Pleiotropy of adaptive changes in populations: Comparisons among insecticide resistance genes in Culex pipiens

Christine Chevillon, Denis Bourguet, François Rousset, Nicole Pasteur, Michel Raymond

To cite this version:
Christine Chevillon, Denis Bourguet, François Rousset, Nicole Pasteur, Michel Raymond. Pleiotropy of adaptive changes in populations: Comparisons among insecticide resistance genes in Culex pipiens. Genetics Research, Cambridge University Press (CUP), 1997, 70 (3), pp.195-204. 10.1017/s0016672397003029. hal-02687458

HAL Id: hal-02687458
https://hal.inrae.fr/hal-02687458
Submitted on 2 Sep 2020
Pleiotropy of adaptive changes in populations: comparisons among insecticide resistance genes in \textit{Culex pipiens}

\textbf{CHRISTINE CHEVILLON*}, DENIS BOURGUET, FRANÇOIS ROUSSET, NICOLE PASTEUR AND MICHEL RAYMOND
\textit{Genétique et Environnement, Institut des Sciences de l’Évolution, C.C. 065, Université Montpellier II, F-34000 Montpellier, France}
(Received 18 February 1997 and in revised form 24 July 1997 and 28 August 1997)

\section*{Summary}
Resistance to toxicants is a convenient model for investigating whether adaptive changes are associated with pleiotropic fitness costs. Despite the voluminous literature devoted to this subject, intraspecific comparisons among toxicant resistance genes are rare. We report here results on the pleiotropic effect on adult survival of \textit{Culex pipiens} mutants involved in the same adaptation: the resistance to organophosphorus insecticides. This field study was performed in southern France where four resistance genes sequentially appeared and increased in frequency in response to intense insecticide control. By repeated sampling of overwintering females through winter, we analysed the impact of each of three resistance genes on adult survival. We showed that (i) the most recent gene seems to be of no disadvantage during winter, (ii) the oldest affects survival in some environmental conditions, and (iii) the third induces a constant, severe and dominant survival cost. Such variability is discussed in relation to the physiological changes involved in resistance.

\section*{1. Introduction}
Genes responsible for an adaptation to a new environment (new parasite, climatic variation, chemical challenge, etc.) are usually assumed to have a fitness cost, i.e. to be at a disadvantage in the previous environment (e.g. Fisher, 1958; Lande, 1983; Holloway, 1990; Macnair, 1991; Orr & Coyne, 1992; Carrière \textit{et al.}, 1994). This is based on the general view that resource re-allocation occurs or that metabolic or developmental processes are affected (Uyenoyama, 1986; Davies \textit{et al.}, 1996), thus decreasing other fitness-enhancing characters. Few situations exist where both the environmental changes and the adaptive genes are clearly identified. Resistance to pesticides is one of them, although the existence of a cost of resistance genes lacks substantial support from field observations and has been questioned by some laboratory experiments (Roush & McKenzie, 1987; Roush & Daly, 1990). A notable exception is resistance to dieldrin and diazinon in the sheep blow fly \textit{Lucilia cuprina} (e.g. McKenzie \textit{et al.}, 1982; McKenzie & Purvis, 1984; Clarke & McKenzie, 1987; McKenzie & Clarke, 1988; McKenzie, 1990, 1994; McKenzie & O’Farrell, 1993; McKenzie & Batterham, 1994; Davies \textit{et al.}, 1996). For each of these insecticides, field resistance has evolved through allelic substitution. At the \textit{Rdl} locus, the allele involved in dieldrin resistance was found to be associated with a significant fitness cost. At the \textit{Rop-1} locus, similar results were first found for the allele involved in diazinon resistance (R$_{1A}$), but this cost subsequently decreased due to the occurrence of a modifier gene. This modifier gene has a dominant effect and it completely suppresses the cost of R$_{1A}$. The absence of evolution of a dieldrin-resistance cost modifier is attributed to the shorter life-span (2 years of dieldrin use compared with 10 years of diazinon use) to select for a modifier gene.

Resistance to organophosphate (OP) insecticides in \textit{Culex pipiens} mosquitoes is another convenient model for investigating the pleiotropic effects of resistance genes directly in natural populations. Three loci are involved in OP resistance in \textit{Culex pipiens}, and each resistant mutant can be characterized in single mosquitoes. Two tightly linked loci, \textit{Est-2} and \textit{Est-3}, code detoxifying esterases A and B, respectively. They confer OP resistance through overproduction of the esterase, achieved by the modification of gene regulation or by gene amplification (Rooker \textit{et al.}, 1996). In addition, the \textit{Ace} locus codes the OP target acetylcholinesterase, variants of which are insensitive
to OP inhibition (Raymond et al., 1986; Bisset et al.,
1991; Khayrandish & Wood, 1993; Bourguet et al.,
1996).

In southern France, sites containing larvae have
been subjected to OP insecticide treatment for the
larger part of the breeding season since 1968. Four OP
resistance mutants have sequentially appeared from
1972 to 1986: the overproduced esterases A1, A4-B4
and A2-B2, and the insensitive target Aceb (Pasteur &
Sinègre, 1975; Pasteur et al., 1981a, b; Raymond et al.,
1986; Poirié et al., 1992; Chevillon et al., 1995). The
presence of OP insecticides is temporarily and spatially
limited. Culex pipiens has only been the target of OP
control within a coastal area along the Mediterranean
seashore approximately 20 km wide. In addition, OP
are usually applied between mid-May and mid-
September with little variation among years, but the
breeding period is more extended in time (from April
to November). As a consequence, at least the first and
last generations of the reproductive season escape OP
treatment, even within the treated area. During the
autumn, mated females seek shelter in cellars and
caves, where they survive for several months before
laying eggs the following spring. Males are supposed
to die before the overwintering period, and are not
present in overwintering sites. The overwintering
generation is thus composed of long-lived adult
females and of sperm stored within the spermathecae
of these overwintering females (Clements, 1963).
Overwintering females may experience differential
survival rate according to their OP resistance geno-
types, but overwintering sperm would presumably
preserve the allelic frequencies determined in the
autumn.

The present study was undertaken to compare OP-
resistant mutants for their impact on adult survival in
the absence of OP insecticide. The characteristics of
OP treatment in southern France and of Culex pipiens
biology suggested that the overwintering period would
be the best candidate for these purposes. Two
complementary surveys were thus undertaken in the
same restricted area. First, we followed the fate of
mutants involved in OP resistance in overwintering
females by repeated sampling of caves between
November and March. Second, we compared the OP
resistance composition of the first spring generation,
i.e. the offspring of the overwintering generation, with
the OP resistance composition of females that survived
the winter. Such a comparison was aimed at verifying
whether OP-resistant mutants effectively experience
differential fates between overwintering adult females
and overwintering sperm.

2. Materials and methods

(i) Mosquito samples

Overwintering Culex sp. females were repeatedly
sampled between November 1992 and March 1993
within nine caves from four localities near Montpellier
(Fig. 1). These caves were located outside the coastal
area where Culex pipiens control ended in September
1992 (Anonymous, 1992), so that it is very unlikely
the sampled individuals would have experienced any
OP contact. Within two localities, near the villages of
Claris and Saint Guilhem le Désert, a single cave has
been sampled (sampling code in parentheses): ‘Claris’
(CLA) and ‘Cochon’ (PIG), respectively. Near Sumène village, the two sampled caves are separated
by less than 200 m: ‘Trou d’Auguste’ (SUM1) and
‘Sumène’ (SUM2). In the ‘Ravin de l’Arc’, five
nearby caves (maximal distance around 800 m) were
sampled: ‘Nicole’ (ARC1), ‘Ermite’ (ARC2),
‘Eboulis’ (ARC3), ‘Grande’ (ARC4) and ‘CAF’
(ARC5). Except in two caves (SUM1 and ARC3)
where density in Culex sp. females was constantly low,
between 60 and 80 females were collected at each
sampling site. Each mosquito captured was identified
to species, and deep-frozen for further analyses. Only
C. pipiens mosquitoes were considered further.

In the same area, the offspring generation of
overwintering females was collected as eggs and first-
instar larvae within 12 breeding sites. These breeding
sites are close to the following localities: Faıses (1), Maurin (2), Lavalette (3), CEFE (4), Saint Gely (5), Triadou (6), Les Mâtelles (7), Saint Martin (8), Notre Dame (9), Saint Bauzille (10), Ganges (11) and Sumène (12; see Fig. 1). Each breeding site was checked twice a week between the disappearance of overwintering females from caves (19 March 1993 in the ‘Ravin de l’Arc’) until the first occurrence of egg-rafts. These first spring egg-rafts were taken between 7 and 9 April 1993, i.e. about 1 month before any insecticide control was performed. These mosquitoes were reared under standard laboratory conditions (larval mortality below 5%), and deep-frozen in liquid nitrogen as adults.

(ii) Identification of insecticide resistance genes

For each adult, the head and thorax were used for establishing the genotype at the Ace locus as described by Raymond & Marquine (1994), and the abdomen was used for detecting the presence or absence of overproduced esterases by starch gel electrophoresis (Chevillon et al., 1995). Acetylcholinesterase genotypes are recorded as AceRR and AceSS for resistant and susceptible homozygotes, and as AceRS for heterozygotes. Since overproduced esterases are dominant, esterase phenotypes are discriminated by their presence or absence. Five esterase phenotypes were recorded: the susceptible phenotype (Null) is defined by the absence of any overproduced esterase; the phenotypes A1, A4-B4 and A2-B2 by the detection of the corresponding overproduced esterases; and the phenotype (A1 + A4 − B4) corresponds to one heterozygote.

(iii) Statistics

Deviations from Hardy–Weinberg expectations were tested using the exact score test of Rousset & Raymond (1995), and its multisample extension, when the alternative hypothesis is heterozygote excess. Probabilities and their standard errors were estimated using Markov chains of 300 000 steps long with a dememorization of 1000 steps (see Guo & Thompson, 1992). The power of the Hardy–Weinberg test towards a specific H1 alternative hypothesis was estimated according to Rousset & Raymond (1995), and computed from 1000 samples.

At the Ace locus, genotypic differentiation was tested using the G$_s$ based test described by Goulet et al. (1996) with a Markov chain method of 100 000 steps. For esterases, phenotypic differentiation was tested by using the Fisher exact test on $R \times C$ contingency tables with R rows corresponding to esterase phenotypes and C columns to samples. The Markov chain used was of 200 000 steps, with a dememorization of 1000 steps. All these computations of probabilities and their standard errors were performed with version 3.1 of GENEPOP (Raymond & Rousset, 1995).

Under the assumption of fitness cost, resistant phenotypes should decrease in proportion with time within the single overwintering generation. The change in each phenotype frequency was analysed using the glim computer package (Baker & Nelder, 1985). Each phenotype frequency was modelled as a variable with binomial error (Crawley, 1993). The interaction of the sampling location (factor CAVE) and the day of sampling (variable DATE) was dropped if not significant. The factor CAVE being controlled, the evolution of each phenotype frequency with the variable DATE was then tested according to Crawley (1993).

Relative viabilities associated with Ace genotypes (AceRR, AceRS and AceSS) were estimated by a log-linear model with Poisson error described by Manly (1985) using the glim computer package (Baker & Nelder, 1985). This model corresponds to a classical analysis of covariance. Female counts were fitted as follows: step (a) basic model CAVE + GENO + REP, step (b) addition of the interaction GENO · DATE, and step (c) substitution of GENO · DATE by GENO · DATE · CAVE; where REP and GENO are factors describing the sampling sequence and the Ace genotypes, respectively (Manly, 1985; Crawley, 1993). In this model, the regression slopes (W_{RR} and W_{RS} for AceRR and AceRS, respectively) estimate the daily viabilities associated with resistant genotypes when the daily viability associated with the susceptible genotype AceSS is taken as reference ($W_{SS} = 1$). The viability costs associated with AceRR and AceRS genotypes are thus defined as $(1 - W_{RR})$ and $(1 - W_{RS})$, respectively. Overdispersion was corrected according to Crawley (1993) before testing the adequacy of the model to explain the data. The same model was applied to esterase phenotypes.

3. Results

(i) Evolution of resistance gene composition among overwintering females

Among the resistance genes known to be present in southern France, the esterase phenotype A2-B2 is at low frequency in the Montpellier area (see Rivet et al., 1993; Chevillon et al., 1995). In the present survey, it was observed in only 6 females out of 588 (Table 1) and was not considered further in our analysis. Variations in frequencies of other esterase phenotypes and of Ace genotypes were separately tested using a logistic regression on the data set. Results are detailed in Table 2. The ratio (ρ) of residual variance of the full model (CAVE + DATE + CAVE · DATE) to residual degrees of freedom was never larger than 1.3, indicating that the logistic regression accurately fitted the data. The interaction between the CAVE factor and the DATE variable was never significant ($P >
Table 1. Resistance gene composition of overwintering females

<table>
<thead>
<tr>
<th>Cave</th>
<th>Date</th>
<th>n</th>
<th>SS</th>
<th>RS</th>
<th>RR</th>
<th>Null</th>
<th>A1</th>
<th>A4−B4</th>
<th>A2−B2</th>
<th>A1+A4−B4</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARC1</td>
<td>18-11-92</td>
<td>25</td>
<td>16</td>
<td>6</td>
<td>3</td>
<td>16</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>15-01-93</td>
<td>18</td>
<td>13</td>
<td>5</td>
<td>0</td>
<td>12</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>28-01-93</td>
<td>10</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>05-02-93</td>
<td>13</td>
<td>11</td>
<td>2</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>10-02-93</td>
<td>7</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>18-02-93</td>
<td>16</td>
<td>14</td>
<td>2</td>
<td>0</td>
<td>13</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>25-02-93</td>
<td>6</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>04-03-93</td>
<td>14</td>
<td>10</td>
<td>3</td>
<td>1</td>
<td>11</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>11-03-93</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>18-03-93</td>
<td>7</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ARC2</td>
<td>10-12-92</td>
<td>29</td>
<td>23</td>
<td>4</td>
<td>2</td>
<td>18</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>28-01-93</td>
<td>15</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>18-03-93</td>
<td>16</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ARC3</td>
<td>10-12-92</td>
<td>39</td>
<td>28</td>
<td>10</td>
<td>1</td>
<td>26</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>05-02-93</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>25-02-93</td>
<td>4</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ARC4</td>
<td>10-02-93</td>
<td>27</td>
<td>20</td>
<td>4</td>
<td>3</td>
<td>14</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>18-02-93</td>
<td>13</td>
<td>10</td>
<td>1</td>
<td>2</td>
<td>11</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>25-02-93</td>
<td>25</td>
<td>21</td>
<td>4</td>
<td>0</td>
<td>15</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>04-03-93</td>
<td>23</td>
<td>15</td>
<td>7</td>
<td>1</td>
<td>10</td>
<td>3</td>
<td>7</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>ARC5</td>
<td>14-02-93</td>
<td>7</td>
<td>6</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>18-02-93</td>
<td>6</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>04-03-93</td>
<td>4</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>11-03-93</td>
<td>26</td>
<td>20</td>
<td>6</td>
<td>0</td>
<td>13</td>
<td>4</td>
<td>6</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>CLA</td>
<td>29-11-92</td>
<td>43</td>
<td>29</td>
<td>11</td>
<td>2</td>
<td>23</td>
<td>7</td>
<td>10</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>05-01-93</td>
<td>22</td>
<td>18</td>
<td>3</td>
<td>0</td>
<td>17</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>27-01-93</td>
<td>38</td>
<td>28</td>
<td>7</td>
<td>1</td>
<td>25</td>
<td>2</td>
<td>10</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>PIG</td>
<td>15-11-92</td>
<td>20</td>
<td>8</td>
<td>11</td>
<td>1</td>
<td>10</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>31-01-93</td>
<td>11</td>
<td>7</td>
<td>3</td>
<td>1</td>
<td>7</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SUM1</td>
<td>15-11-92</td>
<td>19</td>
<td>15</td>
<td>2</td>
<td>2</td>
<td>13</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>11-12-92</td>
<td>19</td>
<td>10</td>
<td>7</td>
<td>1</td>
<td>17</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>25-01-93</td>
<td>10</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td>7</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>SUM2</td>
<td>11-12-92</td>
<td>32</td>
<td>20</td>
<td>12</td>
<td>0</td>
<td>21</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>25-01-93</td>
<td>24</td>
<td>21</td>
<td>2</td>
<td>1</td>
<td>17</td>
<td>3</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

For each sample, counts are detailed for Ace genotypes and for esterase phenotypes. n is sample size.

Table 2. Variation of esterase phenotypes and Ace genotypes

<table>
<thead>
<tr>
<th>Phenotype</th>
<th>P value</th>
<th>Logistic regression</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CAVE·DATE</td>
<td>DATE</td>
</tr>
<tr>
<td>Null</td>
<td>0·92</td>
<td>0·021</td>
</tr>
<tr>
<td>A1</td>
<td>0·54</td>
<td>0·0005</td>
</tr>
<tr>
<td>A4−B4</td>
<td>0·80</td>
<td>0·74</td>
</tr>
<tr>
<td>(A1+A4−B4)</td>
<td>0·87</td>
<td>0·0014</td>
</tr>
<tr>
<td>Ace<sup>++</sup></td>
<td>0·45</td>
<td>0·0001</td>
</tr>
<tr>
<td>Ace<sup>+</sup></td>
<td>0·10</td>
<td>0·042</td>
</tr>
<tr>
<td>Ace<sup>+</sup></td>
<td>0·37</td>
<td>0·0021</td>
</tr>
</tbody>
</table>

Homogeneity among caves of evolution in frequency with time (factor CAVE·DATE) and stability of frequency through time (variable DATE) were tested for each phenotypic (genotypic) distribution. The corresponding P values are indicated with significant values (P < 0·05) in bold face. When variation in frequency with time was significant, slope and its standard error (SE) of the logistic regression is indicated.

0·05, Table 2), indicating a similar evolution in resistance gene frequencies among caves. This interaction term was therefore dropped. The DATE variable was then removed (the CAVE factor still being present) in order to test whether phenotype frequency varies with time. Homogeneity in frequency
Table 3. Estimates of the survival cost induced by Ace

<table>
<thead>
<tr>
<th>Time period</th>
<th>Cost estimates (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ace(^{BS})</td>
</tr>
<tr>
<td>Day</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.97 ± 0.03</td>
</tr>
<tr>
<td></td>
<td>(0.70–1.24)</td>
</tr>
<tr>
<td>Winter</td>
<td>71 ± 8</td>
</tr>
<tr>
<td></td>
<td>(58–79)</td>
</tr>
</tbody>
</table>

Viability estimates were computed for the three Ace genotypes without any assumption of their rank orders (model 1) or by assuming complete dominance of the viability cost of Ace\(^{B}\) (model 2). Estimates of survival costs are given with their confidence interval (in parentheses). See text for explanation.

through time was rejected for all phenotypes (\(P < 0.005\), Table 2) except for A4-B4 (\(P = 0.74\)). As indicated by the logistic regression slopes (Table 2), significant effects of time corresponded to a decrease in frequency of OP-resistant phenotypes and to a corresponding increase in frequency of the Null phenotype and of the Ace\(^{BS}\) genotype.

(ii) Estimates of survival cost

Variation in viabilities associated with Ace genotypes was analysed within the single overwintering generation by a log-linear model with Poisson errors (Manly, 1985; Crawley, 1993). The Ace composition was found to vary significantly with the variable \(DATE\) (\(P = 0.017\)) but not with the interaction \(DATE\cdot CAVE\) (\(P = 0.54\)), indicating that viabilities did not differ among caves but only among genotypes. Viability costs were significantly higher than the null value and did not differ significantly between homozygotes and heterozygotes (Table 3). Due to this similar evolution of two resistant genotypes, the model was simplified according to Crawley (1993): the Ace\(^{BS}\) and Ace\(^{BH}\) classes were pooled. Such simplification assumes a complete dominance of the viability cost. This simplified model presented a lower overdispersion (\(\rho = 1.6\) instead of \(\rho = 2.5\)) and provided a more informative estimate of viability cost (see confidence intervals in Table 3). Results are consistent with a dominant survival cost of Ace\(^{B}\), slightly lower than 1% per day.

For esterases, the interaction between phenotypes and sampling location was significant (\(P = 0.0058\)), indicating that viability estimates associated with esterase should be computed separately for each cave. The individual estimates are very inaccurate and this analysis was not developed further.

(iii) Resistance gene composition in offspring of overwintering females

Only mated \(C.\) *pipiens* females overwinter (e.g. Clements, 1963; Sulaiman & Service, 1983; Oda, 1992). No dependence between sex and Ace\(^{B}\) has been found during the breeding season (Raymond & Marquine, 1994; Chevillon *et al.*, 1995); thus when overwintering begins the Ace\(^{B}\) frequency is expected to be identical among sperm cells and among mated females. Since the Ace gene does not seem to be expressed in sperm cells (at least in Diptera: see review by Toutant, 1989), it should be neutral in the male gametes that are present in the spermaticca of these overwintering females. The survival cost associated with Ace\(^{B}\) in overwintering females (but not in sperm cells) is thus expected to induce differences in Ace\(^{B}\) frequency between male and female gametes in early spring when surviving females lay eggs. We then expect to detect (a) an excess of Ace\(^{BS}\) genotype (compared with Hardy–Weinberg expectations) in the offspring of the overwintering generation, and (b) an increase in mean Ace\(^{B}\) frequency between overwintering mothers and their offspring. Expectations of the evolution of overproduced esterases between overwintering and first-generation larvae are difficult to perform since genotypes are generally unknown and phenotypic frequencies can differ between sexes (Raymond & Marquine, 1994; Chevillon *et al.*, 1995).

Egg rafts and larvae of the first spring generation were collected in 12 distinct breeding sites (Fig. 1). The excess of Ace\(^{BS}\) heterozygotes was generally not significant within each sample (Table 4), but the power of the test, in the presence of the most likely alternative hypothesis, was low: the probability of detecting a significant heterozygote excess was 0.06 for the sample size achieved (\(n = 29\)), assuming that the true \(F_{IS}\) value is \(-0.088\) and that the true Ace\(^{BS}\) and Ace\(^{B}\) frequencies are 0.327 and 0.673 (i.e. the multisample estimates, Table 4). Nevertheless, a significant (\(P = 0.0447\), \(SE = 0.0013\)) tendency for heterozygote excess was found from the multisample test.

Direct mother–offspring relationships are not available in the present survey. However, mark–capture–recapture experiments on *Culex pipiens* indicate that offspring can be collected only within 10 km around the original location of their mother (see, for instance, Reisen *et al.*, 1992). In March, overwintering females were collected in the ‘Ravin de l’Arc’ (Table 1). Larvae from breeding sites 9–11 appear likely to be their offspring (Fig. 1). This assumption allows qualitative comparisons of Ace\(^{B}\) frequency between generations. No differentiation among these three breeding sites was detected at the Ace locus (\(F_{ST} = -0.0046\), \(P = 0.68\)) or at the esterase loci (\(P = 0.50\)) – a result congruent with the assumption that they are indeed offspring of the same population. Ace\(^{B}\) frequency is on average 0.22 (range 0.19–0.22; Table 4) among this offspring generation, and is about half
this value (0.11 on average, range 0-0.18; Table 1) among overwintering females collected during March in the ‘Ravin de l’Arc’. The overall pattern observed at the Ace locus is consistent with a differential selection between sexes acting on Ace^e during winter, such that this allele is strongly selected against in females but neutral within the male sperm that they carry.

At the esterase loci, the number of individuals with resistant phenotypes is also higher in breeding sites 9–11 (mean frequency 0.50, range 0.45–0.59; Table 4) than in overwintering females collected in March in the ‘Ravin de l’Arc’ (mean 0.33, range 0.26–0.38; Table 1). Similar patterns are observed when A1 and A4-B4 are separately considered. A1 exhibits a mean frequency of 0.17 (range 0.13–0.23; Table 4) among breeding sites 9–11 and of 0.11 (range 0.04–0.19; Table 1) among overwintering females. A4-B4 exhibits a mean frequency of 0.32 (range 0.20–0.45; Table 4) among breeding sites 9–11 and of 0.18 (range 0.17–0.26; Table 1) among overwintering females.

4. Discussion

(i) Insecticide survival cost during overwintering period

The overwintering period has previously attracted attention concerning insecticide resistance costs, because it is a time of high mortality in insects (Roush & Hoy, 1981; Daly & Fitt, 1990; McKenzie, 1990, 1994). Heterogeneous results have been reported: minor effects in the mite Metaseiulus occidentalis (Roush & Hoy, 1981) and in the lepidopteran Helicoverpa armigera (Daly & Fitt, 1990), and strong effects in the blowfly Lucilia cuprina (McKenzie, 1990, 1994). In L. cuprina, the Rdl allele involved in dieldrin resistance was found to induce a survival cost that was severe and dominant during the overwintering period, mild and additive otherwise (McKenzie, 1990); in absence of the modifier, similar results were found for the carboxylesterase R_{1A} involved in diazinon resistance (McKenzie, 1994).

The present study also reports heterogeneous results among Culex pipiens OP resistance genes. No variation in A4-B4 frequency was observed in the overwintering generation, indicating an absence of strong selection against this phenotype in winter. A decrease in A1 frequency was observed among females from the overwintering generation, which can be attributed only to differential survival since there is no migration during winter (M. Raymond & C. Chevillon, unpublished data). These results were obtained when considering these phenotypes separately, although A1 and A4 do not evolve independently from one another since they are alleles at the same locus (Est-3). When they were considered together for survival estimation purposes, a significant change in esterase composition with time was revealed. However, this latter effect seems cave-dependent, suggesting that a precise ecological monitoring of the caves is required to better understand the variation of survival with esterase phenotypes. In the same individuals, the modified acetylcholinesterase gene Ace^e was found to induce a survival cost that was severe, dominant and not detectably different between caves. The mortality attributable to Ace^e during the whole overwintering period was estimated to be 60%, i.e. similar to the survival cost associated with R_{1A} in Lucilia cuprina during the overwintering period (McKenzie, 1994). Such severe dominant costs are higher than the values

Table 4. Resistance gene composition of the first spring generation

<table>
<thead>
<tr>
<th>Site no.</th>
<th>RR</th>
<th>RS</th>
<th>SS</th>
<th>F<sub>is</sub></th>
<th>P value</th>
<th>Esterases</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Null</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A4-B4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A2-B2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>A1+A4-B4</td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>14</td>
<td>9</td>
<td>+0.042</td>
<td>0.7272</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>13</td>
<td>5</td>
<td>+0.059</td>
<td>0.7613</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>21</td>
<td>6</td>
<td>-0.463</td>
<td>0.0159</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>13</td>
<td>13</td>
<td>-0.000</td>
<td>0.6700</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>17</td>
<td>11</td>
<td>-0.315</td>
<td>0.0973</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>12</td>
<td>16</td>
<td>-0.113</td>
<td>0.4816</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>10</td>
<td>18</td>
<td>-0.033</td>
<td>0.6753</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>13</td>
<td>11</td>
<td>+0.081</td>
<td>0.7975</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>11</td>
<td>18</td>
<td>-0.217</td>
<td>0.3112</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>13</td>
<td>16</td>
<td>-0.273</td>
<td>0.1762</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>9</td>
<td>17</td>
<td>+0.208</td>
<td>0.9452</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>13</td>
<td>14</td>
<td>-0.064</td>
<td>0.5522</td>
<td></td>
</tr>
<tr>
<td>All</td>
<td></td>
<td></td>
<td></td>
<td>-0.088</td>
<td>0.0447</td>
<td></td>
</tr>
</tbody>
</table>

At the Ace locus, are detailed for each sample: genotypic counts; F_{is}, which was computed according to Weir & Cockerham (1984); and the P value of the exact score test for Hardy–Weinberg equilibrium, when the alternative hypothesis is heterozygote excess. Significant departures (P < 0.05) are indicated in bold characters. Global tendency among samples of deviation from Hardy–Weinberg equilibrium toward heterozygote excess was tested according to Rousset & Raymond (1995), and results are presented in ‘All’. In the last five columns, counts for each esterase phenotype are detailed within samples.
usually considered in most theoretical models (Comins, 1977; Tabashnik & Croft, 1982; Mani, 1989; Follett et al., 1993). However, in the present study its overall impact on the population seems to be sex limited during winter (only expressed in females; males overwinter as sperm). This further emphasizes the need to obtain field estimates of cost in various life stages and to reconsider predictive models.

(ii) Variability of fitness costs with the nature of adaptive changes

The literature on fitness costs associated with adaptive changes reports few comparisons of mutants involved in the same adaptation within a single species. Studies in antibiotic resistance in *Escherichia coli* (Schrag & Perrot, 1996) and in *Bacillus subtilis* (Cohan et al., 1994) have found a variation in associated fitness cost among adaptive mutants, but no physiological explanation is available for this observation. In the present study, known differences in the nature of resistance genes could partly explain the observed differences revealed.

The change in frequency of resistant genotypes during winter was observed to be either cave-independent (*Ace* locus) or cave-dependent (esterase loci). *Ace* corresponds to a qualitative change in the acetylcholinesterase (Raymond et al., 1986; Fournier et al., 1993) of the central nervous system, and affects an essential function required life-long, even for adult females hibernating in caves, where (for example) the risk of predation is high due to the presence of numerous predatory spiders (Sulaiman & Service, 1983). As spiders that capture and eat mosquitoes (e.g. *Meta bourneti* and *Tegenaria parietina*) were found in all caves inspected, these predators could represent a cave-independent selection. This hypothesis has been tested for another mosquito, *Anopheles gambiae*: individuals resistant to γHCH/dieldrin are less successful at predator avoidance and in mating competition, due to various subtle behavioural changes correlated with the presence of an insensitive target in the central nervous system (Rowland, 1991a, b). In contrast, A1 or A4-B4 correspond to a protein overproduction (Mouches et al., 1987; Poirié et al., 1992) that takes place mainly during preimaginal stages (Ferrari & Georgiou, 1990). These overproduced esterases are expected to affect resource allocation, such that associated cost is expected to depend greatly on environmental conditions, which could vary among caves and create a cave-dependent fitness cost.

This large difference in the expression of the associated costs of different resistance genes might explain some of the conflicting results reported in the literature concerning the existence of a cost under laboratory conditions (Roush & McKenzie, 1987; Roush & Daly, 1990). Furthermore, it is possible that the insensitivity of the target located in the nervous system leads to a behavioural cost (e.g. Rowland, 1991b) that cannot easily be detected in most laboratory settings, thus causing further discrepancies between laboratory and field results.

All the mutants surveyed in this study have been strongly selected for by intense OP control of *Culex pipiens* populations since their appearance. A1 appeared in 1972 (Pasteur & Sinègre, 1975), *Ace* in 1977 (Raymond et al., 1985) and A4-B4 in 1986 (Poirié et al., 1992). It is worthy of note that the most recent (A4-B4) mutant did not display any detectable fitness cost, contrary to older ones. Further investigations are needed to understand this phenomenon.

We are grateful to C. Bernard, M. Marquine and G. Pistre for technical assistance, to J. D. Lebreton for help in GLIM statistics, to M. L. Brosella, C. M. C. Chevillon, D. Heyse, M. Marquine, M. C. Anstett and an anonymous hermit for help in collecting overwintering females, and to J. F. Y. Brookfield, P. Dias, T. Guillemaud, P. Jarne, T. Lenormand, M. Michaud, P. Smouse, S. Stearns, S. Rooker and R. Vrijenhoek for helpful comments. This work was in part supported by the ‘Programme Environnement du CNRS’ (G.D.R. 1105), by ASC SV3 953037 and by INRA, C.C. and D.B. benefited from fellowships from MESR. This is contribution ISEM 97.080 of the Institut des Sciences de l’Evolution.

References

Rowland, M. (1991a). Activity and mating competitiveness ...
Insecticide resistance genes in mosquitoes

