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Résumé. 2014 Nous présentons dans ce papier une modélisation de la rugosité de la surface du sol
par fonctions aléatoires booléennes. Cette classe de fonctions offre l’intérêt de pouvoir intégrer na-
turellement l’aspect motteux du sol via le choix de fonctions primaires. D’un point de vue statistique,
on dispose facilement des lois de distribution des hauteurs, ce qui ouvre la voie à des méthodes clas-
siques d’estimation et de modélisation. Nous présentons ici le cas de l’estimation paramétrique et
non-paramétrique de ces modèles, ainsi qu’une modélisation de la non-stationnarité due au travail du
sol.

Abstract. 2014 In this paper the modeling of soil surface roughness by Boolean random functions is
presented. The interest of this class of functions is to be able to model explicitly the cloddy aspect of
the soil through the use of primary functions. From a statistical point of view, the height distribution
function for such models is easily got, so that classical estimation and modeling methods are available.
The case of parametric and non-parametric estimation of the intensity function, and the case of the
modeling of the non-stationarity induced by tilling are presented.
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1. Introduction

Soil surface roughness plays a crucial part in controlling depressional storage capacity of surface
soils and the distribution of runoff. Huang and Bradford [1] emphasized the necessity to per-
fect microrelief description models in order to improve depressional storage models. Two main
approaches to describe these random surfaces have been conducted in the literature. The first
one models the soil surface as a Gaussian-Markov surface [1], characterizing the surface by its
covariance function. The second one emphasizes the fractal aspect of the surface. Burrough [2]
simulated such a surface by a fractional Brownian function. In fact, for such surfaces self-similarity
applies only to the size range of clods and aggregates [3]. So, assuming that the soil surface can
be described as an agglomerate of clods and aggregates, Boolean random functions are used [4-6]
to model surface roughness. The data sets will be described in a first part. The second part will
present the Boolean random function used. The third part is concerned by parametric estimation
of the model, the fourth by its non-parametric counterpart. In a last part is presented the modeling
of a non-stationarity due to tilling.

Article available at http://mmm.edpsciences.org or http://dx.doi.org/10.1051/mmm:1996157
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Fig. 1. - Grey-level image of the two soils observed in the first set of experiments. The darker the point
the higher the height. a) Isotropic stationary soil sample. b) Sample where the tilling non-stationarity has
been left.

2. The data sets

Two sets of experiments were conducted. The objective of the first set was to obtain a detailed
three-dimensional description of the relief of a tilled surface. The soil was cloddy with a modal
clod size of about 40 mm after tilling. Two square patches, 0.8 m x 0.8 m, were selected and
their three-dimensional relief was plotted by stereophotogrametry. For each patch, the output
is a square grid of 400 x 400 roughness-height values. Horizontal resolution is 2 mm. Figure 1
presents these two observed soils, for one the long range drift due to tilling was removed, whereas
for the second one it has been kept.
The second set of experiments was conducted to provide a set of roughness profiles for a soil

affected by rain. Four series of roughness-height profiles were recorded at the initial stage and
under three successive irrigations (0, 30, 64, 100 mm). Each series includes 24 roughness-height
profiles measured with a laser profile meter [3]. Each profile is lm long and the horizontal step is
2 mm.

3. The used Boolean random function

A general definition of Boolean random functions can be found in [6]. The model used here is
based on:

2022 a given primary function f from IR2 to IR positive, symmetric around (0, 0), convex and
satisfying f (x, y) = 0 if x2 + y2 &#x3E; 1. Let f o such that f (x, y ) = f0(x2 + y2).

2022 a Poisson point process X on IR2 x IR+ of intensity a( z), that is, for V C IR2 x IR+, the
number of points of X falling in V is Poisson with parameter ~(x,y,z)~va(z)dxdydz

To each point (xi,yi,zi) e X is attached a function fi (x, y) = zif((x + xi)/zi, (y + yi)/zi). The
Boolean random function Z(x, y) is defined as the supremum of all functions fi. The upper right
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Fig. 2. - Estimated Boolean random function intensities for the successive 0, 30, 64 and 100 mm cumu-
lative rainfall. The highest the curve, the less the cumulative rainfall. Upper right corner: example of a
Boolean random function on the line with the umbra of the sphere as primary grain.

corner of Figure 2 presents the case of a Boolean random function on the line, where f is the
umbra of a disc. In the following, the field Z observed at the nodes of a regular grid G, or at
points regularly located on a line will be considered. For such a random field, one gets classically

Moreover, for sufficiently decreasing functions a(z), i. e. , as soon as fr~ z2a(z)dz ~ 0 when
r ~ oo, a mixing property is obtained [7]: let A and B be finite sets on the grid G, n(A) and
n(B) the number of points of A and,B. If U and V are two events defined on A and B, then, for
r &#x3E; d(A, B)/2,

i.e., events on A and B become independent when the distance between A and B increases. There-
fore, estimation based on the observed heights of the random field is possible using formula (1),
while formula (2) will ensure the convergence of the estimators using the mixing property of the
field. 

4. Parametric Estimation

Let us consider the case where f is the umbra of a sphere of radius 1 as in the above example and
suppose that a(z) is known up to a given number of parameters. In [7] a(z) = az03B2 exp(03BBz) was
considered. a corresponds to a scaling factor, (3 and À (A  0) are shape parameters. À controls
the decrease to zero as r grows while (3 controls the number of small spheres. From formula (1)
one derives
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Table 1. - Estimated parameters of the first model for the second set of experiments.

and the set of parameters (a, (3, A) is estimated by a maximum of pseudo-likelihood method: the
estimator is defined as the set of parameters maximizing the product of the probabilities of the
observed heights.

Table 1 presents the sets of estimated parameters for the second experiment [8], while Figure 2
presents the estimated intensities corresponding to the successive rainfalls. The estimated values
were highly sensitive to cumulative rainfall. Parameters a and /3 increased while À decreased
corresponding to a fewer number of big clods when the cumulative rainfall increases. The mode of
the intensity function decreased corresponding to the reduction of the clod size with the rainfalls.

5. Non-Parametric Estimation of the Intensity

The preceding method requires knowledge of both the shape of the primary grain and the intensity
function, even if though it is imposed by a finite number of parameters. Such a choice is not easy,
more particularly for the intensity function. However, let us consider the case where the primary
grain is a semi-sphere of radius 1 lying on the horizontal plane z = 0. Then, one obtains from
equation (1):

from which one easily gets A(r) = ~~r a(z)dz = p(r) 203C0rP(r) and a(z) = p(z) 203C0z2P(z) + p(z)2 203C0zP(z)2 - p(1)(z) 203C0zP(z)
where P is the cumulative distribution function of heights, p the density function of heights and
p(1) its derivative.

Estimators of A(r) and a(z) are derived directly from these formulae by replacing P by the
empirical distribution of heights, (r) = 1 n203A3ni,j=11{Zi,j~r}, P and p(1) by their kernel esti-
mators [9] calculated on the observed image [10]. For example, using the kernel

K(u) = 3 4(1 - u2) if |u|  1, K(u) = 0 otherwise, one gets: p(r) = 1 wn203A3ni,j=1K (r-Zi,j w)
and (1)(r) = 1 03C92n203A3ni,j=1K(1) (r-Zi,j w) where is the width of the smoothing window whose
value tends to 0 with n. Replacing P, p and p(1) by these estimators, one gets non-parametric
estimators of A and a, asymptotically unbiased and of known asymptotic variance under very mild
conditions [10]. Figure 3 presents confidence bands of A(r) and a(z) using such estimators for
the two extreme cases of the second data set (initial stage and after 100 mm cumulative rainfall).
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Fig. 3. - Non parametric confidence bounds of the cumulative Boolean random function intensities A(r)
(a) and of the Boolean random function intensities a(r) (b) for the 0 mm (plain lines) and 100 mm cumulative
rainfalls(dotted lines).

Fig. 4. - Sampling scheme used in the case of non-stationarity parallel to the x-axis. Distance between
horizontal lines 8/ n with n --+ 0. Distance between consecutive points of measure on an horizontal line 8.

6. Modeling Non-Stationarity

In the preceding sections, the surface was considered stationary. However, tilling induces a one-
dimensional non-stationarity (see Fig. lb), by creating furrows. So the soil surface may be mod-
eled as the sum of a determinist term describing the furrow and a random Boolean function de-
scribing the random roughness: Z (x, y ) = G(x) + Z0(x,y). Moreover, at a lower scale, tilling
may induce a non-stationarity on the roughness itself. Let us consider as before the case of a

semi-sphere as primary grain, and suppose that the roughness is bounded. This last effect can
be easily modeled in the intensity function through a multiplicative model: a(x, z) = À(x)ao(z),
where ao and A are continuously derivable functions and satisfy: supf z; ao(z) &#x3E; 0} = R  oo,

|1 V v 1| ~ C/ V , 0  l  03BB(x)  L  oo and |d03BB(x) dx|  L’. For that model, denotir g
A(r) = f~r a(z)dz, the probability of observing a height less than h + G(x) at coordinates ( x, y)
is:
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Fig. 5. - Estimated determinist drift G(x) (curve a) component of the intensity À (x) (curve b) and of V(r)
(curve c) (see text) for the second sample of the first set of experiments. Plain lines of a) and b): local robust
smoothing of the estimated curves drawn in dotted lines using lowess procedure with parameter 0.1 (see [12]
for details).

Let us suppose that the process is sampled along n2 lines distant of 03B4/n parallel to the tilling
direction along the x-direction, the distance between two successive points on a line being 8 (see
Fig. 4), a sampling scheme easily performed by 2D laser profile meters. Let hn ~ R, then, if ix is
the integer part of 8x, and i(h) is the empirical distribution function of heights estimated along
line i,

are asymptotically unbiased consistent estimators of G(x), V(h) = ~~h uA(u)du and B (x) [11].
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Figure 5 presents the estimated curves corresponding to the second sample of the first set of
experiments. The tilling effect can be noticed on both curves (x) and 03BB(x). The estimated
deterministic drift ê (x) corresponds to the global effect which can be already observed in Figure
lb. It can be noticed on the curve â(x), the estimated spatial component of the intensity, an
effect which was difficult to perceive on the initial image: a non-stationary effect of the roughness
component of the soil surface, with a period roughly half of that of the determinist drift.

7. Conclusion

Boolean random functions can be a very useful tool to study surface roughness. They lead to a
good description of the clods and aggregates through the use of a primary grain. Moreover the
intensity function can be analyzed in the same way as a granulometry function.
The definition of this model is sufficiently large to allow an easy introduction of various assump-

tions on the process, as it can be seen for non-stationnarity due to tilling.
At the moment the main restriction is that their estimation has been performed conditionally

to the shape of the primary grain. The choice of a specific shape is always somewhat arbitrary.
Further work should try to get rid of this assumption.
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