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Abstract — The genetic variability and differentiation of west European honey bee
populations (Apis mellifera mellifera and A. m. iberica) have been investigated using
11 microsatellite loci. These two subspecies are characterised by a lower genetic
variability than most other studied subspecies and several tests are indicative of
a recent increase of the population size. Moreover, the genetic profiles are rather
homogeneous from southern Spain to Scandinavia. French populations are more or less
introgressed (a few percent up to 57 %) by genes from the north Mediterranean lineage
which provides most of the imported queens. The inferred percentage of introgressed
nuclear genes is generally well correlated with the proportion of alien mitochondrial
deoxyribonucleic acid (mtDNA) haplotypes detected in the same populations. The
level of introgression is the main source of genetic distances among populations.
When introgressed genes are disregarded, however, populations cluster in two groups
which correspond to both subspecies (iberica and mellifera), giving full support to
the taxonomy of this lineage. © Inra/Elsevier, Paris

honey bee / microsatellites / population genetics / introgression / conservation

Résumé — Diversité génétique de D’abeille ouest européenne (Apis mellifera
mellifera et A. m. iberica). II. Locus microsatellites. La variabilité génétique et
la différenciation entre populations a été étudiée pour 11 locus microsatellites dans
15 populations de l'abeille ouest européenne. Les deux sous-espéces qui constituent
ce rameau (Apis mellifera mellifera et A. m. iberica) ont une variabilité génétique

* Correspondence and reprints
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plus réduite que la plupart des autres populations étudiées avec les mémes outils
moléculaires et plusieurs tests statistiques sont révélateurs d'une réduction récente
de leur effectif. De plus, les profils génétiques des populations sont trés comparables,
du sud de ’Espagne & la Scandinavie, Les populations frangaises sont plus ou moins
introgressées (de quelques pourcentages jusqu’a 57 %) par des génes de la lignée nord-
méditerranéenne, les races ligustica et carnica étant les principales sources de reines
importées. Le pourcentage de génes nucléaires provenant de ces races est généralement
équivalent & celui des haplotypes détectés dans les mémes populations. Les degrés
différents d’introgression sont la principale source de la distance génétique observée
entre les populations ouest européennes ; cependant, lorsque ces génes sont retirés, les
populations se regroupent en deux ensembles qui correspondent aux deux sous-especes
(iberica et mellifera). Ce résultat apporte donc un soutien génétique a la taxinomie
de cette lignée. © Inra/Elsevier, Paris

abeille / microsatellites / génétique des populations / introgression / conserva-
tion

1. INTRODUCTION

The use of microsatellites for population genetics studies is expanding expo-
nentially. While these markers are very useful for the study of polymorphism in
a variety of species, there are some organisms, namely Hymenoptera and partic-
ularly their social taxa, for which they do not mark simply a renewal but rather
the emergence of a formal and population genetics. Indeed, when enzyme poly-
morphism emerged 30 years ago and was applied to innumerable species, the ge-
netic variability detected in Hymenoptera remained desperately low (Sylvester,
1976; Cornuet, 1979; Nunamaker, 1980; Badino et al., 1983; Sheppard and
Berlocher, 1984). Significant advances were only achieved with the introduction
of DNA technologies, mitochondrial deoxyribonucleic acid {mtDNA) first and
then nuclear markers, namely random amplified polymorphic DNA (RAPD),
anonymous sequences and microsatellites.

Recently, RAPD markers have been used to map the honey bee genome
(Hunt and Page, 1995) but, in spite of their variability and a relatively
favourable situation in the species (where haploid drones can be used to
baffle the drawbacks of dominant transmission at these loci), they remain of
little interest for population genetics analysis where diploid workers are the
main source of DNA. Similarly, a hypervariable probe has been developed for
population analysis, but a single locus may not be sufficient to characterise
genetic diversity of populations (Hall, 1990; McMichael and Hall, 1996). Until
now, microsatellites have been mainly used in Apis mellifera in the fields
of molecular evolution (Estoup et al., 1993, 1995b), theoretical models of
mutations {Estoup et al., 1995a; Cornuet and Luikart, 1997) and reproductive
behaviour and sociobiology (Estoup et al., 1994).

With the noticeable exception of mitochondrial DNA (see Part I, accompa-
nying article), the variability of the honey bee has been developed for a long
time at the phenetic level, mainly through morphometry (Ruttner et al., 1978;
Ruttner, 1988). These data are of excellent quality and have been of great value
in guiding subsequent molecular analyses. Morphometry has revealed that the
24 recognised subspecies in the Old World (the original geographic area of Apis
mellifera before its dispersion around the world by humans) can be grouped
in three evolutionary lineages: M for the west European honey bees, A for the
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African continent and C for the north Mediterranean (see Part I, accompany-
ing article for more details). Roughly, the same three lineages have been found
with mitochondrial DNA (Smith, 1991; Garnery et al., 1992; Arias and Shep-
pard, 1996) and a study with seven microsatellite loci confirmed their profound
genetic differentiation for nuclear genes (Estoup et al., 1995a). Recently, the
study has been extended to some Iberian populations to investigate the evo-
lutionary origin of the M lineage (Franck et al., 1998). The present work is
a contribution to a more comprehensive knowledge of the genetic variability
analysed in 15 populations of the two west European subspecies Apis mellifera
mellifera and A. m. iberica using 11 microsatellite loci.

These populations are characterised by a low genetic variability, a low level
of genetic differentiation and a variable level of introgression, mainly by alleles
from the C lineage. Three populations from localities where conservatories
of the local ‘black’ honey bees (A. m. mellifera) are established or to be
established are included in this study.

2. MATERIALS AND METHODS
2.1. Sampling

A total of 571 honey bee workers from 17 populations were investigated (see
Part 1, figure 1 of the accompanying article). Most of them have been sampled
in the geographic area of the subspecies Apis mellifera mellifera (eight from
France: Sabres, Landes; Saintes, Charentes; Angers, Maine-et-Loire; Quessant,
Finistére; Avignon, Vaucluse; Annecy, Savoie; Fleckenstein, Bas-Rhin; Valen-
ciennes, Nord; one from Belgium: Chimay; one from Sweden: Ume4), and of
the subspecies A. m. iberica (two from Spain: Toledo/Segovia, Castilla; Sevilla,
Andalucia; one from Portugal: Porto); two Pyrenean populations from the pu-
tative contact zone (Bayonne, Atlantic Pyrenees and San Sebastian, Basque
Country) are unassigned to one or the other subspecies. The populations of Al
Hoceima (Morocco, A. m. major) and Chalkidiki (Greece, A. m. macedonica),
belonging to the A and C lineages respectively, have been used as references. All
these populations have been previously characterised for mtDNA (see Part I,
accompanying article). For each population, a single worker per colony was
sampled for a total of 21 to 50 individuals per population in a radius of 10 km.

2.2, Molecular analyses

DNA extraction was performed according to Kocher et al. (1989), with slight
modification as described by Garnery et al. (1993) (see Part I, accompanying
article for a more complete description). Radioactive polymerase chain reaction
(PCR) amplifications of microsatellite loci were carried out in 10 uL as previ-
ously described in Estoup et al. (1995a) except that 0.15 uCi of o**P-dATP
was used as radioactive source. Eleven pairs of primers were used to amplify
the loci. Seven of them are those already described by Estoup et al. (1995a):
A43, B124, A88, A113, A28, A24 and A7 and another one by Franck et al.
(unpublished report): A8 The sequences of the new ones (with indication of
the optimal annealing temperature and concentration in MgCls) are given in
table I
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Table I. Polymerase chain reaction primers and conditions for loci Ap33, Ap36 and

Ap4S.

Locus Primers Annealing temperature MgCl,
(°C) (mM)
Ap33 5 -TTTCTTTTTGTGGACAGCG-3'
5-AAATATGGCCGAAACGTGTG-3 54 1.2
Ap36 5'-CTACGCGCTTACAGGGCA-3’
5-GCCGAAATTCAACGCTCA-3 56 1.2
Ap43 5-GGCGTGCACAGCTTATTCC-3
5-CGAAGGTGGTTTCAGGCC-3’ 58 1.2

2.3. Statistical analyses

Unbiased estimates of gene diversity (heterozygosity) of microsatellite loci
(Hd) were calculated according to Nei (1978). The number of alleles or
allelic diversity of a sample depends on the sample size, which varies among
populations and loci. In order to make valid comparisons, allelic diversity has
to be adjusted to a common sample size according to the following formula (El
Mousadik and Petit, 1996):

Da(m) = [1-Civ, /C}] ey

where Da(m) is the allelic diversity for a sample size m, k the total number
of alleles, n the observed sample size (n > m) and n; the number of alleles 4,
(1<i<k).

The exact test for Hardy-Weinberg equilibrium, genotypic linkage disequilib-
rium and genic and genotypic structure were computed using the GENEPOP
package version 1.2 (Raymond and Rousset, 1995). F-statistics were estimated
according to Weir and Cockerham (1984).

Phylogenetic relationships between populations were established using the
neighbour-joining (N-J) algorithm (Saitou and Nei, 1987) and the chord
distance of Cavalli-Sforza and Edwards (1967), which is among the best genetic
distances for recovering the correct tree topology according to Takezaki and Nei
(1996). The distances of Goldstein et al. (1995) and Shriver et al. (1993}, based
on allele size, were also used for comparison. Bootstrap values were computed
over 2000 replications (Hedges, 1992) resampling loci or individuals. Trees of
individuals were constructed with the Das (shared allele) distance (Chakraborty
and Jin, 1993) and the N-J algorithm according to Bowcock et al. (1994) and
Estoup et al. (1995a).

To approximate nuclear introgression in the populations, we estimated the
frequency of alien alleles in mellifera populations for nine loci (all studied loci
except B124 and Ap33) for which one or several alleles seem to be diagnostic
between the M and C lineages. The proportion of introgressed alleles (7R) was
calculated by locus as follows:

[RZZPL'/Z%' (2)

€D icD
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where p; and g; are the allelic frequencies in the different M populations and in
the Chalkidiki population, respectively, and D is the set of diagnostic alleles at
the locus. We tested the homogeneity of the introgression of diagnostic alleles
per locus and per population using Fisher’s exact test obtained through a
Markov process according to Raymond and Rousset (1995).

3. RESULTS

3.1. Genetic diversity

Allelic frequencies for all locus x sample combinations are detailed in table IT
which also gives observed (Hp) and calculated (Hd) heterozygosities. The
number of alleles per locus, the allelic diversities Da and the effective allele
diversities Da(m) are summarised in table III considering either the raw data
or the data corrected for introgressed alleles. Compared to Chalkidiki and Al
Hoceima, the mellifera and iberica populations show lower variability.

Among 187 (17 x 11) locus x sample combinations, 11 significant departures
from the Hardy-Weinberg equilibrium were detected when nine are expected
by chance alone at the 5 % level. Two significant tests were obtained for each
of the following four populations: Fleckenstein, Angers, Avignon and Umea.

Within populations, 70 pairs of loci present a significant linkage disequilib-
rium over 825 (55 x 15) tests. Two or three linkage disequilibria are expected
to be significant by chance alone among the 55 tests performed between loci
taken pairwise within each population. This value was exceeded, sometimes
considerably, in four populations: Avignon (6), Bayonne (8), Sabres (10) and
Angers (19). Ten cases of cytonuclear disequilibrium were detected over the 181
tests performed. The multiple probability test by pair of loci across all popula-
tions (Fisher’s method) was significant for 12 nuclear pairs and one cytonuclear
pair (B124) over, respectively, 55 and 11 tests performed (populations, global,
GENEPOP; Raymond and Rousset, 1995).

3.2. Diagnostic alleles

Most of the French populations of mellifera are slightly to heavily intro-
gressed by C mitochondrial haplotypes (see Part I, accompanying article). We
looked for a concomitant introgression of nuclear genes. For nine loci, it appears
that some alleles that exist at intermediate or high frequency in the Chalkidiki
population, the reference population of the C lineage, are also present with
a variable frequency in A. m. mellifera populations. This is, for example, the
case for the large alleles (158 to 166) at locus A8 or for allele 141 at locus
A43 (table II). These alleles are generally located at one extreme of the size
distribution of the M lineage. Moreover, they have a very high frequency in
A. m. mellifera populations which also exhibit a high frequency of C mtDNA
haplotypes, namely Angers and Fleckenstein (Garnery et al., accompanying
paper) and a low frequency in the other mellifera populations which have a low
frequency of C haplotypes, whereas they are absent or nearly so in A. m. iberica,
which are not introgressed by C haplotypes. It would be interesting to confirm
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this interpretation by more powerful analyses (e.g. sequences of flanking regions
of microsatellites). In addition, there is also a good correlation (r = 0.74,
P < 0.01) between the frequency of C haplotypes and C nuclear genes. Several
other features, which emerge when these alleles are removed (see later, linkage
disequilibrium and phylogeny of populations), suggest that these alleles were
secondarily introduced into mellifera populations.

Consequently, as long as the population of Chalkidiki is representative of
the donor populations, these alleles are indicative of introgression by nuclear
genomes from lineage C. They provide a conservative value of the frequency
of nuclear introgression, because other alien alleles may have remained unde-
tected.

Considering 29 diagnostic alleles between the M and C lineages (noted with
an asterisk in table II), we estimated the proportion of introgressed alleles (I R)
in the iberica and mellifera populations by locus and by population (table IV).
The mean I R values by population are generally congruent with the proportions
of mitochondrial haplotypes C, even if the latter are usually larger. The
introgression rates (I R) were significantly different among populations and loci
(Fisher’s exact test, P < 1073 for both tests), mainly because the Fleckenstein
population is more introgressed than the other populations and because of
loci A88 and A113 (Fisher’s exact test, P = 0.075 without Fleckenstein and
P =0.176 without A88 and A113, respectively).

To test the influence of introgressed alleles on the populations, the 29
diagnostic alleles were disregarded in the matrix of individual multilocus
genotypes. A re-analysis of linkage disequilibrium for the mellifera and iberica
populations showed a general decrease of linkage disequilibrium: 29, i.e. 3.9 %,
were significant instead of 70, i.e. 8.5 % (the number of possible tests was
reduced from 825 to 740), and the global test by pair of loci across all
populations was significant for only one pair of loci instead of 12 pairs. The
allelic diversity was also re-calculated, ignoring diagnostic alleles (Da Cor,
table IIT). In most cases, resulting genetic profiles in mellifera populations were
closer to those observed in tberica samples which are supposed to be free of C
genes.

3.3. Genetic distances and population relationships

The N-J tree of populations obtained with raw data (not corrected for in-
trogression) shows several features (figure 1). Only two groups are supported
by high bootstrap values. First, the four Spanish and Portuguese popula-
tions (A. m. iberica) form a cluster in which the population from San Sebas-
tian branches basically. Second, Valenciennes and Chimay populations branch
together, providing another example of the close relationship between small
genetic distance and geographic proximity. The nodes of the other French pop-
ulations are generally not well resolved but it is striking to observe that the
more introgressed they are, the deeper they branch in the tree. Fleckenstein,
the most heavily introgressed population, is located out of the mellifera—iberica
set and clusters with Chalkidiki.

Disregarding diagnostic alleles in mellifera populations (excluding Flecken-
stein) results in a new N-J tree in which the preceding two robust clusters
(Iberian populations and Chimay/Valenciennes) are conserved and the other
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Al Hoceima
Angers  (15.1%:;88%)
Annecy (8.5%; 2%)

100/100

9893

Saintes (5.7%; 7%)
Avignon (4.5%;25%)

SU%| 8187

19/4

17132

23119

131 100/99

15/10) 38133

21/2oL|:_
Fleckenstein (56.6

100/86 |

Valenciennes

100/93

(4.8%; T%)

Chimay (6%;14%)
Umea (5.3%; 7%)

Ouessant (1%;0%)

San Sebastian  (1.5%;4%)
_ Sevilla (0%;0%)

Castilla (0%;2%)
Porto (0%;2%)

Sabres (2.4%;2%)

Bayonne (3%; 7%)
%; 70%)

Chalkidiki

Figure 1. Phylogenetic tree of the populations. The tree has been constructed using
observed allelic frequencies (rough data), the chord distance (Cavalli-Sforza and
Edwards, 1967) and the neighbour-joining algorithm (Saitou and Nei, 1987). Values on
the nodes indicate the bootstrap scores (2 000 iterations) resampling loci/individuals.
The frequency of microsatellite C alleles and C haplotypes is given for M populations.

4290

Castilla
Sevilla

ﬂ

Porto
San Sebastian

41/41{

Angers
Avignon

83/84

Valenciennes

93/97

Chimay

Ouessant

21/ IA

02

6

Umea

Sabres
—{55/71 -
Bayonne

Saintes
Annecy

Al Hoceima

Figure 2. Phylogenetic tree of the populations with data corrected for introgression

with the same methods as in figure 1.
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populations remain rather unresolved (figure 2). However, the new feature is
the basal divergence between the two racial sets of populations (iberica and
mellifera), with San Sebastian in the middle. Within the mellifera clus-
ter, no particular structure emerges, apart from the already cited Chi-
may/Valenciennes association. The same results, distinction between iberica
and mellifera populations and absence of within-subspecies structure, were ob-
tained with other genetic distances, including those based on allele size (i.e.
Shriver et al., 1993; Goldstein et al., 1995).

Multilocus Fst calculated with raw allelic frequencies (Weir and Cockerham,
1984) are generally significant at the 5 % level (only four of 105 pairs are
not significant, namely Valenciennes/Chimay, Annecy/Valenciennes, Castilla/
Sevilla, Saintes/Valenciennes), but their values are rather low (table V). Two
populations are particularly differentiated: Fleckenstein (0.13 < F'st < 0.31)
and Ouessant (0.04 < Fst < 0.18, excluding Fleckenstein), the former because
it is highly introgressed and the latter because it is an artificial, selected, tiny
and isolated population. The A and C outgroup populations are very distinct
from the M lineage. All loci contribute to the genetic differentiation, the lower
contribution being that of loci A8, A88, A2/ and A28. With corrected data,
changes in Fst are small for the least introgressed populations, but the decrease
is important for Fleckenstein. The pair Sabres/Annecy and the four loci cited
earlier are not significantly differentiated.

Another way to analyse genetic structure is to consider the relationships of
individuals on a tree (figure 3), which has been constructed only with a subset
of populations to facilitate legibility. If individuals of the A (outgroup) and
C lineage form two compact clusters, those of the M lineage are intermingled
in their branches, whatever their race (mellifera or iberica), even if there are
some groups of individuals from the same population. It can also be seen that
terminal branches which lead to individuals and internal ones which connect
them are very short: this reflects the low genetic variability in these populations
and the small genetic differentiation among them.

4. DISCUSSION

This discussion bears mainly on the genetic variability observed for mi-
crosatellite loci but it also considers them in relation to results obtained with
mitochondrial DNA described in Part I, the accompanying article.

As aforementioned, a significant but unequal part of the variability within
populations and of the differentiation among populations is the direct con-
sequence of their levels of genetic introgression. Consequently, an attempt to
estimate the genetic profiles of populations prior to the introduction of alien
genes has to be considered before discussing other points.

4.1. Genetic introgression

The estimation of introgression in mellifera populations is based on the
study of the nine loci (over 11) possessing putative diagnostic alleles. How
these alleles were identified has been given in the results section. Several fea-
tures suggest that this estimation of introgression is roughly correct: 1) there
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= Castilla

w Sabres
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== Valenciennes
m— ADgers

== Fleckenstein
mae Chalkidiki
=== Al Hoceima

Figure 3. Branching pattern of individuals. The tree is based on the Das distance
(Chakraborty and Jin, 1993) and the neighbour-joining algorithm (Saitou and Nei,
1987) for a subset of populations.
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is a good correlation between the frequency of C haplotypes and C nuclear
genes and both are also congruent with what is known about bee-keeping
in these populations; 2) most of the linkage disequilibria disappear after the
removal of the diagnostic alleles; 3) the genetic parameters (allelic diversity
and heterozygosity) of mellifera and iberica populations (the latter being free
of C haplotypes and hence supposedly free of C nuclear alleles) are more similar
after correction and their genetic distance is lower.

Introgression was calculated with the allelic frequencies observed in the
Chalkidiki population (Greece, lineage C); they are not necessarily identical
in the other C populations from which foreign bees have been imported
(mainly ligustica from Italy and carnica from Central Europe). A more accurate
correction would have implied the use of allelic frequencies of the real donor
population(s) for each recipient population, but they are generally unknown
except that they belong to the C lineage. In addition, the genetic profiles for
C populations are poorly known, only three samples being available (Estoup
et al., 1995a) for six of the nine loci used. The average frequency of diagnostic
alleles for these loci is 0.795 in the Chalkidiki population (macedonica) and only
0.616 for Berlin (carnica) and 0.688 for Forli (ligustica). A lower frequency in
the last two populations is possibly due to not considering some of their alleles
as diagnostic with lineage M, because they are absent in the Chalkidiki sample.
This would result in a 10 to 20 % underestimation of nuclear introgression for
some populations.

French, Belgian and Swedish populations analysed in this work show various
degrees of introgression, mainly by alleles from the C lineage. The percentage
of introgressed genes is roughly correlated with that of C mtDNA haplotypes
previously established (see Part I, accompanying article and table IV) but is
generally slightly lower. One possible reason is that some form of selection
acts against the introgression of nuclear genes. Another reason could be
a differential diffusion attributable to the role of the two sexes in their
transmission. Still another is more likely: nuclear introgression could have
been slightly underestimated as indicated earlier. There are, however, two
exceptions. In the Annecy population, the relative excess of C nuclear genes
observed (compared to C haplotype frequency) could be the result of a long-
term equilibrium in a natural zone of contact between lineages M and C. For
Angers, the percentage of C mtDNA haplotypes outnumbers that of the C
microsatellite alleles whereas no such excess of mitochondrial genes is observed
in the population of Fleckenstein, also heavily introgressed for mtDNA (see
later for possible explanations).

Spanish and Portuguese populations seem to be almost deprived of nuclear
alien genes, their genetic profiles being very similar to the least introgressed
French populations. The absence of C nuclear genes is in agreement with
the absence of C mtDNA but that of A nuclear genes is more surprising
because the most southern populations carry a variety of A haplotypes at
high frequency. This has been interpreted as the consequence of reiterated
importation from various origins of queens belonging to the A lineage, and
a differential introgression of cytoplasmic and nuclear genes attributable to
the different swarming behaviour of African and European honey bees and a
possible selection in favour of A haplotypes (Franck et al., 1998).
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4.2. Genetic variability within populations

There is no general standard for the variability of microsatellite loci, but
the comparison of the 15 populations of lineage M to populations of the C
and A lineages (Greece and Morocco, respectively) shows that heterozygosity
and the allele number are higher or far higher in non-M populations. A single
population has been used as reference for the C and A lineages but, as far as we
know, they are representative of the variability in these lineages (Estoup et al.,
1995a; Franck et al., 1998). The lower genetic variability of M populations has
been interpreted as a consequence of lower effective population sizes due to
ecological and ethological differences (Estoup et al., 1995a).

It has also been shown (Estoup et al., 1995a) that the populations of the
west European honey bees are not, whatever the mutation model (IAM or
SMM), at mutation/drift equilibrium but, for almost all loci, given the number
of alleles, they exhibit a deficit of estimated genic diversity. This is indicative
of a recent increase in the population size (Franck et al., 1998). Moreover,
as the genetic differentiation between populations, although often significant,
is generally low, it can be inferred that the bottleneck was common for all
populations (or two groups of populations, see section 4.4), probably during
the last ice age, its effects still being perceptible in the current populations. It
is difficult to invoke an alternative explanation, homogenisation by migration
over more than 5 000 km, the west European honey bees being considered as
poor migrants (compared to African populations). An important consequence
is that the low level of variability is not the consequence of recent domestication
of honey bees by humans but rather that of the natural history of populations.

4.3. Population differentiation and relationships

Whatever the means used to infer genetic similarity among populations
of the west European honey bees (phylogeny of populations, F'st, tree of
individuals) using microsatellite data, it appears that they are very similar
to and very different from populations of the other two lineages A and C (see
also Estoup et al., 1995a). In fact, the level of introgression is responsible for
most of the differentiation observed (figures 2 and 8). The effect of alien alleles
appears clearly in the comparison of population trees where the topology is
largely modified between corrected and uncorrected data. It also appears in
the topology of the tree constructed with individual genotypes: alien genes
increase the length of the branches (populations or individuals) when their
number is limited, then they displace the branch at the root of their own
aboriginal lineage when this number increases, and finally transfer the branch
at the root of the population from which introgressing genes come when it is
high. The consequences of introgression are important to discuss but, whatever
the purpose (natural history of the species or conservation of its populations),
it is also interesting to consider the relationships among populations on the
basis of their genetic structure prior to importation.

Fleckenstein and Angers are characterised by a particularly high level
of introgression. In Fleckenstein (directly branched on the C lineage), the
population belonged originally to the M lineage, but massive importation of
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carnica, following reduction in the population size due to the parasite mite
Varroa (P.P. Merck, personal communication), has completely modified their
genetic profile, which is currently characterised by a majority of carnica genes
(mitochondrial and nuclear). However, population genetics parameters (few
departures from the Hardy-Weinberg equilibrium and few linkage disequilibria)
indicate that local and imported honey bees currently constitute a single
panmictic population. The population from Angers has been sampled in an area
of traditional apiculture (i.e. using mainly local honey bees) but in the vicinity
of a professional bee-keeper who has continuously imported ligustica queens.
The introgression of mitochondrial genes is massive (88 %) but that of nuclear
genes remains comparatively low (15 %). In addition, linkage disequilibrium
is widespread (19 significant tests of 55). The discrepancy between these two
populations could have several origins: 1) introgressing genes have not the same
racial origin (ligustica for Angers and carnico for Fleckenstein) and could have
been better detected in one population than in the other; 2) selection could
act differentially and be strong against alien nuclear genes in Angers; 3) in the
latter population a strong mitochondrial gene flow could be ensured by swarms
escaped from the professional bee yards, but most queens were inseminated
by local males in drone congregation areas. To a lesser degree, the same can
be observed in the Avignon population (where ligustica have been imported
for many years). In conclusion, it seems that when importations are reiterated
every year, the mtDNA genes show a propensity to introgress more than nuclear
genes, whereas introgression is equivalent for the two compartments when they
have been massive over a short period of time.

Most of the other populations appear poorly resolved on the phylogenies but
some groups are rather strong. The Iberian populations are always grouped
together, San Sebastian emerging first, making this population, in agreement
with its geographical location, a plausible intermediate between Iberian and
French populations (iberica and mellifera). Iberian populations are less variable
for microsatellite markers than French ones with raw data, but they appear
to be the most variable when data from French populations are corrected for
introgression and all populations for sample size. This result is expected because
they are assumed to live in the refuge of the western honey bees during the ice
age.

Another clade emerging from the phylogenies is in good agreement with
geographic proximity (Valenciennes/Chimay). This clade was also seen by
mtDNA analysis (see Part I, accompanying article).

4.4. Evolutionary origin of west European honey bees

The key geographical position of Iberian populations, their morphological
and genetic peculiarities and their possible role in the origin of the M lineage
of honey bees, have been discussed in detail elsewhere (Franck et al., 1998) and
will only be briefly summarised here. Ruttner (1988} proposed that the west
European honey bee A. m. mellifera was derived from the North African race
intermissa through iberica, which has a morphology intermediate between these
two races for numerous characters. Later, the detection of the superimposition
of two very divergent mtDNAs designating a cline in the Iberian Peninsula
suggested that this region was not a primary zone of intergradation but a
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secondary contact zone between the very divergent haplotypes A and M (Smith
et al., 1991; Garnery et al., 1995). Results based on microsatellite loci reject
both hypotheses because all the honey bees classified in the M lineage exhibit
very similar genetic profiles, with no trace of intergradation between lineages
A and M, either primary or secondary, in Spain or Portugal (Franck et al.,
1998). The existence of A haplotypes, very diversified and at high frequency in
these countries, was reinterpreted as the consequence of multiple importation
from different origins by humans and of a possible selective advantage (direct
or indirect) of these haplotypes in the Iberian Peninsula.

4.5. Conservation

The genetic variability of west European populations of the honey bee is
particularly low, compared to those belonging to clades C and A, both in
terms of allelic diversity and heterozygosity. This variability is still lower than
actually observed because a variable part, depending on the population, can
be attributed to introgression and the standard in the whole lineage is close to
that observed in the Iberian Peninsula. In addition, most of the populations
are characterised by very similar profiles, the largest differences being observed
between two clades matching the taxonomic limits between races. Their low
variability is not the consequence of modern apiculture, ecological degradation
of the environment or agricultural modifications, but of their recent natural
history, probably in relation to paleoclimate variations. In spite of this relative
homogeneity, populations have developed two races, several ecotypes and can
survive in very different climates (from southern Spain to Sweden), all features
which are indicative of high evolutionary potential for local adaptation despite
their great similarity for neutral genes.

Quantification of genetic ‘pollution’ is assuredly a new result and is impor-
tant to consider. Three factors can contribute to introgression of alien genes:
queen import, queen rearing (from imported queens) and hive moving (ordered
in decreasing importance). The last factor is difficult to detect because it oc-
curs mainly within subspecies, except when professional bee-keepers move hives
headed by imported queens. The importation of queens belonging to races such
as carnica, caucasica and ligustica is rare among amateurs and is mainly due
to professional bee-keepers who appreciate their quietness and several other
supposed or real qualities.

In most localities, introgression remains rather low (below 10 %) and we
have found only two heavily introgressed populations (Fleckenstein and Angers)
corresponding to identified and recent apicultural managements. The situation
in Angers is very asymmetrical for cytoplasmic and nuclear genes but in the
south of the Iberian Peninsula it is still more extreme if our interpretation is
correct. Consequently, even if the study of mtDNA is easier and more reliable,
it is not sufficient in some particular cases to quantify the level of introgression
by alien genes.

The two candidates for a conservatory of the local honey bees are located in
two different clades of the lineage, one in Chimay/Valenciennes, the other in
west Brittany, and both are among the least introgressed and the most divergent
populations. Consequently, conservatories would preserve populations that are



Honey bee microsatellites S73

only poorly introgressed (this was the first motive of the bee-keepers), as well
as a maximum of the genetic diversity and hence of the evolutionary history of
the race.
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