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Potyvirus Helper Component-Proteinase Self-Interaction in the Yeast Two-Hybrid System
and Delineation of the Interaction Domain Involved
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Using the yeast two-hybrid system, a screen was performed for possible interactions between the proteins encoded by the
59 region of potyviral genomes [P1, helper component-proteinase (HC-Pro), and P3]. A positive self-interaction involving
HC-Pro was detected with lettuce mosaic virus (LMV) and potato virus Y (PVY). The possibility of heterologous interaction
between the HC-Pro of LMV and of PVY was also demonstrated. No interaction involving either the P1 or the P3 proteins was
detected. A series of ordered deletions from either the N- or C-terminal end of the LMV HC-Pro was used to map the domain
involved in interaction to the 72 N-terminal amino acids of the protein, a region known to be dispensable for virus viability
but necessary for aphid transmission. A similar but less detailed analysis mapped the interacting domain to the N-terminal
half of the PVY HC-Pro. © 1999 Academic Press
Key Words: HC-Pro, potyvirus, dimer formation, two-hybrid.
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INTRODUCTION

Potyviruses such as lettuce mosaic virus (LMV), and
heir type member potato virus Y (PVY) are members of
he Potyviridae, a family belonging to the picorna-like
upergroup of plus-stranded RNA viruses (Shukla et al.,
994). A considerable amount of information has accu-
ulated over the last decades on the structure and
echanisms of expression of the genome of potyviruses

Riechmann et al., 1992) and on the functions of the 10
ature polypeptides encoded on the genome in the form

f a large polyprotein. However, the precise functions of
everal of the potyviral proteins are still unknown. This is
articularly true for the P1 and P3 proteins, encoded in

he 59 region of the genome (Fig. 1). In addition to its
utoproteolytic property (Mavankal and Rhoads, 1991),
1 has been reported to have nucleic acid-binding ca-
acity (Soumounou and Laliberté, 1994) and to play a

ole in genome amplification (Verchot and Carrington,
995). Even less information is available concerning the

unctions of P3, although, again, this protein appears to
e involved in genome amplification (Klein et al., 1994).

By contrast, a number of functions have been as-
igned to the helper component-proteinase (HC-Pro), the
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uthors.

3 To whom reprint requests should be addressed. Fax: 33-0-556-84-

t2-21. E-mail: walter@bordeaux.inra.fr.
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econd protein from the N-terminus of the polyprotein
Fig. 1; for review, see Maia et al., 1996). HC-Pro has
utoproteolytic activity and is required for efficient aphid

ransmission of the virus, with coat protein and aphid
tylet binding properties (Blanc et al., 1997; Peng et al.,
998; Wang et al., 1998). HC-Pro also has nucleic acid
inding (Maia and Bernardi, 1996), as well as plasmo-
esmata gating (Rojas et al., 1997), properties. It is re-
uired for long-term genome amplification and systemic
ovement of the virus within infected plants (Kasschau

t al., 1997) and, finally, appears as a “general” pathoge-
icity factor (Vance et al., 1995; Pruss et al., 1997). Al-

hough some of these properties might turn out to be
acets of a more general underlying function, such as a
ole in the inhibition of the silencing defense reaction of
ost plants (Anandalakshmi et al., 1998; Brigneti et al.,
998; Kasschau and Carrington, 1998), it is still unclear
ow these various functions are integrated and regu-

ated. Another still unanswered question is whether HC-
ro is biologically active as a monomer or as a dimer
ecause early purification experiments indicated that the
oluble HC-Pro is probably present as a dimer in in-

ected plants (Thornbury et al., 1985).
Besides this deficiency in understanding the function

nd role of some particular potyviral proteins, a detailed
icture of the molecular processes and interactions be-

ween the various viral proteins and host cell compo-
ents is also lacking. The introduction of the yeast two-
ybrid system (Fields and Song, 1989), which allows
irect in vivo detection of protein–protein interactions,
hus has opened new and exciting possibilities. This

0042-6822/99 $30.00
Copyright © 1999 by Academic Press
All rights of reproduction in any form reserved.
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96 URCUQUI-INCHIMA ET AL.
ethod is based on the reconstruction of a functional
ranscriptional activator when two proteins interact in
east cells, one being fused to a DNA-binding domain
DBD) and the other to an activating domain (AD). The
ctivity of the reconstituted transcription factor is mea-
ured by the expression of marker genes such as the
is3 gene that allows the cells to grow on a histidine-
epleted medium or the gene that encodes b-galactosi-
ase. In the present study, the yeast two-hybrid system
as used to investigate possible interactions between
roteins encoded by the 59 region of the genome of LMV
nd PVY and, in particular, between the HC-Pro of LMV
nd PVY with themselves or with each other.

RESULTS

omologous and heterologous interactions of LMV
nd PVY HC-Pro

In yeast, the HC-Pros of LMV and PVY are able to
nteract with themselves and with each other. The high-
st activity was observed when PVY HC-Pro was tested
ith itself. It was higher than when LMV HC-Pro was

ested with itself, suggesting that the interaction is stron-
er in the case of PVY than of LMV (Table 1). Alterna-

ively, this might reflect a difference in the accumulation
evels of these proteins in yeast, in the AD-containing

FIG. 1. Structure of the full-length HC-Pro protein and of the various
s shown at the top, with the positions of the first amino acid of P1, HC
iven above for LMV. A schematic representation of HC-Pro is shown,
TK, and GYCY). Arrowheads indicate the extent of the largest spontane
nd LMV (unpublished results). The cysteine-rich region forming a pu

Carrington et al., 1989) are shaded. The extent of the HC-Pro segmen
ordering them, is shown in the bottom panel.
ectors used or in the steric hindrance interfering with
elf-interaction of HC-Pro fused to the AD or to the DBD.
n addition, interaction between LMV HC-Pro and PVY

C-Pro resulted in expression of the reporter genes,
specially when LMV HC-Pro was fused to the DBD and
VY HC-Pro was fused to the AD (Table 1).

LMV P1 and P3 did not interact in any of the combi-
ations tested, or with HC-Pro (Table 1). However, one

ed forms used in this study. The genomic organization of potyviruses
nd P3 and the last amino acid of P3 and of the full-length polyprotein

positions of various conserved sequence motifs (KITC, FRNK, CCCV,
letions found in the case of tobacco etch virus (TEV; Dolja et al., 1997)
inc finger (Robaglia et al., 1989) and the minimal proteinase domain
ent in the various LMV and PVY constructs, with the restriction sites

TABLE 1

Interactions Between LMV and PVY Proteins in Yeast

Viral protein fused to

His2 growtha b-GalactosidaseDBD AD

MV P1 LMV P1 2 NAb

LMV HC-Pro 2 NA
MV HC-Pro LMV P1 2 NA

LMV HC-Pro 1 15 6 2
MV P3 LMV P1 2 NA

LMV HC-Pro 2 NA
VY HC-Pro PVY HC-Pro 1 114 6 17

LMV HC-Pro 2 NA
MV HC-Pro PVY HC-Pro 1 4.7 6 2.8
as Raf 1 32 6 8

a Ability of yeast cells harboring the various constructs to grow on
inimal medium lacking leucine, tryptophane, and histidine.
truncat
-Pro, a

with the
ous de

tative z
ts pres
b NA, not applicable.
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97HC-PRO SELF-INTERACTION
annot exclude that P1 or P3 interactions exist but are
imply not detected by the method used here. The LMV
r PVY HC-Pro tested against either empty vectors or
gainst laminin g1 fused to the DBD yielded negative

esults as expected.

eletion mapping of the LMV and PVY HC-Pro
elf-interactions

The LMV HC-Pro C-terminal fragments LC1, LC2, and
C4 did not interact with full-length LMV HC-Pro, when

he latter was fused to the AD (Table 2A). Only LC3
esulted in HIS3 expression and detectable b-galactosi-
ase activity. However, additional control experiments
howed that yeast cells containing the LC3 construct

ogether with empty pGad3S2X occasionally grew on
edium lacking histidine but showed no b-galactosi-

ase activity. In contrast, all the N-terminal fragments,
ncluding LN4. in which only the first 72 amino acids of

TABLE 2

Interactions Between LMV and PHV HC-Pro
and Their Deleted Forms in Yeast

Viral protein fused to

His2 growtha b-GalactosidaseDBD AD

LMV HC-Pro LMV HC-Pro 1 4.0 6 1.6
LC1 LMV HC-Pro 2 NAb

LC2 LMV HC-Pro 2 NA
LC3 LMV HC-Pro 1 2.8 6 0.9
LC4 LMV HC-Pro 2 NA
LN1 LMV HC-Pro 1 4.0 6 2.3
LN2 LMV HC-Pro 1 5.5 6 2.6
LN3 LMV HC-Pro 1 3.0 6 1.4
LN4 LMV HC-Pro 1 3.4 6 1.3
LMV HC-Pro LN4 1 6.7 6 4.7
LC1 LN4 2 NA
LC2 LN4 2 NA
LC3 LN4 1/2c 0
LC4 LN4 2 NA
LN4 LN4 1 2.3 6 0.6
Ras Raf 1 20 6 9

PVY HC-Pro PVY HC-Pro 1 105 6 10
PN1 PVY HC-Pro 1 44 6 17
PC1 PVY HC-Pro 1 1.2 6 0.1
PVY HC-Pro PN1 1 50 6 10
PN1 PN1 1 1.4 6 0.2
PC1 PN1 1 16 6 0.2
PVY HC-Pro PC1 2 NA
PN1 PC1 1 22 6 2
PC1 PC1 2 NA
Ras Raf 1 56 6 21

a Ability of yeast cells harboring the various constructs to grow on
inimal medium lacking leucine, tryptophane, and histidine.
b NA, not applicable.
c 1/2, occasional growth observed.
MV HC-Pro are fused to the DBD, yielded both HIS3 and 1
-galactosidase expression when cotransformed with
MV HC-Pro. This indicates that the 72 N-terminal amino
cids of LMV HC-Pro are sufficient for interaction with
MV HC-Pro. When LN4 was fused to the AD, it inter-
cted with LMV HC-Pro and with itself but with none of

he C-terminal fragments (LC1–LC4).
In the case of PVY, PN1 but not PC1 interacted with

ull-length PVY HC-Pro when fused either to the AD or to
he DBD (Table 2B). When PN1 was assayed with PC1
used to either domain, a significant interaction could be
etected based on growth on a histidine-depleted me-
ium and on the b-galactosidase activity, although it

emained lower compared with PVY HC-Pro interaction
ith itself. Moreover, interaction of the N-terminal do-
ain with itself was barely detectable, and there was no

nteraction of the C-terminal domain with itself.
Together these results suggest that the region in-

olved in self-interaction of HC-Pro in the case of LMV
nd PVY is most probably the N-terminal region of the
rotein. In addition, a minor determinant of the interac-

ion might be present in the central region of HC-Pro,
llowing the weak interaction of PN1 with PC1.

DISCUSSION

The self-interacting capacity of HC-Pro in two different
otyviruses, LMV and PVY, is consistent with previous
iochemical data indicating that for another potyvirus,

obacco vein mottling virus, HC-Pro is present as a ho-
odimer (Thornbury et al., 1985), which thus is possibly

he active form of this protein for some or all of its
iological functions. It is tempting to speculate that the

nteraction we detect in yeast is related to this ability to
orm homodimers. In the present study, a major domain
esponsible for homodimerization has been located in
he N-terminal region of HC-Pro and, more precisely, in
he first 72 amino acids in the case of LMV. This region
as been shown to be crucial for aphid transmission

Atreya et al., 1992). The KITC motif at amino acid posi-
ions 52–55 in LMV and 50–53 in PVY (Fig. 1) has been
dentified as a determinant of this activity (Atreya et al.,
992; Atreya and Pirone, 1993; Dolja et al., 1993, 1997;
eng et al., 1998). Furthermore, it should be pointed out

hat the viability of tobacco etch virus (Dolja et al., 1993;
olja et al., 1997) and LMV (German-Retana et al., sub-
itted) is undeterred when the N-terminal region of HC-

ro is deleted (Fig. 1). This suggests that the ability of
C-Pro to dimerize may be important for aphid transmis-

ion but less so for other functions of this protein.

MATERIALS AND METHODS

onstruction of clones for the two-hybrid assays

The regions of the genome of LMV-E (accession no.
97705) encoding proteins P1 (nucleotide positions 104-

414), HC-Pro (positions 1415–2788), and P3 (positions
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98 URCUQUI-INCHIMA ET AL.
789–3922) were amplified by PCR using Pfu DNA poly-
erase (Stratagene, La Jolla, CA). The oligonucleotides

hat were used added a BamHI site and an initiation
odon at the 59 end of the amplified cDNAs and a

ermination codon and a BamHI (P1) or a PstI (HC-Pro
nd P3) site at the 39 end (Table 3). The resulting cDNAs
ere inserted into the yeast shuttle plasmids pLexA

ontaining the DBD (Vojtek et al., 1993) and pGad3S2X
ontaining the AD [a modified form of pGAD1318 (Beni-
hou et al., 1994) with three in-frame termination codons;
. Robaglia, personal communication], digested with
amHI (P1) or BamHI and PstI (HC-Pro and P3). No
erivative of pGad3S2X containing the LMV P3 cDNA
as obtained despite several attempts, probably due to
ncontrolled toxicity to Escherichia coli.

The full-length PVY-LYE84 HC-Pro coding region con-
ained in pT7:HC-Pro (accession number U33454; Maia
nd Bernardi, 1996) was released by EcoRI–XbaI diges-

ion and inserted into similarly cleaved pGADGH-STOP
containing the AD; a gift of I. Jupin). The resulting con-
truct was cleaved by EcoRI–XhoI, and the fragment
arrying the HC-Pro gene was inserted into pLexA
leaved by EcoRI–SalI.

onstruction of the HC-Pro deletion mutants

To delineate the region of HC-Pro involved in the
nteraction in yeast, we took advantage of the presence
f the restriction sites MluI1628, BglII1965, BstNI2235, and
alI2474 in the LMV HC-Pro cDNA (the positions given in

ndices refer to the full-length LMV-E cDNA sequence) to
xpress the N-terminal (LN1–LN4) and C-terminal (LC1–
C4) fragments of HC-Pro fused to the DBD (Fig. 1) and

o the AD in the case of LN4.
The regions corresponding to the N-terminal (PN1)

nd C-terminal (PC1) halves (amino acids 1–228 and
34–456, respectively; Fig.1) of PVY HC-Pro were ob-

ained by EcoRI–XbaI digestion of the plasmids pdel-2
nd pdel-6, respectively (to be described elsewhere) and

nserted in similarly cleaved pGADGH-STOP. The result-

T

Oligonucleotides Used for Amplification, Their Orientation, the Corr

Oligonucleotide Positiona

LMV P1, sense 101
LMV P1, antisense 1414
LMV HC-Pro, sense 1415
LMV HC-Pro, antisense 2788
LMV P3, sense 2789
LMV P3, antisense 3922

a Position of the 59-proximal viral nucleotide of each oligonucleotide
b Nucleotide sequence from 59 to 39. Nonviral sequences are in lowe

sed to clone the PCR fragments are in italics.
ng constructs were cleaved by EcoRI–XhoI, and the a
ragments were inserted into pLexA cleaved by EcoRI–
alI.

ransformation

The recombinant plasmids were amplified in E. coli
nd used to transform Saccharomyces cerevisiae L40

Le Douarin et al., 1995) using lithium acetate either by
equential transformation after the “quick and easy” pro-

ocol (Gietz and Woods, 1994) or by cotransformation
ccording to the protocol described in the Stratagene
ybriZAP 2.1 kit. Unrelated sequences, those of the hu-
an proteins Ras and Raf (Vojtek et al., 1993) or of the
urine laminin g1 (Chang et al., 1996), were used as

ositive or negative interaction controls, respectively.

uantitative b-galactosidase assay

The quantitative b-galactosidase assays were per-
ormed on the different transformed yeast strains grown
vernight to OD 0.8–1.5 in a synthetic selective medium

acking tryptophane, leucine, and histidine. The over-
ight cultures were diluted 10-fold into fresh medium and
rown to OD 0.3–0.9 before the quantitative assay. Cell
ermeabilization was performed as previously described

Guarente, 1983). O-Nitrophenyl-b-D-galactopyranoside
Sigma) was used as chromogenic substrate, and the
-galactosidase assays were performed as described
nd are expressed as Miller units (Miller, 1972).
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I–Université Paris VII.

REFERENCES

nandalakshmi, R., Pruss, G. J., Ge, X., Marathe, R., Smith, T. H., and
Vance, V. B. (1998). A viral suppressor of gene silencing in plants.
Proc. Natl. Acad. Sci. USA 95, 13079–13084.

treya, C. D., Atreya, P. L., Thornbury, D. W., and Pirone, T. P. (1992).
Site-directed mutations in the potyvirus HC-PRO gene affect helper
component activity, virus accumulation and symptom expression in
infected tobacco plants. Virology 191, 106–111.

treya, C. D., and Pirone, T. P. (1993). Mutational analysis of the helper
component-proteinase gene of a potyvirus: Effects of amino acid
substitutions, deletions, and gene replacement on virulence and
aphid transmissibility. Proc. Natl. Acad. Sci. USA 90, 11919–11923.
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