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

The proportions of affected sibs sharing 2, 1 or 0 identical by descent parental marker alleles have

been shown to conform to the ‘triangle constraints ’ (Suarez, 1978; Holmans, 1993). It has also been

shown (Dudoit & Speed, 1999) that the constraints are verified provided certain assumptions hold.

In this study we explore a realistic situation in which the constraints fail due to the presence of a

factor in which the sibs differ, a factor on which penetrance depends. This factor may be a

characteristic of the trait (severe vs. mild form), or the presence}absence of an associated trait or an

environmental factor. We show that under such situations, using the triangle constraints may lead

to important loss of power to detect linkage by the MLS test. We propose here an alternative

approach in order to detect both linkage and heterogeneity.



Sib-pair methods are standard tools for linkage studies in complex genetic diseases. The principle

of these methods is to assess the sharing of marker alleles identical by descent (IBD) between affected

sib-pairs and to conclude in favour of linkage if the observed IBD distribution differs from that

expected under the hypothesis of independence of segregation of the disease and the markers. This

comparison can be made with a model-free method of linkage analysis, the MLS test (Risch, 1990).

Since the IBD value between sibs may be ambiguous in some situations, as in the case of homozygous

or unknown parental genotypes, a maximum likelihood method is used to estimate the proportions

of sib-pairs IBD¯ 2, 1 or 0 (respectively z2, z1 and z0) given the genotype observations. Absence of

linkage is then tested by the maximum likelihood ratio statistic log (L(Z)}L(Z
!
)), with Z the

estimated vector of proportions (z2, z1, z0) and Z
!

the vector expected under the hypothesis of

genetic independence (Z
!
¯ 0±25, 0±5, 0±25). It has been shown that under the assumptions of

Hardy–Weinberg equilibrium at the susceptibility locus, the proportions z2, z1 and z0 among

affected sib-pairs are constrained by: 2z0% z1% 0±5 (Suarez, 1978; Holmans, 1993). Dudoit & Speed

(1999) then showed that in the case of monotonicity of penetrances, triangle constraints were verified

without the assumption of random mating of the Hardy–Weinberg equilibrium hypothesis, while

these assumptions remained necessary in the case of, for example, overdominance. The validity of

the triangle constraints has also been verified for two-locus models under the assumption of linkage

equilibrium between the two disease loci (Cordell et al. 1995). Holmans (1993) proposed to take

these‘triangle constraints ’ into account in maximizing the MLS and showed that it improved the

test’s power to detect linkage.
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Then, assuming Hardy–Weinberg equilibrium at the disease locus, the triangle constraints are

valid as long as the phenotypes of the two sibs in all pairs are determined by the same genetic model

(i.e. as long as the probability for a given genotype to be affected is the same for both). In this study,

we present many realistic situations where the triangle constraints do not apply. These situations can

occur when the two sibs differ for a factor that modifies the penetrance function. This factor may be

a specificity of the trait itself, e.g. severe vs. mild form, or the presence}absence of an associated trait

or an environmental factor. For such situations, we propose a new strategy that uses departure from

the triangle constraints to search for both linkage and heterogeneity.

Departure from the triangle constraints

Models

Let us consider a phenotype A and a factor B. Let there be a bi-allelic locus H (H,h) at which

Hardy–Weinberg equilibrium is assumed. This gene is involved in trait A, but with an effect that

differs according to whether or not factor B is present. The parameters of this model are q, the

frequency of the allele h, and f
AB+

and f
AB−

, the probabilities of the phenotype A given the genotype

and the presence or not of factor B, such that:

hh hH HH

f
AB+

¯ (f1, f2, f3)

f
AB−

¯ (f1«, f2«, f3«).

IBD distribution calculated under genetic models

Consider a sample of sib-pairs all of whom have trait A: among them, a proportion β are discordant

for B. Since it will be assumed later that B is always present in at least one sib of the pair, the

proportion of concordant pairs for B is simply (1®β).

(1) When all pairs are discordant for B (β¯ 100%). The IBD distribution expected at a highly

polymorphic (heterozygosity equal to 100%) marker M strictly linked to the locus H (negligible

recombination fraction), among sib pairs concordant for A but discordant for B, has been calculated

under different models. We calculated the IBD distribution, first under simple models with q¯ 0±1,

f3¯ f3«¯ 0, f1¯ f1«¯ 0±1 and penetrance ratio values λ (¯ f2}f1) and λ« (¯ f2«}f1«) ranging from

0 to 5.

Table 1 reports the IBD distribution for these models. Departure from the triangle constraints

occurs for the models studied here, only when the order of the penetrance vectors f
AB+

and f
AB−

is

inverted (i.e. λ" 1 and λ«! 1 or vice versa). The larger the difference between λ and λ«, the greater

the departure from the triangle constraints. For example, consider the model with λ¯ 0 and λ«¯
5: the expected vector (z2, z1, z0) is (0±09, 0±83, 0±08) and thus deviates substantially from the

constraint z1% 0±5. When λ¯ 0 and λ«¯ 1 (corresponding respectively, to a recessive and a

dominant model), the vector (z2,z1,z0) is equal to (0±31, 0±63, 0±06). This departure from the triangle

constraint z1% 0±5, although smaller than in the preceding example, is nonetheless substantial.

This type of model (where λ" 1 and λ«! 1 or vice versa) may correspond, for example, to a disease

whose expression is severe in subjects homozygous for the ‘disease’ allele and mild in those who are

heterozygous. Another example is the case of two traits A and B, the association of which is assumed

to be due only to a locus H involved in both diseases. If trait A is determined at locus H by a

dominant genetic model with a penetrance vector equal to f
A

¯ (0±9, 0±9, 0±10) and trait B by a

recessive model with f
B

¯ (0±9, 0±01, 0±01), the resulting penetrance vector for the phenotype of A
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Table 1. Distribution IBD (vector Z) expected among sib-pairs concordant for trait A but discordant for factor B, for various values of λ and λ«

λ«¯ 5 0.45 0.47 0.08
λ«¯ 4 0.45 0.47 0.08 0.45 0.47 0.08
λ«¯ 3 0.45 0.47 0.08 0.45 0.47 0.08 0.45 0.47 0.08
λ«¯ 2 0.44 0.48 0.08 0.44 0.48 0.08 0.44 0.47 0.08 0.44 0.47 0.08
λ«¯ 1 0.43 0.49 0.08 0.43 0.49 0.08 0.43 0.48 0.08 0.43 0.48 0.08 0.43 0.48 0.08
λ«¯ 0.5 0.42 0.5 0.08 0.42 0.5 0.08 0.42 0.5 0.08 0.42 0.5 0.08 0.42 0.5 0.08 0.42 0.5 0.08
λ«¯ 0.1 0.59 0.37 0.04 0.43 0.5 0.06 0.38 0.54 0.07 0.35 0.57 0.08 0.33 0.58 0.08 0.33 0.59 0.08 0.32 0.59 0.08
λ«¯ 0 0.83 0.17 0.0** 0.71 0.27 0.02 0.5 0.45 0.05 0.31 0.63 0.06 0.19 0.74 0.07 0.14 0.78 0.08 0.11 0.81 0.08 0.09 0.83 0.08

λ¯ 0 λ¯ 0.1 λ¯ 0.5 λ¯ 1 λ¯ 2 λ¯ 3 λ¯ 4 λ¯ 5

λ, λ« are the respective penetrance ratios (f2}f1) and (f2«}f1«) of the penetrance vectors f
AB+

¯ (f1, f2, f3) and f
AB−

¯ (f1«, f2«, f3« )
IBD distributions have been calculated with q¯ 0±1, f1¯ f1‘¯ 0±1 and f3¯ f3«¯ 0
Vector Z¯ z2 z1 z0 defined in the text.
Results are symmetrical according to λ and λ«.
Z vectors written in bold type correspond to the case where z

"
" 0±5.
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Table 2. Expected IBD distribution among sib-pairs discordant for factor B under different genetic

models

Models Z vector (z2, z1, z0) Area

M1 q¯ 0±3, f
A
¯ (0±9, 0±9, 0±1) f

B
¯ (0±9, 0±01, 0±01) 0±07, 0±70, 0±23 1

(f
AB+

)¯ (0±81, 0±009, 0±001)
(f

AB−
)¯ (0±09, 0±891, 0±099)

M2 q¯ 0±5, f
A
¯ (1, 1, 0±01), f

B
¯ (0±9, 0±009, 0±009) 0±07, 0±63, 0±30 2

(f
AB+

)¯ (0±9, 0±009, 0±00009)
(f

AB−
)¯ (0±1, 0±991, 0±00991)

M3 q¯ 0±01, f
A
¯ (1, 0±01, 0±01), f

B
¯ (0±9, 0±9, 0±009) 0±57, 0±24, 0±19 3

(f
AB+

)¯ (0±9, 0±009, 0±00009)
(f

AB−
)¯ (0±1, 0±001, 0±00991)

M4 q¯ 0±1, f
A
¯ (1, 0±1, 0±1), f

B
¯ (0±9, 0±9, 0±009) 0±21, 0±40, 0±39 4

(f
AB+

)¯ (0±9, 0±09, 0±0009)
(f

AB−
)¯ (0±1, 0±01, 0±0991)

M5 q¯ 0±5, f
A
¯ (0±5, 0±3, 0±1), f

B
¯ (0±9, 0, 0) 0±09, 0±60, 0±32 5

(f
AB+

)¯ (0±45, 0,0)
(f

AB−
)¯ (0±05, 0±3, 0±1)

Fig. 1. Division of the (Z0, Z1) plane into areas (1–5) when there is departure from the triangle
constraints.

and B together (f
AB+

) is then equal to (0±81, 0±009, 0±001), and the vector for the phenotype of A

without B (f
AB−

) is (0±09, 0±891, 0±099). When B is present, the homozygous genotype confers the

highest risk; conversely, when B is absent, the heterozygous genotype is at the greatest risk.

All the models we have so far considered lead to departure from the constraint z1% 0±5. There are

also models that lead to departure from the constraints 2z0% z1, and z0% 0±25, which is a

consequent constraint upon the two preceding ones. Table 2 includes some simple associated-disease

models M
i
(Table 2) in which the IBD distribution falls outside the triangle into areas A

i
, depending

on which constraint(s) is (are) not respected (Fig. 1). In every model leading to a departure from the

triangle constraints we observe an inversion in the penetrance rank order between the two vectors

f
AB+

and f
AB−

. However, no simple rules appear to predict which constraint will be violated.

Note, however, that when all penetrances are equal in one of the two vectors f
AB+

or f
AB−

, i.e. when

the locus H has no effect on the corresponding phenotype, the IBD distribution expected in
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Table 3. IBD distribution expected for various proportions β of discordant pairs under the generating

model of two associated diseases A and B ( f
AB+

¯ (0±81,0±009,0±001), f
AB−

¯ (0±09, 0±891, 0±099) and

q¯ 0±1)

β z2 z1 z0

0±0 0±79 0±19 0±01
0±1 0±73 0±25 0±02
0±2 0±66 0±31 0±04
0±3 0±59 0±36 0±05
0±4 0±52 0±42 0±06
0±5 0±45 0±48 0±07
0±6 0±39 0±53 0±08
0±7 0±32 0±59 0±09
0±8 0±25 0±64 0±11
0±9 0±18 0±70 0±12
1. 0±08 0±79 0±13

Lines in bold type correspond to IBD distributions with some departure from triangle constraints.

discordant pairs is (0±25, 0±5, 0±25). Consequently, departure from the constraints implies that the

genetic factor detected is always involved in A but that its effect differs according to whether B is

present or not.

(2) For various proportions β between 0 and 1. Most often, any group of sib-pairs selected for disease

A will contain a mixture of pairs concordant and discordant for B. In other words, the proportion

β of discordant pairs may vary between 0 and 1, depending on the frequency of B and on the strength

of association between A and B. Some types of ascertainment may increase the proportion of

discordant pairs. In particular, some selection modes imply B for the proband, the first sib selected,

but have no particular implication about B and the second sib. One example of this relatively

frequent situation is hospital-based ascertainment: the proband will probably have a severe form of

the disease, while the sib may not.

Let us now consider this type of situation, where B is present in the first sib of all sib-pairs, but

is present in the second sib only in a proportion (1®β) of pairs. We calculated the IBD distribution

expected at a marker M strictly linked to the locus H under the model of two associated diseases (A

and B) with f
A

¯ (0±9, 0±9, 0±1) and f
B

¯ (0±9, 0±01, 0±01) corresponding to the penetrance vectors f
AB+

¯ (0±81, 0±009, 0±001) and f
AB−

¯ (0±09, 0±891, 0±099), with q¯ 0±1, and for different values of β

ranging between 0 and 1. The IBD distributions calculated here are the mixture of the IBD

distributions among pairs concordant for B (among which the triangle constraints are expected to

be verified) and among pairs discordant for B.

The IBD distributions, reported in Table 3, show that values of β greater than 0±5 lead to

departure from the triangle constraints. This proportion of discordant pairs is not unrealistic since

the expected proportion β of discordant pairs is 0±71 under the model and mode of ascertainment

described above. For this value of β, the expected IBD distribution is (0±32, 0±59, 0±09), and the

departure from the triangle constraints is not negligible.

Using the MLS to detect linkage in the presence of heterogeneity, with and without the triangle

constraints

It has been shown that in absence of heterogeneity, introduction of the triangle constraints in the

maximization of the MLS increased the power to detect linkage (Holmans, 1993). It would thus be

interesting to examine the influence of the triangle constraints on the power of the MLS test to detect
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Table 4. Mean number of sib-pairs required to detect linkage with type 1 error of 1^ and 50% power

with MLS
c
versus MLS

u
(N

MLSc
}N

MLSu
), estimated respectively, with and without the constraints

Models*:
M1 M2 M3 M4 M5

β¯ 1 ¢}54 ¢}62 24}29 ¢}145 ¢}80
β¯ 0±9 ¢}103 ¢}97 20}24 ¢}242 ¢}131
β¯ 0±8 ¢}195 ¢}189 16}20 2283/323 ¢}278
β¯ 0±7 2667/313 ¢}444 14}17 430/275 ¢}667
β¯ 0±6 374/303 ¢}1132 12}15 180}201 ¢}2727
β¯ 0±5 169}208 3053/1395 10}13 103}130 3200/2804
β¯ 0±4 89}115 510}612 u}11 67}87 430}552
β¯ 0±3 51}60 205}265 u}10 46}60 184}238
β¯ 0±2 34}44 119}154 u}u 32}41 108}140
β¯ 0±1 24}31 72}93 u}u 23}30 67}87
β¯ 0 19}24 48}62 u}u 17}21 48}62

*, defined in Table 2.
β, proportion of discordant pairs.
¢, " 10000 sib-pairs.
u, ! 10 sib-pairs.
Results in bold type correspond to the case where the mean number of sib-pairs required by the MLS

c
is greater

than the one required by the MLS
u
.

linkage in the presence of heterogeneity. We considered the 5 different genetic models in Table 2,

which, in discordant sib-pairs, result in IBD distribution in each of the 5 areas outside the triangle

(Fig. 1). We also consider various values for β, the proportion of discordant pairs. We calculated the

sample sizes required to detect linkage with each statistic, MLS
c

(estimated with constraints) and

MLS
u

(estimated without constraints), using the exact IBD distributions expected under given

models in a sample of infinite size. These exact distributions are calculated assuming a complete

polymorphic marker and known parental genotypes at this marker

Let Z
u
¯ (Z0

u
, Z1

u
, Z2

u
) be the IBD distribution expected under the generating model, Z

c
¯ (Z0

c
,

Z1
c
, Z2

c
) be the IBD distribution expected under the same model but estimated with the triangle

constraints, and Z
!

be the distribution under the hypothesis of no linkage (0±25, 0±5, 0±25). For a

sample size N, the expected MLS
c

score can be deduced as follows:

MLS
c
¯ log (L(Z

c
)}L(Z

!
))¯ log (Z2

c
N.Z#u.Z1

c
N.Z"u.Z0

c
N.Z!u}0±25N.Z#u.0±5N.Z"u.0±25N.Z!u)

¯N.[Z2
u
.log(Z2

c
}0±25)­Z1

u
.log(Z1

c
}0±5)­Z0

u
.log (Z0

c
}0±25)].

Similarly the MLS
u

score can be calculated by replacing Z
c

with Z
u.

The sample sizes N for which the MLS
c

and MLS
u

values exceed a given threshold may be

calculated. The power corresponding to these sizes is roughly 50%. For a type 1 error of 1°}
oo

and

a highly polymorphic marker, the threshold is 2±32 for MLS
c

(given by Holmans, 1993) and 3 for

MLS
u

(this threshold can be determined easily given that 2ln(10); MLS
u

follows a χ# distribution

asymptotically with 2 ..). Table 4 reports sample sizes required for a type 1 error of 1°}
oo

and 50%

power, for the five models and various values of β. For models M2 and M5, when the proportion of

discordant pairs is 0±5 or more, the MLS
u
requires much smaller sample sizes than the MLS

c
test. The

same is true for models M1 and M4 when the β values equal or exceed 0±6 and 0±7, respectively.

Moreover, for some proportions β in these models (exceeding a value that ranges from 0±5 to 0±8),

linkage can never be detected with the MLS
c
test : when the vector Z is estimated within the triangle

constraints, it tends to be very close to the null hypothesis vector (0±25, 0±5, 0±25), so that a sample
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of an infinite number of pairs is required for the MLS
c
. In contrast, very reasonable sample sizes will

be sufficient to detect linkage with the MLS
u

test. On the other hand, when β is less than 0±5, the

MLS
u

test becomes less powerful than the MLS
c
test for the models considered here. In the absence

of heterogeneity (i.e. β¯ 0), however, the differences between the sample sizes required for each

method do not exceed 15 pairs.

For model M3, the MLS
c
test can detect linkage with small sample sizes even when the proportion

of discordant pairs is 100%. However, the sizes required by the MLS
u

are only slightly larger

(differences of size no more than 5 pairs).

It appears that for some models, the gain in power obtained by using the triangle constraints in

the absence of heterogeneity is much smaller than the loss of power that occurs when these

constraints are used in the presence of heterogeneity.

Strategy of detection of linkage accounting for heterogeneity

When heterogeneity is suspected, it may thus be appropriate to use the MLS
u

rather than the

MLS
c
, since the former allows linkage to be detected in either the presence or absence of

heterogeneity.

We propose the following strategy, which includes an initial search for linkage with the MLS
u
test.

The MLS
u

score can be transformed by 2.Ln(10).MLS
u
¯ 2Ln [L(Z

u
)}L(Z

!
)], which follows a χ#

distribution asymptotically with 2 .. If linkage is detected by this first test, we propose a second

step to search for heterogeneity by testing the triangle constraints. The triangle test statistic (TTS)

compares the vector Z estimated without constraints (Z
u
) with the vector estimated with constraints

(Z
c
). It is calculated as follows: TTS¯ log²L(Z

u
)}L(Z

c
)´. The null hypothesis tested is linkage with

genetic homogeneity. Rejection of the triangle constraints would thus allow to conclude for

heterogeneity, i.e. that some sib-pairs are discordant for the presence of a factor that modifies the

effect of the susceptibility gene. However, given the other assumptions required for the triangle test,

such a conclusion would hold conditionally on Hardy–Weinberg equilibrium at the susceptibility

locus.

Note that the TTS is also equivalent to the difference between the MLS values estimated with and

without constraints. As Holmans (1993) did for the MLS distribution, we used the method of Self &

Liang (1987) to calculate the asymptotic distribution of TTS as a mixture of χ#
"df

and χ#
#df

, subject

to the condition that, in a first step, the MLS
u
test yielded a value greater than a threshold A chosen

as the criteria for a conclusion of linkage (see Appendix I). We calculated and presented in Table 5

the criteria for the TTS test of any size and considering various values of A. Note that to apply the

TTS test conditionally on MLS
u

exceeding a given threshold A leads to an increase in the criteria of

the TTS, in comparison with the situation where the TTS would be directly applied. However, the

interest of this strategy in two steps is first to detect linkage (in both the presence or the absence of

heterogeneity) and second to search for such heterogeneity. Since the TTS distribution was derived

under the hypothesis of no linkage, this test is quite conservative. The values are calculated with a

program written in S language that is available on request from the authors.

Note that in the case of genome screening, the strategy proposed here requires some correction for

multiple testing. The initial analyses with the MLS
u
test can be corrected as in other linkage studies,

either by using thresholds like those calculated by Krugklyak & Lander (1995) on the assumption

of a very dense and polymorphic map, or by calculating the p values corresponding to the real marker

map, by simulation. The second step of the analysis is conditional on the first step and involves only
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Table 5. Thresholds of various sizes for the TTS test conditionally on MLS
u

exceeding a given

value A

(a) When parents are typed
Size of test

A
nb

alleles 0.05 0.01 0.001 0.0001 0.00001

2 2 3±02 3±71 4±70 5±69 6±69
5 3±01 3±70 4±69 5±69 6±68

20 3±01 3±70 4±69 5±69 6±68
2±2a 2 3±22 3±91 4±90 5±89 6±89

5 3±21 3±90 4±89 5±89 6±88
20 3±21 3±90 4±89 5±89 6±88

3 2 4±01 4±70 5±69 6±69 7±68
5 4±00 4±69 5±69 6±68 7±68

20 4±00 4±69 5±68 6±68 7±67
3±6b 2 4±59 5±29 6±29 7±28 8±28

5 4±59 5±28 6±28 7±28 8±27
20 4±58 5±28 6±28 7±28 8±27

4 2 5±00 5±69 6±69 7±68 8±68
5 4±99 5±69 6±68 7±68 8±67

20 4±99 5±69 6±68 7±67 8±67

(b) When parents are not typed
2 2 3±04 3±73 4±72 5±72 6±71

5 3±03 3±72 4±71 5±70 6±70
20 3±01 3±70 4±69 5±69 6±68

2±2a 2 3±24 3±93 4±92 5±91 6±91
5 3±23 3±92 4±91 5±90 6±90

20 3±21 3±90 4±89 5±89 6±88
3 2 4±03 4±72 5±72 6±71 7±71

5 4±02 4±71 5±70 6±70 7±69
20 3±99 4±69 5±69 6±68 7±68

3±6b 2 4±62 5±31 6±31 7±31 8±31
5 4±60 5±30 6±30 7±30 8±29

20 4±59 5±28 6±28 7±28 8±27
4 2 5±02 5±72 6±71 7±71 8±70

5 5±01 5±70 6±70 7±69 8±69
20 4±99 5±69 6±69 7±68 8±67

a Threshold corresponding to p¯ 7±10−% proposed by Lander & Kruglyak (1995) as suggestive linkage.
b Threshold corresponding to p¯ 2±10−& proposed by Lander & Kruglyak (1995) as significant linkage.

the markers detected by the MLS
u
test. It can thus be, for simplicity’s sake, corrected by the number

of tested markers with the Bonferroni correction.

D

Most complex diseases are presented over a broad clinical spectrum (e.g. rheumatoid arthritis, with

or without rheumatoid factor, subcutaneous nodules or other extra-articular manifestations). For

these diseases, the phenotype–genotype correspondence is not often evident; one difficulty is

classifying individuals as affected or unaffected. The issue of classification has often been raised in

linkage analysis as a problem that can lead to a substantial decrease of the power to detect linkage.

Moreover, for complex diseases, there may be a large number of associated traits that are not specific

to the disease under study (e.g. asthma with allergy, bronchial hyperresponsiveness) and

environmental factors (allergy with smoking habits, pollution, animals, pollen exposure). Similarly,

these diseases may depend on several genes. All these factors may interact with the genes involved

in a disease. In such cases, the same genetic model would not underlie the phenotypes of two



Triangle test statistic 441

individuals affected by the same disease but differing for the presence of one of these associated

factors. We show here that such heterogeneity between sibs may induce departure from the triangle

constraints in the IBD distribution and substantially decrease the power to detect linkage when

using the constraints of the MLS
c
test. Under some models of heterogeneity, there may be very large

differences in power depending upon whether the triangle constraints are applied or not, i.e. on

whether the MLS
c

or the MLS
u

test is used. The advantage of the strategy we propose here, using

the MLS
u

followed by TTS, rather than the MLS
c
, will clearly depend on the underlying model and

on the proportion of pairs discordant for this factor. This proportion depends on the ascertainment

mode, but we show here realistic situations that can result in a large proportion of discordant pairs.

One such example is the situation where the selection criteria imply that the first selected sib

(proband) has B (or does not have B). An interesting illustration is the application of the TTS test

to simulated data of sib-pairs affected by a disease having two forms (severe or mild), which were

provided by GAW 11 (Quesneville et al. 1999). Since the ascertainment mode required that the first

sib have a severe form of the disease, the proportion of pairs discordant for disease severity was quite

large. The TTS test led to the conclusion that a genetic factor linked to one of the markers studied

had a different type of involvement in the severe and mild forms of the disease.

In conclusion, the gain in power obtained by using the triangle constraints with the MLS
c
test in

the absence of heterogeneity appears smaller than the loss of power that occurs when these

constraints are used under some models of heterogeneity. Moreover, for most complex diseases it is

not possible to control concordance for all associated factors when selecting affected sib-pairs,

because of the number of factors that may be present. There may also be unidentified factors, which

could not in any case be controlled for. In such situations, the strategy proposed here, the MLS
u
test

followed by the TTS, may be of interest because it would allow linkage to be detected even in the

presence of possible heterogeneity and would, moreover, detect such heterogeneity.
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 

Derivation of the asymptotic distribution of the triangle test statistic (TTS)

Because the TTS test will be applied to test genetic homogeneity only on markers for which linkage

has been concluded by the MLS
u

test without constraints, the distribution of TTS is derived

conditionally on MLS
u

exceeding a given threshold A, the criterion used to conclude for linkage.
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The conditional probability that TTS exceeds a value K is:

α ¯P(TTS K rMLS
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As in Holmans (1993), we derived the numerator γ of (1) for the four regions V, T‘, U1, U2 in the

plane of the normalized transform (z0, z1) of (Z0, Z1):
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with θ}2π being the probability to be in the triangle (T« ).


