for the
three classes of feed types. The architecture of the network
was 20-15-3. The training of this type of network consisted
in an iterative adjustment of the weights of the connections
between input- (M5input matrix) and output nodes (M6output
matrix) in order to minimise the error of prediction of the
M6output matrix. Computations of the networks during cross-
validation steps were stopped when the validation error of
the networks stopped decreasing and with a maximum of
300 iterations of the back propagation algorithm. The tun-
ing of each network training run was: learning rate: 0.30;
back-propagation momentum: 0.10, and additional noise reg-
ularly decreasing from 0.20 to 0.05. The activation function
was a logistic. An illustration of the cross-validation results
has been obtained with the sample plot of a PCA calculated
from the M6ANNestimatematrix obtained by cross-validation of
the neural model [9].

Cross-validations were of the “leave-one-out” type [6].
They consisted in successively removing each of the n = 117
observations from the M5 matrix and predicting its class
(animal feed type) from the remaining 116 observations. For
the DAs, 117 different analyses were thus carried out from
117 different sub-populations containing 116 observations,
and the corresponding results of classification of each obser-
vation were presented in confusion matrices. Similarly, for
the ANNs, 117 different training runs were carried out from
the n = 117 different sub-populations containing 116 obser-
vations. The result of the classification of each observation
by these 117 neural networks was presented in a confusion
matrix.

Results and discussion

The total mean time needed for the manual preparation of
each ready-for-pyrolysis foil (including pipetting of the gly-
coprotein support and sample, drying steps and placing the
foil in the pyrolysis tube) was about 3 min (54 foils pre-
pared in 2 h). The pyrolysis of lipids without a support
resulted in instantaneous vaporisation of the lipids followed
by re-condensation on the walls of the tube as well as in the
expansion chamber of the pyrolyser. In these conditions
pyrolysis of lipids is incomplete, yielding a very weak total
ion count of about 8.5 × 104 (Fig. 1). In contrast to the
analyses carried out by Goodacre et al. [1] on olive oil, or
by Berdagué et al. [2] on pork backfat, we chose not to
pyrolyse the lipids directly because of the risk of soiling the
instrumentation. Instead we developed a reactive support
that eliminated projection of material and increased the lipid
signal during pyrolysis. The best results were obtained using
a deposit of 2 µl of a sucrose (10 mg.ml–1) and ovalbumin
(5 mg.ml-1) mixture. These conditions allowed the strongest
lipid signal and were chosen to analyse ovine fats. The
pyrolysis of a sugar and a protein causes Maillard reactions
that favour the thermal fragmentation of lipids. However,
although the total ion count assigned to the lipids was 3.4 ×
105, the ratio of this signal to the total signal (foil + sucrose
+ ovalbumin + lipids) was only about 1/4. None of the other
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types of support tested were retained because of poor adhe-
sion to the foil or persistent projection of lipid material. 

A visualisation of the effect of the different steps of the
data pre-treatment is presented in figure 2. The normalisa-
tion procedure gives a less flattened shape (i.e., less one-
dimensional) to the scatter and shows up the aberrant data
points (Fig. 2A and B). The elimination of aberrant data
(Fig. 2C) brings out an “analysis-day” effect that is rela-
tively classical in Py-MS and is partly attributable to fluc-
tuations in the quality of the source vacuum. These fluctua-
tions are not measurable with conventional vacuum gauges,
but certainly contribute to memory effects from previous
analyses. These memory effects slightly perturb the frag-
mentation yields of certain ions. In our experiments, the
analysis day effect also integrates uncontrolled variance due
to sample preparation. These effects result in data drift,
which we have visualised in a simplified way with analyses
from days 2 and 7 only (Fig. 2C). The elimination of the
analysis day effect corresponds to a homothetic linear cor-
rection in 191-dimensional space. This correction, which
could only be considered because the three animal feeding
groups were distributed evenly over the different analysis
days, proved very efficient (Fig. 2D). However, this correc-
tion is not applicable for industrial quality control opera-
tions, because an even daily distribution of animal samples
according to feed type is unlikely in production situations.
To day, several authors have proposed solutions for numer-
ical correction of instrumental drifts in mass spectrometry
[10-11]. However, because of the numerous causes of these
drifts (quality of the vacuum in the source, pollution of
transfer lines and/or source, ageing of the electron multi-
plier...) and because of their relatively stochastic nature, all
corrections applied only provide local solutions in a partic-
ular context or period of time. Finally, to monitor and elim-
inate this type of instrumental drift, periodic use of refer-
ence samples during analysis is advocated. The use of signal
processing with floating references to guarantee the consis-
tency of Py-MS data is a possibility that remains to be inves-
tigated. Median filtering of the replicates resulted in a rela-
tively Gaussian distribution of the data points in the space
(Fig. 2E) that is much more amenable to the different algo-
rithms for the selection of variables of ascending or descend-
ing type that we have tested (results not presented). It is also
important to note that after the data pre-treatment operations,
no structure related to “animal feed type” yet appears. The
different pre-treatment steps used proved to be necessary for
the subsequent calculations. Only after the four pre-treat-
ments that yielded M5input matrix was acceptable discrimi-
nation achieved, with a coefficient of determination (r2) of
0.66. The absence of any one of the pre-treatment steps
caused the discriminant analysis classification performance
to collapse, the best coefficients of determination obtained
being less than or equal to 0.37.

The linear variable selection procedure is suboptimal rel-
ative to other procedures (genetic algorithms for example
[12]), especially in the case of neural network modelling.
However, we used this procedure for its speed and its satis-
factory performance. The selection retained 20 ions out of

the 191 ions of the pyrolyis spectra. The masses of these
ions, classified by order of entry in the discriminant func-
tions by the procedure were as follows: m/z = 191, 208, 190,
118, 64, 75, 219, 100, 112, 126, 218, 80, 72, 146, 85, 82,
53, 181, 93, 97. Given that the ions produced by pyrolysis
are from two successive fragmentations (thermal fragmenta-
tion of the matrix, electronic impact fragmentation of
pyrolysates), it is difficult to connect the masses of the frag-
ments to the molecular species analysed. In this work the
spectra are thus considered as fingerprints of products with
no attempt made to identify the chemical origin of the dif-
ferences observed between the fat from the three diets. The
classification performance obtained by cross-validation by
DAs and ANNs were respectively 77.8 % (91/117) and
92.3 % (108/117) of lambs correctly assigned to their group
(Fig. 3). With low numbers of samples, cross-validation may
be adequate to westimate the error of classification [13].
However, when the number of samples is higher, a better
estimate of the error value is obtained using bootstrap meth-
ods or, better, with a test sample drawn at random from the
population [14]. 
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Figure 1. Comparison of the mean values (n = 5) of the Total Ion
Count obtained by Py-MS for:
– B = blank (foil + tube + o-ring), Ldirect = direct deposit of 

30 µg of lipids (foil + tube + o-ring + lipids), Ldirect – B = esti-
mate of the lipids signal obtained with a direct deposit,

– S = support (foil + tube + o-ring + sucrose and ovalbumin sup-
port), Lsupport = deposit of 30 µg of lipids on the sucrose and
ovalbumin support (foil + tube + o-ring + sucrose and ovalbu-
min support + lipids) and Lsupport – S = estimate of the lipids
signal obtained with a lipid deposit on the sucrose and ovalbu-
min support.

The (Lsupport – S) signal obtained with the reactive support (TIC =
3,4 105) was 13 time greater than the (Ldirect – B) signal obtained
without the reactive support (TIC = 2,7 104). The (Lsupport –
S)/Lsupport ratio was approximately 1/5.
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Figure 2. Description of the data analysis procedure.
Visualisation of the four data treatment steps before classification was obtained by principal component analysis.
Fig. 2A: Projection of raw data.
Fig. 2B: Normalisation of data and visualisation of aberrant data points.
Fig. 2C and 2D: Demonstration and correction of the analysis day effect (2 = day 2, 7 = day 7).
Fig. 2E: Visualisation after median filtering of replicates shows no apparent structure of data according to diet (C = Concentrate, 
P = Pasture, M = Milk).
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Figure 3. Plots of the cross-validation results obtained by Discriminant Analyses (A) and Artificial Neural Networks (B)
The samples are identified according to the diet: Concentrate (C = ●), Pasture (P = ■■) and Milk (M = ▲).
Results of cross-validations are presented in confusion matrix for each analysis.



Conclusion

The development of a method of analysis, from sample
preparation (extraction of lipids, reactive support to amplify
lipid pyrolysis) to the implementation of a data analysis
strategy (pre-treatment of the data and extraction of relevant
information), has successfully overcome the problem of
post-mortem classification of commercial animals on the
basis of their feeding background. However, the on-line
application of this method in a control laboratory will
require the optimisation of the mode of preparation of the
samples before pyrolysis, and the provision of a robust
means of correcting the time drift of the signal. 

Acknowledgements

This work was supported by the European commission 
(DG VI) project N° FAIR 3-CT96-1768, as part of a col-
laboration program between United Kingdom, France,
Greece, Iceland, Italy and Spain.

References
1. Goodacre, R.; Kell, D.B.; Bianchi, G. J. Sci. Food Agric.

1993, 63, 297-307.

2. Berdagué, J.L.; Rabot, C.; Bonneau, M. Sciences des Aliments
1996, 16, 425-433.

3. De Barruel, A.; Vernat, G.; Martin, J.F.; Berdagué, J.L.
Viandes & Produits Carnés 1996, 17 (6), 365-368.

4. Cardinal, M.; Viallon, C.; Thonat, C.; Berdagué, J.L., submit-
ted for publication in Aquaculture Research.

5. Feinberg, M.; Ducauze, C.Analusis 1984, 12 (1), 26-31.
6. SAS Institute Inc, In SAS/STAT User’s Guide, Release 6.03

Edition., 1988, 359-447.
7. SAS Institute Inc, In SAS/STAT User’s Guide, Release 6.03

Edition., 1988, 902-922.
8. McClelland, J.L.; Rumelhart, D.E. In Explorations in parallel

distributed processing; A handbook of models, programs and
exercises;MIT Press Ed.: Cambridge, 1988.

9. STATISTICA A comprehensive system for statistics, graphics
and application development, Version 5.1 for Windows;
Statsoft: Charenton-le-Pont, France, 1997.

10. Goodacre, R.; Kell, D.B. Anal. Chem.1996, 68, 271-280.
11. Goodacre, R.; Timmins, E.M.; Jones, A.; Kell, D.B.; Maddock,

J.; Heginbothom, M.L.; Magee, J.T. Anal. Chim. Acta.1997,
348, 511-532.

12. Mitchell, M. In An introduction to genetic algorithms; MIT
Press, Ed: Cambridge, 1996.

13. Efron, B. Journal of the American statistical association 1983,
78 (382), 316-331.

14. Efron, B.; Gong, G. The American Statistician 1983, 37, 36-
48.

147

Original articles


