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Hepatic glucokinase is induced by dietary carbohydrates
in rainbow trout, gilthead seabream, and common carp

S. PANSERAT,1 F. MÉDALE,1 C. BLIN,2 J. BRÈQUE,1 C. VACHOT,1
E. PLAGNES-JUAN,1 E. GOMES,3 R. KRISHNAMOORTHY,2 AND S. KAUSHIK1

1Laboratory of Fish Nutrition, Institut National de la Recherche Agronomique-Institut Français de
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Panserat, S., F. Médale, C. Blin, J. Brèque, C. Vachot,
E. Plagnes-Juan, E. Gomes, R. Krishnamoorthy, and S.
Kaushik. Hepatic glucokinase is induced by dietary carbohy-
drates in rainbow trout, gilthead seabream, and common
carp. Am J Physiol Regulatory Integrative Comp Physiol 278:
R1164–R1170, 2000.—Glucokinase (GK) plays a central role
in glucose homeostasis in mammals. The absence of an
inducible GK has been suggested to explain the poor utiliza-
tion of dietary carbohydrates in rainbow trout. In this con-
text, we analyzed GK expression in three fish species (rain-
bow trout, gilthead seabream, and common carp) known to
differ in regard to their dietary carbohydrate tolerance. Fish
were fed for 10 wk with either a diet containing a high level of
digestible starch (.20%) or a diet totally deprived of starch.
Our data demonstrate an induction of GK gene expression
and GK activity by dietary carbohydrates in all three species.
These studies strongly suggest that low dietary carbohydrate
utilization in rainbow trout is not due to the absence of
inducible hepatic GK as previously suggested. Interestingly,
we also observed a significantly lower GK expression in
common carp (a glucose-tolerant fish) than in rainbow trout
and gilthead seabream, which are generally considered as
glucose intolerant. These data suggest that other biochemical
mechanisms are implicated in the inability of rainbow trout
and gilthead seabream to control blood glucose closely.

glucokinase expression; fish nutrition

USE OF CARBOHYDRATES as digestible energy sources in
fish diets bears economic significance in aquaculture
(44): when carbohydrates are not provided in the diet,
more proteins are catabolized for energy and for the
synthesis of glucose, which impairs protein retention
and increases nitrogen release into the environment (8,
34, 44). However, in species such as rainbow trout
(Oncorhynchus mykiss), oral administration of glucose
as well as ingestion of high carbohydrate diet result in
poor dietary glucose utilization associated with a pro-
longed hyperglycemia (2, 5, 25). In contrast, common
carp (Cyprinus carpio) easily use high levels of dietary
carbohydrates and gilthead seabream (Sparus aurata)
have an intermediary phenotype (11–13, 44).

One of the earlier hypotheses to explain the difficulty
of rainbow trout to use high levels of dietary carbohy-
drates is a deficiency of the liver to actively convert the
intracellular glucose to glucose-6-phosphate when con-
centrations of the hexose are raised. Although glucose
phosphorylation catalyzed by low Michaelis constant
(Km)-hexokinase enzymes (HKs; EC 2.7.1.1) (43) is
known to be active in glucose-dependent tissues (heart,
brain) of fish (20), it has been suggested that the
inducible HK IV, commonly known as ‘‘glucokinase’’ or
‘‘high-Km hexokinase’’ (GK) is absent in the liver of
rainbow trout (7, 13, 21, 22). In mammals, GK is
expressed only in liver (under the control of insulin), in
the insulin-secreting (b) and glucagon-secreting (a)
cells of the pancreas, and in some rare neuroendocrine
cells (18, 30). Current biochemical evidence points out
that hepatic and pancreatic b-cell GKs play a major
role in glucose homeostasis in controlling the rate of
hepatic glucose utilization and insulin secretion by
pancreatic b-cells (9, 15, 19, 24, 28, 41). On the basis of
these studies, it has also been suggested that the low
hepatic utilization of dietary glucose in rainbow trout is
due to the absence of inducible GK expression (7, 22, 35,
40). However, a GK enzyme has been partially purified
in Atlantic salmon (Salmo salar) and Atlantic halibut
(Hippoglossus hippoglossus) (38, 39) and has even been
found to be inducible by dietary carbohydrates in the
liver of Atlantic salmon (4, 38). The objective of this
study was to evaluate the nutritional control of GK in
rainbow trout, which are known to be glucose intoler-
ant with persistent hyperglycemia (2, 5, 25).

Recently, we cloned partial and complete GK cDNAs
in livers of rainbow trout, common carp, and gilthead
seabream (3, 26). The fish GK cDNA sequences were
highly similar to mammalian GK cDNAs, suggesting
strongly that these GK sequences correspond to func-
tional GK enzymes. As one of the main systems regulat-
ing GK activity in mammals is alteration in its gene
expression by dietary carbohydrates through an indi-
rect action of insulin (17, 30), our objective was to study
the nutritional regulation of hepatic GK expression.
GK expression was analyzed both at the biochemical
and molecular levels (activity and mRNA) in liver of
rainbow trout fed with or without carbohydrates. Stud-
ies were also undertaken with gilthead seabream and
common carp to test if the species-distinct capacities of
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glucose utilization (11–13, 44) could be linked to vari-
able GK expression capacities. Hepatic GK expression
was measured at 6 h after feeding, known as the
moment of the highest peak of glycemia in these species
(2, 5, 11, and our own observations) and at 24 h after
feeding, considered as a postabsorptive state (2, 5, 11).

MATERIAL AND METHODS

Fish and diets. Rainbow trout were reared at the Institut
National de la Recherche Agronomique experimental fish
farm (Donzacq, France), and common carp and gilthead
seabream were reared at the Instituto Ciencas Biomedicas
Abel Salazar experimental facilities (Vila Real and Olhao,
Portugal). For each species, two experimental diets were
formulated: one contained a high level of digestible carbohy-
drates (starch .20%) supplied by dehulled extruded peas, the
other was free of carbohydrates (starch ,0.2%) (Table 1).
Triplicate groups of juvenile immature fish (body weight
range at the end of the growth period ,150 g) were grown for
10 wk at 18°C during spring (rainbow trout and common
carp) or 25°C during autumn (gilthead seabream) under
natural photoperiods. They were fed the respective diets
twice a day to near satiation. On the day of sampling, fish
were fed once, and then nine fish from each experimental
group were killed 6 and 24 h after the meal. Blood was
sampled from the caudal vein, centrifuged (3,000 g), and
analyzed for plasma glucose concentration using a glucose
analyzer (Beckman II). A part of the liver (approximately
one-quarter) was quickly excised and used for immediate
determination of enzyme activity. The remaining part of the
liver and a piece of white muscle were freeze clamped in
liquid nitrogen and stored at 280°C.

Enzyme assays. A fresh sample of liver (500 mg) was
homogenized (dilution 1:10) in ice-cold buffer [in mM: 80 Tris,
5 EDTA, 2 1,4-dithiothreitol, 1 benzamidine, 1 4-(2-aminoeth-
yl)benzenesulfonyl fluoride, pH 7.6]. The homogenate was
centrifuged for 5 min at 900 g. Enzyme activities were
measured at 37°C by coupling ribulose-5-phosphate forma-
tion from glucose-6-phosphate to the reduction of NADP
using purified glucose-6-phosphate dehydrogenase (Sigma)
and 6-phosphogluconate dehydrogenase (Sigma) as coupling
enzymes (17, 38). One unit of enzyme activity was defined as
the amount that phosphorylates 1 µmol glucose/min. The GK
activity of the crude homogenate was estimated by the
standard method subtracting the rate of NADPH formation
(at 340 nm) in the presence of 1 mM glucose (scoring low-Km
HK activities) from that at 100 mM glucose (scoring total HK
activities) proposed for mammals and Atlantic salmon (4, 17,
38). Analysis of GK activity in muscle and the effects of a
specific GK inhibitor were performed on frozen samples. This
assay for measuring GK activity on frozen samples necessi-
tated correction by measuring glucose dehydrogenase activity
(EC 1.1.1.47) (38) [the commercial enzymes and ATP were
omitted in this assay as described previously (4, 38)]. The
glucose dehydrogenase is a moderately active microsomal
enzyme in fish liver that can introduce significant bias into
GK measurements on frozen tissue (36–38) but not in fresh
samples (personal observation). During the GK activity inhi-
bition test, GK activity was measured as described above in
the presence of 5, 10, and 25 mM N-acetyl-glucosamine
(Sigma), a known competitive inhibitor of GK (1). Galactos-
amine (Sigma) was used as a negative control.

Northern analysis. Total RNA was extracted from each
tissue using the method of Chomczynski and Sacchi (6).
Twenty micrograms of extracted total RNA samples were
electrophoresed in 1% agarose gels containing 5% formalde-
hyde and capillary transferred onto nylon membrane (Hybond-
N1, Amersham). Membranes were hybridized with 32P-
labeled DNA probes labeled by random priming (Stratagene)
recognizing GK for the three fish species (3). (GenBank
accession numbers for the GK-like probes are AF053330 for
gilthead seabream; AF053331 for rainbow trout; AF053332
for common carp.) Membranes were also hybridized with a
carp 16 S ribosomal RNA probe (the 3021- to 3100-bp
fragment. GenBank accession number MICCCG) to check for
equivalent RNA loading and response specificity. After strin-
gent washing, the membranes were exposed to X-ray film,
and the resulting images were quantitated using Visio-Mic II
software (Genomic).

RT-PCR analysis. cDNA was obtained by annealing 2 µg of
total RNA with 1 µg of random primers and incubating with
Avian Myeloblastosis Virus reverse transcriptase (Boeh-
ringer, Roche Molecular Biochemicals) for 1 h at 42°C. GK
cDNA was amplified by PCR using specific primers chosen in
the partial GK cDNA sequences (3): 1) 58-TGATGTTGGT-
GAAGGTGGGG-38 and 58-TTCAGTAGGATGCCCTTGTC-38
for rainbow trout, 2) 58-TGTGATGCTGGTGAAGGTGG-38
and 58-TGATGTTGGTGAAGGTGGGG-38 for gilthead sea-
bream, and 3) 58-AGTGATGCTGGTCAAAGTGG-38 and 58-
GCTTCTTATGTTTCAGATTA-38 for common carp. The PCR
reaction was carried out in a final volume of 25 µl containing
1.5 mM MgCl2 and 4 pmol of each primer, 2 µl cDNA, and 1 U
of Taq polymerase (Boehringer, Roche Molecular Biochemi-
cals). The annealing temperature was 51°C, except for rain-
bow trout (55°C). Number of cycles was 35 composed of 20 s
for hybridization, 20 s for elongation (at 72°C), and 20 s for
denaturation (at 94°C). Negative controls without reverse
transcriptase, mRNA, and cDNAs were performed to avoid
contaminations. The PCR products were characterized by

Table 1. Formulation and chemical composition
of the experimental diets

Diets

Rainbow Trout Common Carp Gilthead Seabream

1 2 1 2 1 2

Ingredients, %

Extruded dehulled
peas 40 0 46 0 40 0

Norvegian herring
meal (CP, 70%) 25 73 21 86 41 87

Wheat bran 7.1 0 0 0 0 0
Soybean meal

(CP, 48%) 0 0 18 0 7 0
CPSP G (CP, 70%) 1.4 15 0 0 0 0
CPSP (CP, 80%) 12.6 0 0 50 0 5
Fish oil 10.9 9 9 3 6 2
Mineral mix 1 1 3 3 3 3
Vitamin mix 1 1 1 1 1 1
Binder 1 1 2 2 2 2

Analytic composition

DM, % 85.5 92.7 93.6 93.0 91.6 91.3
CP, %DM 39.5 54.8 33.6 63.8 45.5 67.7
Crude lipid, %DM 16.6 18.3 12.2 13.0 12.2 16.2
Digestible starch,

%DM 20.4 ,0.2 22.1 ,0.2 21.1 ,0.2
Gross energy,

kJ/g DM 22.1 23.1 20.8 21.4 21.1 21.8

1 And 2, with or without carbohydrate, respectively; CP, crude
protein; DM, dry matter; CPSP, fish soluble concentrate protein;
CPSP G; fish soluble concentrate protein with high fat level from
Sopropèche. Dehulled peas (Aquatex) from Stotexpo. Mineral mix
and vitamin mix per National Research Council (23).
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hybridization with the labeled GK probes and by sequencing
according to Sanger et al. (32).

Data analysis. Statistical analysis between two series of
data (means 6 SD) was determined using an unpaired
two-tailed computerized Student’s t-test (Statview software).
Differences were considered significant at the level of 5%.

RESULTS

In each species, growth rates of fish fed with or
without carbohydrates were comparable: daily growth
coefficients [(final body weight1⁄3 2 initial body wt1⁄3)/(n
days) ·100] were 3.31 6 0.09 (means 6 SD) and 3.36 6
0.06 for rainbow trout, 2.36 6 0.25 and 2.45 6 0.30 for
common carp, and 1.83 6 0.09 and 1.95 6 0.08 for
gilthead seabream, respectively (n 5 9 fish/group).
After 10 wk of feeding, no significant effects of dietary
carbohydrates were seen in terms of growth perfor-
mance or feed utilization in any of the species. As all
fish were fed nutritionally adequate diets and liver
samplings made in fish well adapted to the respective
diets, comparative analysis between fish groups con-
cerning the effect of dietary carbohydrates on the
regulation of HK enzymes expression is possible.

In the present study, enzyme activity measurements
were made at a common temperature of 37°C, allowing
comparisons between species in terms of potential
activities. GK activities measured in livers of fish fed
with or without carbohydrates at 6 and 24 h after
feeding are reported in Table 2. At 6 h after a meal, GK
activities were significantly higher in livers of all the
three species of fish fed a high-carbohydrate diet than
in those fed without carbohydrates (Table 2): 11-fold in
rainbow trout, 30-fold in gilthead seabream, and 5-fold
in common carp. GK activity in common carp was
significantly lower than in gilthead seabream and
rainbow trout (Student’s t-test, P , 0.001). But com-

pared with GK activity measured 3 h after a meal, our
data show a definite induction of carp GK activity at 6 h
after feeding (Table 2). At 24 h after a meal, there was
no detectable GK activity in fish livers irrespective of
diet composition, except in rainbow trout fed the high-
carbohydrate diet in which the GK activity was slightly
higher 24 h after feeding than 6 h after feeding (Table
2). As observed in Table 2, there were significant
differences in glycemia of rainbow trout fed with carbo-
hydrates (10.5 mM) compared with those fed without
carbohydrates (4.3 mM) at 6 h after feeding. In common
carp, no significant difference was observed, plasma
glucose being low in the range of 2.5–3.5 mM. In
contrast, at 6 h after feeding, the glycemia levels in
gilthead seabream were high (8.5 mM) in both groups
fed with and without dietary carbohydrates. Therefore,
we also investigated the relationship between GK
activity and glycemia (Table 2): 1) in all fish species fed
with carbohydrates as well as trout and carp fed
without carbohydrates, a correlation coefficient of 0.67
between GK expression and glycemia was found; 2)
strangely enough, in gilthead seabream fed without
carbohydrates, there were still high glucose levels with
absence of GK expression (Table 2).

Specific inhibition and tissue specificity of GK activ-
ity were also analyzed in the three fish species: 1)
inhibition of hepatic GK activity was observed in frozen
tissue with low (5 mM) or high (25 mM) concentrations
of N-acetyl glucosamine in gilthead seabream and
rainbow trout, respectively, but not in common carp
(Table 3); 2) GK activity was almost undetectable in the
muscles of fish fed with carbohydrates (Table 4).

Total low-Km HK activities in livers were not depen-
dent on either dietary carbohydrate levels or on the
nutritional state (partially reflected by the time course

Table 2. Hepatic GK activities in three fish species fed diets with or without carbohydrates

Species Diets

GK Activities (Glycemia mM), Hours after Meal

3 6 24

Rainbow trout 1Carbohydrates ND 36.7612.5 (10.562.5) 55.2613.1d (7.562.1)d

2Carbohydrate ND 3.361.6c (4.360.6)b 2.061.7c (5.061.1)
Gilthead seabream 1Carbohydrates ND 29.9612.0 (8.561.9) 4.061.9f (5.461.4)d

2Carbohydrate ND 1.060.7c (8.462.9) 0.760.3 (9.364.5)a

Common carp 1Carbohydrates 1.560.9e (ND) 9.765.8 (3.561.6) 1.861.4e (2.560.4)
2Carbohydrate 1.160.8 (ND) 1.861.2c (2.861.1) 1.660.5 (2.861.7)

Data are means of 9 observations (9 fishes) 6 SD in mU/mg protein. Data are measured on fresh tissues. GK, glucokinase. aP , 0.05,
bP , 0.01, cP , 0.001, compared with values of fish fed with carbohydrates; dP , 0.05, eP , 0.01, fP , 0.001, compared with values at 6 h. ND,
not determined.

Table 3. Inhibition of hepatic GK activities by N-acetyl-glucosamine in fish fed diets containing carbohydrates

GK Activities

Control

N-acetyl-glucosamine (mM) Galactosamine (mM)

5 10 25 5 10 25

Rainbow trout 22617 1569 1368 1067* 22615 22617 23618
Gilthead seabream 1665 561† 361† 161‡ 1568 1867 1768
Common carp 563 764 563 463 562 563 563

Data are means of 5 observations (5 fishes) 6 SD in mU/mg protein measured 6 h after feeding. Data are measured on frozen samples.
*P , 0.05, †P , 0.01, ‡P , 0.001 compared with control values.
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after feeding) in common carp (Table 5). In gilthead
seabream, the HK activities are significantly lower 24 h
after feeding than 6 h after feeding, and in rainbow
trout, there is lower HK activity in fish fed without
carbohydrates than in those fed with carbohydrates
even 6 h after feeding. Overall, the differences between
mean HK activities measured in distinct nutritional
status are low compared with those between GK activi-
ties.

Data on GK gene expression as affected by nutri-
tional status are reported in Figs. 1 and 2. There was no
detectable GK gene expression in livers of fish fed
without carbohydrates at 6 h after a meal (Fig. 1A).
Carbohydrate feeding in rainbow trout and gilthead
seabream induced a high expression of GK gene: 2.2-
and 2.7-kb mRNAs were detected in gilthead seabream
and rainbow trout, respectively (Fig. 1A). GK gene
expression was undetectable by Northern blotting in
common carp (Fig. 1A). As Northern blotting was not
sufficiently sensitive for the common carp, the expres-
sion of GK mRNA was confirmed by RT-PCR (Fig. 1B),
but to bring out differences in GK mRNA levels be-
tween carp fed with or without carbohydrates would
necessitate a quantitative RT-PCR analysis. The GK
gene expression was also analyzed at 24 h after feeding
(in a postabsorptive state) (Fig. 2). No hepatic GK gene
expression was found by Northern blotting (data not
shown) in all species fed without carbohydrates. In
addition, time course of GK gene expression differed
among fish fed with carbohydrates (Fig. 2). In rainbow
trout, GK gene expression was persistent 24 h after a
meal but threefold lower (analysis by densitometry)
than that observed 6 h after feeding (Student’s t-test,

P , 0.01). In contrast, GK gene expression in gilthead
seabream was undetectable at 24 h after feeding.

DISCUSSION

GK plays a major role in glucose homeostasis in
mammals, and its deficiency has been linked to a form
of diabetes in young men (41). Poor utilization of
dietary carbohydrate in fish such as rainbow trout has
been attributed to the absence of the GK enzyme (44).
Our objective was to verify this hypothesis by analyzing
the nutritional regulation of HK enzymes in hepatic
tissue. Because different fish species are known to have
different capacities of dietary carbohydrate utilization,
comparisons were made with common carp and gil-
thead seabream.

Our data show that low-Km HK activity in fish livers
is not highly induced by food supply or dietary compo-
nents, confirming previous reports of either slightly
decreased HK activities (10) or absence of change (7, 35,
36) induced by nutritional factors. HK activity data
(Table 5) are comparable to those obtained in Atlantic
salmon (4 mU/mg protein) (4, 38). The constant activi-
ties of glucose phosphorylation at low glucose concentra-
tion are probably the results of HK-I- and HK-III-like
enzyme action as in mammals (43). In fact, we have
partially cloned HK-I-like gene in hepatic tissues of
common carp and gilthead seabream (3), confirming
the existence of this type of HK enzymes in the two
species.

The inhibition of GK activities by a specific inhibitor,
the absence of GK expression in the muscles, and the
induction of GK expression by dietary carbohydrates
confirm the existence of a GK enzyme in rainbow trout
and gilthead seabream. The GK expression in common
carp is more complex: we observed an absence of
inhibition of GK activity by N-acetyl-glucosamine (on
frozen samples) and a low GK activity even in fish fed
with carbohydrates (on fresh samples). The absence of
apparent GK inhibition by specific inhibitor in carp
may be due to a low GK activity associated with high
level of HK and glucose dehydrogenase activities in
frozen tissues (36–38), which are known to be insensi-
tive to N-acetyl glucosamine. Concerning the low abso-
lute values of GK activity measured in fresh livers of
carp, the daily patterns of changes in enzyme activities
allow us to observe a low induction of GK activity.
Moreover, the recent cloning of the full-length GK
cDNA in common carp (26) and the low GK gene
expression observed in this study by RT-PCR prove
irrefutably the existence of a mammalian-type GK gene
in this species. Thus, overall, these data suggest strongly
that the GK-like activity measured in ‘‘fresh’’ liver of
common carp fed with carbohydrates is really a GK
activity.

The unequivocal induction of GK activities in gil-
thead seabream and rainbow trout fed with carbohy-
drates is similar to data in mammals [for example, GK
activity is 21.5 6 2.2 mU/mg in liver extracts from fed
mice (9)]. The levels of induction of GK and HK
activities found in Atlantic salmon [,7–10 and 5
mU/mg for GK and HK activities, respectively (4, 38)]

Table 4. Comparison of GK activities in two
insulin-sensitive tissues of fish fed with carbohydrates

GK Activities

Liver Muscle

Rainbow trout 22.5617.5 0.260.1*
Gilthead seabream 16.065.5 0.160.1*
Common carp 5.062.5 0.860.6*

Data are means of 3 observations (3 fishes) 6 SD in mU/mg protein
measured 6 h after feeding. Data are measured on frozen samples.
*P , 0.001 compared with values in livers.

Table 5. Total low Km HK activities in liver of three fish
species fed diets with or without carbohydrates

Species Diets

Hours after Meal

3 6 24

Rainbow trout 1Carbohydrates ND 2.161.6 4.062.8
2Carbohydrate ND 0.460.2* 3.462.7†

Gilthead
seabream 1Carbohydrates ND 2.360.9 1.360.7†

2Carbohydrate ND 2.060.5 1.160.8†
Common carp 1Carbohydrates 5.161.4 4.861.2 5.361.4

2Carbohydrate 5.061.5 7.264.6 4.361.4

Data are means of 9 observations (9 fishes) 6 SD in mU/mg protein.
Data are measured on fresh tissue. Km, Michaelis constant; HK,
hexokinase. *P , 0.05 compared with values of fish fed with
carbohydrates; †P , 0.05 compared with values at 6 h after feeding.
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are similar to our results in carp. However, because no
information on the interval after the meal is provided
in the study by Tranulis et al. (38), we cannot make a
precise comparison between the two studies. Induction
of GK activities (and probably increasing of hepatic
glucose storage) was suggested by significantly higher
levels of hepatic glycogen in rainbow trout fed with
carbohydrates than in those fed without carbohydrates
(8.2 6 1.0 and 1.9 6 0.5%, respectively, means 6 SD,
n 5 9 fish per group) (P , 0.001) (these results are from
the same study; F. Médale, unpublished observations).
In carp, the low GK activity is also associated with low
level of glycogen compared with rainbow trout (3.6 6
0.9% in carp fed with carbohydrates). Finally, the

current evidence of inducible GK enzyme in fish is
physiologically important, because, in mammals, it is
generally assumed that GK expression is an absolute
prerequisite for the effect of glucose (via a glucose
metabolite) on glucose-regulated hepatic genes coding
for glycolytic-lipogenic-gluconeogenic enzymes (14,
31, 33).

Another outcome of this study is the demonstration
of a molecular regulation of GK gene expression, be-
cause the molecular regulation of GK synthesis is the
main system regulating GK activity in mammals (16,
17, 30). As mentioned earlier, our own studies have
shown the existence of GK genes in teleosts (3, 26). We
found here that the rise of GK activity occurs concomi-

Fig. 1. Glucokinase (GK) gene expression in 3 species of fish fed with (1) or without (2) carbohydrates 6 h after
feeding. A: GK gene expression analysis by Northern blotting (only 3 fish per group are shown). 16S rRNA served as
internal control of sample loading. Numbers correspond to individuals. B: GK gene expression analysis by RT-PCR.
PCR products were visualized by ethidium bromide or hybridized with 32P-labeled GK cDNA probes. M, molecular
DNA weight marker V (Boehringer); C, negative control (RT-PCR without cDNA).

Fig. 2. Time course of GK gene expression in 3 fish species fed diets with carbohydrates. Analysis by Northern
blotting of fish livers at 6 and 24 h after feeding (only 3 fish per group are shown). Numbers correspond to
individuals. When GK gene expression was found in 2 groups, an analysis by densitometry (Visio-Mic II software)
was made.
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tantly with the accumulation of specific GK mRNA in
rainbow trout and gilthead seabream, suggesting that
the appearance of enzyme activity reflects the turn-
ing-on of GK gene transcription, as in mammals (16). To
our knowledge, this is the first ever evidence in fish of a
molecular regulation of a glycolytic enzyme related to
an adaptation to dietary carbohydrates. The long-term
adaptation (several weeks of feeding) is probably not
necessary for induction of GK expression, as there is a
time-dependent decrease of hepatic GK mRNA levels in
fish fed dietary carbohydrates 24 h after a meal com-
pared with 6 h after a meal (Fig. 2). So, a single meal
may be sufficient to induce change in GK expression as
observed in mammals (17, 30).

The question remains as to the influence of nutrient
or hormonal factors implied in the induction of GK
expression. Our data showed that there is high GK
expression associated with dietary carbohydrate in-
take, one consequence of which is the relatively high
levels of glycemia (except for the common carp) (2, 5,
25). However, the relationship between glycemia and
GK expression is somewhat complex. Although GK
expression is high when there is a high level of glycemia
in all fish species, the reverse is not true, at least in
gilthead seabream. Indeed, there is persistent hypergly-
cemia in gilthead seabream fed without carbohydrates
[the values of glycemia in fasted gilthead seabream is
,4 mM (F. Médale, personal communication)] associ-
ated with the absence of GK expression. The hypergly-
cemia in gilthead seabream fed without carbohydrates
strongly suggests an intensive gluconeogenesis in sea-
bream deprived of starch for a long time. Overall, it
follows that dietary carbohydrate intake and not glyce-
mia per se is probably implied in GK induction in all the
fish species. Consequently, levels of circulating hor-
mones such as insulin or glucagon, which are both
highly dependent on dietary composition, are presum-
ably major factors involved in the induction of GK gene
expression, as has been observed in mammals (17, 30).
In vitro studies with hepatocytes might be of interest to
distinguish direct versus indirect involvement of nutri-
ent (glucose) and hormone (insulin, glucagon) on GK
gene expression.

The efficiency of utilization of dietary carbohydrates
is in the order common carp . gilthead seabream .
rainbow trout (11–13, 44). The reverse order for post-
prandial glycemia (trout . bream . carp), as shown
elsewhere (2, 5, 25, 44), is also seen with regard to GK
expression. The more glucose-tolerant fish (common
carp) had the lowest levels of induction of GK expres-
sion, whereas the theoretically less glucose-tolerant
fish, such as rainbow trout, had the highest GK expres-
sion, even 24 h after feeding. Thus hepatic GK is
probably neither the limiting step explaining the low
dietary glucose utilization nor the major factor main-
taining glycemia at low values in rainbow trout. In
common carp, the GK expression is low, probably linked
to an inherent strict control of glycemia as generally
observed (44). Poor dietary carbohydrate utilization in
rainbow trout undoubtedly involves other protein(s)
either in liver or in other tissues than GK alone. It is

possible that different fish species have different mecha-
nisms to regulate blood glucose. Time course of action of
insulin or other glucostatic systems can also be differ-
ent between different species. Although activities of HK
were higher in carp than in the other two species, the
absence of any significant change in the activity of HK
either due to the dietary carbohydrate level or at any
postprandial stage (Table 5) would also suggest that in
this species the role of HK(s) might be different than in
trout and seabream. Indeed, white muscle in rainbow
trout, despite being quantitatively the major tissue, is
known to poorly utilize dietary glucose as an energy
source (44). Although HK activity in trout muscle has
been found to exhibit the lowest activity of all the
glycolytic enzymes (20), GLUT-4 glucose transporter
was recently reported to be absent in muscle of tilapia
(45), and there is also generally a low number of insulin
receptors in the muscle of different teleosts (27). Glo-
bally, the exact contribution of liver in comparison with
pancreatic b-cells and peripheral insulin-sensitive tis-
sues (skeletal muscle and adipose tissue) to the ob-
served hyperglycemia in rainbow trout requires further
studies.

Perspectives

The demonstration of inducible hepatic GK enzyme
in fish is a major step for further insight on the
physiological regulation of glucose metabolism in tele-
osts. Advances in the field of regulatory mechanisms of
glycolysis-gluconeogenesis pathways by glucose in glu-
cose-intolerant animals such as fish make this group an
interesting model to study type II diabetes mellitus in
humans. Further understanding of the nutritional regu-
lation of glucose metabolism in tissues other than liver
is again an important area of research. In addition,
these studies bear strong practical implications, espe-
cially in the context of the replacement of fishmeals by
plant protein sources rich in carbohydrates.
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