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Then, assuming Hardy-Weinberg equilibrium at the disease locus, the triangle constraints are valid as long as the phenotypes of the two sibs in all pairs are determined by the same genetic model (i.e. as long as the probability for a given genotype to be affected is the same for both). In this study, we present many realistic situations where the triangle constraints do not apply. These situations can occur when the two sibs differ for a factor that modifies the penetrance function. This factor may be a specificity of the trait itself, e.g. severe vs. mild form, or the presence\absence of an associated trait or an environmental factor. For such situations, we propose a new strategy that uses departure from the triangle constraints to search for both linkage and heterogeneity.

Departure from the triangle constraints Models

Let us consider a phenotype A and a factor B. Let there be a bi-allelic locus H (H,h) at which Hardy-Weinberg equilibrium is assumed. This gene is involved in trait A, but with an effect that differs according to whether or not factor B is present. The parameters of this model are q, the frequency of the allele h, and f AB+ and f AB-, the probabilities of the phenotype A given the genotype and the presence or not of factor B, such that : hh hH HH f AB+ l (f1, f2, f3) f AB-l (f1h, f2h, f3h).

IBD distribution calculated under genetic models

Consider a sample of sib-pairs all of whom have trait A : among them, a proportion β are discordant for B. Since it will be assumed later that B is always present in at least one sib of the pair, the proportion of concordant pairs for B is simply (1kβ).

(1) When all pairs are discordant for B ( β l 100 %). The IBD distribution expected at a highly polymorphic (heterozygosity equal to 100 %) marker M strictly linked to the locus H (negligible recombination fraction), among sib pairs concordant for A but discordant for B, has been calculated under different models. We calculated the IBD distribution, first under simple models with q l 0n1, f3 l f3h l 0, f1 l f1h l 0n1 and penetrance ratio values λ ( l f2\f1) and λh (l f2h\f1h) ranging from 0 to 5.

Table 1 reports the IBD distribution for these models. Departure from the triangle constraints occurs for the models studied here, only when the order of the penetrance vectors f AB+ and f AB-is inverted (i.e. λ 1 and λh 1 or vice versa). The larger the difference between λ and λh, the greater the departure from the triangle constraints. For example, consider the model with λ l 0 and λh l 5 : the expected vector (z2, z1, z0) is (0n09, 0n83, 0n08) and thus deviates substantially from the constraint z1 0n5. When λ l 0 and λh l 1 (corresponding respectively, to a recessive and a dominant model), the vector (z2,z1,z0) is equal to (0n31, 0n63, 0n06). This departure from the triangle constraint z1 0n5, although smaller than in the preceding example, is nonetheless substantial.

This type of model (where λ 1 and λh 1 or vice versa) may correspond, for example, to a disease whose expression is severe in subjects homozygous for the ' disease ' allele and mild in those who are heterozygous. Another example is the case of two traits A and B, the association of which is assumed to be due only to a locus H involved in both diseases. If trait A is determined at locus H by a dominant genetic model with a penetrance vector equal to f A l (0n9, 0n9, 0n10) and trait B by a recessive model with f B l (0n9, 0n01, 0n01), the resulting penetrance vector for the phenotype of A λ l 0.1 λ l 0.5 λ l 1 λ l 2 λ l 3 λ l 4 λ l 5 λ, λh are the respective penetrance ratios (f2\f1) and (f2h\f1h) of the penetrance vectors f AB+ l (f1, f2, f3) and f AB-l (f1h, f2h, f3h ) IBD distributions have been calculated with q l 0n1, f1 l f1' l 0n1 and f3 l f3h l 0 Vector Z l z2 z1 z0 defined in the text. Results are symmetrical according to λ and λh. Z vectors written in bold type correspond to the case where z " 0n5.

Table 2. Expected IBD distribution among sib-pairs discordant for factor B under different genetic models and B together (f AB+ ) is then equal to (0n81, 0n009, 0n001), and the vector for the phenotype of A without B (f AB-) is (0n09, 0n891, 0n099). When B is present, the homozygous genotype confers the highest risk ; conversely, when B is absent, the heterozygous genotype is at the greatest risk.

Models Z vector (z2, z1, z0) Area M1 q l 0n3, f A l (0n9, 0n9, 0n1) f B l (0n9, 0n01, 0n01) 0n07, 0n70, 0n23 1 (f AB+ ) l (0n81, 0n009, 0n001) (f AB-) l (0n09, 0n891, 0n099) M2 q l 0n5, f A l (1, 1, 0n01), f B l (0n9, 0n009, 0n009) 0n07, 0n63, 0n30 2 (f AB+ ) l (0n9, 0n009, 0n00009) (f AB-) l (0n1, 0n991, 0n00991) M3 q l 0n01, f A l (1, 0n01, 0n01), f B l (0n9, 0n9, 0n009) 0n57, 0n24, 0n19 3 (f AB+ ) l (0n9, 0n009, 0n00009) (f AB-) l (0n1, 0n001, 0n00991) M4 q l 0n1, f A l (1, 0n1, 0n1), f B l (0n9, 0n9, 0n009) 0n21, 0n40, 0n39 4 (f AB+ ) l (0n9, 0n09, 0n0009) (f AB-) l (0n1, 0n01, 0n0991) M5 q l 0n5, f A l (0n5, 0n3, 0n1), f B l (0n9, 0, 0) 0n09, 0n60, 0n32 5 (f AB+ ) l (0n45, 0,0) (f AB-) l (0n05, 0n3, 0n1)
All the models we have so far considered lead to departure from the constraint z1 0n5. There are also models that lead to departure from the constraints 2z0 z1, and z0 0n25, which is a consequent constraint upon the two preceding ones. Table 2 includes some simple associated-disease models M i (Table 2) in which the IBD distribution falls outside the triangle into areas A i , depending on which constraint(s) is (are) not respected (Fig. 1). In every model leading to a departure from the triangle constraints we observe an inversion in the penetrance rank order between the two vectors f AB+ and f AB-. However, no simple rules appear to predict which constraint will be violated.

Note, however, that when all penetrances are equal in one of the two vectors f AB+ or f AB-, i.e. when the locus H has no effect on the corresponding phenotype, the IBD distribution expected in Table 3. IBD distribution expected for various proportions β of discordant pairs under the generating model of two associated diseases A and B ( f AB+ l (0n81,0n009,0n001), f AB-l (0n09, 0n891, 0n099) and q l 0n1)

β z2 z1 z0 0n0 0 n79 0n19 0n01 0n1 0 n73 0n25 0n02 0n2 0 n66 0n31 0n04 0n3 0 n59 0n36 0n05 0n4 0 n52 0n42 0n06 0n5 0 n45 0n48 0n07 0n6 0 n39 0n53 0n08 0n7 0 n32 0n59 0n09 0n8 0 n25 0n64 0n11 0n9 0 n18 0n70 0n12 1. 0n08 0n79 0n13
Lines in bold type correspond to IBD distributions with some departure from triangle constraints. discordant pairs is (0n25, 0n5, 0n25). Consequently, departure from the constraints implies that the genetic factor detected is always involved in A but that its effect differs according to whether B is present or not.

(2) For various proportions β between 0 and 1. Most often, any group of sib-pairs selected for disease A will contain a mixture of pairs concordant and discordant for B. In other words, the proportion β of discordant pairs may vary between 0 and 1, depending on the frequency of B and on the strength of association between A and B. Some types of ascertainment may increase the proportion of discordant pairs. In particular, some selection modes imply B for the proband, the first sib selected, but have no particular implication about B and the second sib. One example of this relatively frequent situation is hospital-based ascertainment : the proband will probably have a severe form of the disease, while the sib may not.

Let us now consider this type of situation, where B is present in the first sib of all sib-pairs, but is present in the second sib only in a proportion (1kβ) of pairs. We calculated the IBD distribution expected at a marker M strictly linked to the locus H under the model of two associated diseases (A and B) with f A l (0n9, 0n9, 0n1) and f B l (0n9, 0n01, 0n01) corresponding to the penetrance vectors f AB+ l (0n81, 0n009, 0n001) and f AB-l (0n09, 0n891, 0n099), with q l 0n1, and for different values of β ranging between 0 and 1. The IBD distributions calculated here are the mixture of the IBD distributions among pairs concordant for B (among which the triangle constraints are expected to be verified) and among pairs discordant for B.

The IBD distributions, reported in Table 3, show that values of β greater than 0n5 lead to departure from the triangle constraints. This proportion of discordant pairs is not unrealistic since the expected proportion β of discordant pairs is 0n71 under the model and mode of ascertainment described above. For this value of β, the expected IBD distribution is (0n32, 0n59, 0n09), and the departure from the triangle constraints is not negligible.

Using the MLS to detect linkage in the presence of heterogeneity, with and without the triangle constraints

It has been shown that in absence of heterogeneity, introduction of the triangle constraints in the maximization of the MLS increased the power to detect linkage [START_REF] Holmans | Asymptotic properties of affected-sib-pair linkage analysis[END_REF]. It would thus be interesting to examine the influence of the triangle constraints on the power of the MLS test to detect 

β l 0n4 8 9 \115 510\612 T\11 67\87 430\552 β l 0n3 5 1 \60 205\265 T\10 46\60 184\238 β l 0n2 3 4 \44 119\154 T\T 32\41 108\140 β l 0n1 2 4 \31 72\93 T\T 23\30 67\87 β l 0 1 9 \24 48\62 T\T 17\21 48\62 *, defined in Table 2.
β, proportion of discordant pairs. _, 10 000 sib-pairs. T, 10 sib-pairs. Results in bold type correspond to the case where the mean number of sib-pairs required by the MLS c is greater than the one required by the MLS u . linkage in the presence of heterogeneity. We considered the 5 different genetic models in Table 2, which, in discordant sib-pairs, result in IBD distribution in each of the 5 areas outside the triangle (Fig. 1). We also consider various values for β, the proportion of discordant pairs. We calculated the sample sizes required to detect linkage with each statistic, MLS c (estimated with constraints) and MLS u (estimated without constraints), using the exact IBD distributions expected under given models in a sample of infinite size. These exact distributions are calculated assuming a complete polymorphic marker and known parental genotypes at this marker Let Z u l (Z0 u , Z1 u , Z2 u ) be the IBD distribution expected under the generating model, Z c l (Z0 c , Z1 c , Z2 c ) be the IBD distribution expected under the same model but estimated with the triangle constraints, and Z ! be the distribution under the hypothesis of no linkage (0n25, 0n5, 0n25). For a sample size N, the expected MLS c score can be deduced as follows :

MLS c l log (L(Z c )\L(Z ! )) l log (Z2 c N.Z#u .Z1 c N.Z"u .Z0 c N.Z!u \0n25 N.Z#u .0n5 N.Z"u .0n25 N.Z!u ) l N.[Z2 u .log(Z2 c \0n25)jZ1 u .log(Z1 c \0n5)jZ0 u .log (Z0 c \0n25)].
Similarly the MLS u score can be calculated by replacing Z c with Z u. The sample sizes N for which the MLS c and MLS u values exceed a given threshold may be calculated. The power corresponding to these sizes is roughly 50 %. For a type 1 error of 1m\ oo and a highly polymorphic marker, the threshold is 2n32 for MLS c (given by [START_REF] Holmans | Asymptotic properties of affected-sib-pair linkage analysis[END_REF]) and 3 for MLS u (this threshold can be determined easily given that 2ln(10) ; MLS u follows a χ# distribution asymptotically with 2 ..). Table 4 reports sample sizes required for a type 1 error of 1m\ oo and 50 % power, for the five models and various values of β. For models M2 and M5, when the proportion of discordant pairs is 0n5 or more, the MLS u requires much smaller sample sizes than the MLS c test. The same is true for models M1 and M4 when the β values equal or exceed 0n6 and 0n7, respectively. Moreover, for some proportions β in these models (exceeding a value that ranges from 0n5 to 0n8), linkage can never be detected with the MLS c test : when the vector Z is estimated within the triangle constraints, it tends to be very close to the null hypothesis vector (0n25, 0n5, 0n25), so that a sample of an infinite number of pairs is required for the MLS c . In contrast, very reasonable sample sizes will be sufficient to detect linkage with the MLS u test. On the other hand, when β is less than 0n5, the MLS u test becomes less powerful than the MLS c test for the models considered here. In the absence of heterogeneity (i.e. β l 0), however, the differences between the sample sizes required for each method do not exceed 15 pairs. For model M3, the MLS c test can detect linkage with small sample sizes even when the proportion of discordant pairs is 100 %. However, the sizes required by the MLS u are only slightly larger (differences of size no more than 5 pairs).

It appears that for some models, the gain in power obtained by using the triangle constraints in the absence of heterogeneity is much smaller than the loss of power that occurs when these constraints are used in the presence of heterogeneity.

Strategy of detection of linkage accounting for heterogeneity

When heterogeneity is suspected, it may thus be appropriate to use the MLS u rather than the MLS c , since the former allows linkage to be detected in either the presence or absence of heterogeneity.

We propose the following strategy, which includes an initial search for linkage with the MLS u test. The MLS u score can be transformed by 2.Ln(10).MLS u l 2Ln [L(Z u )\L(Z ! )], which follows a χ# distribution asymptotically with 2 .. If linkage is detected by this first test, we propose a second step to search for heterogeneity by testing the triangle constraints. The triangle test statistic (TTS) compares the vector Z estimated without constraints (Z u ) with the vector estimated with constraints (Z c ). It is calculated as follows : TTS l logoL(Z u )\L(Z c )q. The null hypothesis tested is linkage with genetic homogeneity. Rejection of the triangle constraints would thus allow to conclude for heterogeneity, i.e. that some sib-pairs are discordant for the presence of a factor that modifies the effect of the susceptibility gene. However, given the other assumptions required for the triangle test, such a conclusion would hold conditionally on Hardy-Weinberg equilibrium at the susceptibility locus.

Note that the TTS is also equivalent to the difference between the MLS values estimated with and without constraints. As [START_REF] Holmans | Asymptotic properties of affected-sib-pair linkage analysis[END_REF] did for the MLS distribution, we used the method of [START_REF] Self | Asymptotic properties of maximum likelihood estimators and likelihood ratio tests under non-standard conditions[END_REF] to calculate the asymptotic distribution of TTS as a mixture of χ# "df and χ# #df , subject to the condition that, in a first step, the MLS u test yielded a value greater than a threshold A chosen as the criteria for a conclusion of linkage (see Appendix I). We calculated and presented in Table 5 the criteria for the TTS test of any size and considering various values of A. Note that to apply the TTS test conditionally on MLS u exceeding a given threshold A leads to an increase in the criteria of the TTS, in comparison with the situation where the TTS would be directly applied. However, the interest of this strategy in two steps is first to detect linkage (in both the presence or the absence of heterogeneity) and second to search for such heterogeneity. Since the TTS distribution was derived under the hypothesis of no linkage, this test is quite conservative. The values are calculated with a program written in S language that is available on request from the authors.

Note that in the case of genome screening, the strategy proposed here requires some correction for multiple testing. The initial analyses with the MLS u test can be corrected as in other linkage studies, either by using thresholds like those calculated by Krugklyak & Lander (1995) on the assumption of a very dense and polymorphic map, or by calculating the p values corresponding to the real marker map, by simulation. The second step of the analysis is conditional on the first step and involves only the markers detected by the MLS u test. It can thus be, for simplicity's sake, corrected by the number of tested markers with the Bonferroni correction.

D

Most complex diseases are presented over a broad clinical spectrum (e.g. rheumatoid arthritis, with or without rheumatoid factor, subcutaneous nodules or other extra-articular manifestations). For these diseases, the phenotype-genotype correspondence is not often evident ; one difficulty is classifying individuals as affected or unaffected. The issue of classification has often been raised in linkage analysis as a problem that can lead to a substantial decrease of the power to detect linkage. Moreover, for complex diseases, there may be a large number of associated traits that are not specific to the disease under study (e.g. asthma with allergy, bronchial hyperresponsiveness) and environmental factors (allergy with smoking habits, pollution, animals, pollen exposure). Similarly, these diseases may depend on several genes. All these factors may interact with the genes involved in a disease. In such cases, the same genetic model would not underlie the phenotypes of two individuals affected by the same disease but differing for the presence of one of these associated factors. We show here that such heterogeneity between sibs may induce departure from the triangle constraints in the IBD distribution and substantially decrease the power to detect linkage when using the constraints of the MLS c test. Under some models of heterogeneity, there may be very large differences in power depending upon whether the triangle constraints are applied or not, i.e. on whether the MLS c or the MLS u test is used. The advantage of the strategy we propose here, using the MLS u followed by TTS, rather than the MLS c , will clearly depend on the underlying model and on the proportion of pairs discordant for this factor. This proportion depends on the ascertainment mode, but we show here realistic situations that can result in a large proportion of discordant pairs. One such example is the situation where the selection criteria imply that the first selected sib (proband) has B (or does not have B). An interesting illustration is the application of the TTS test to simulated data of sib-pairs affected by a disease having two forms (severe or mild), which were provided by GAW 11 [START_REF] Quesneville | Departure from the triangle constraints in discordant sib-pairs : a test for genetic heterogeneity[END_REF]. Since the ascertainment mode required that the first sib have a severe form of the disease, the proportion of pairs discordant for disease severity was quite large. The TTS test led to the conclusion that a genetic factor linked to one of the markers studied had a different type of involvement in the severe and mild forms of the disease.

In conclusion, the gain in power obtained by using the triangle constraints with the MLS c test in the absence of heterogeneity appears smaller than the loss of power that occurs when these constraints are used under some models of heterogeneity. Moreover, for most complex diseases it is not possible to control concordance for all associated factors when selecting affected sib-pairs, because of the number of factors that may be present. There may also be unidentified factors, which could not in any case be controlled for. In such situations, the strategy proposed here, the MLS u test followed by the TTS, may be of interest because it would allow linkage to be detected even in the presence of possible heterogeneity and would, moreover, detect such heterogeneity.

The conditional probability that TTS exceeds a value K is : α l P(TTS K Q MLS u A) l P(MLS u kMLS c K and MLS u A)\P(MLS u A) l P(MLS u sup(A,MLS c jK))\P(MLS u A)

(1)

with P(MLS u A) l P(χ# #df A) As in [START_REF] Holmans | Asymptotic properties of affected-sib-pair linkage analysis[END_REF], we derived the numerator γ of (1) for the four regions V, T', U1, U2 in the plane of the normalized transform (z0, z1) of (Z0, Z1) : γ l Σ i γ i l Σ i P(MLS u ? i) P(MLS u sup (A,MLS c jK) Q MLS u ? i) 1. For MLS u ? Th : γ " l 0 2. For MLS u ? V:γ # l [(πkθ)\2π] P(MLS u sup (A,K)) l [(πkθ)\2π] P(χ# #df sup (A,K)) 3. For MLS u ? U1 or U2 : if K A then γ $ l 1\4[ A-K ! P(MLS u kMLS c Aky)P(MLS c l y)dy j _ A-K P(MLS u kMLS c K)P(MLS c l y)dy] l 1\4[ A-K ! P(χ# "df Aky)P(χ# "df l y)dyjP(χ# "df

K)P(χ# "df AkK)] if K A then γ $ l 1\4P(MLS u kMLS c K) l 1\4 P(χ# "df K)
with θ\2π being the probability to be in the triangle (Th ).
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Fig. 1 .

 1 Fig. 1. Division of the (Z0, Z1) plane into areas (1-5) when there is departure from the triangle constraints.

Table 1 .

 1 Distribution IBD (vector Z) expected among sib-pairs concordant for trait A but discordant for factor B, for various values of λ and λh

	λh l 5

.38 0.54 0.07 0.35 0.57 0.08 0.33 0.58 0.08 0.33 0.59 0.08 0.32 0.59 0.08 λh

  

	l 0	0.83 0.17 0.0**	0.71 0.27 0.02	0.5 0.45 0.05	0

.31 0.63 0.06 0.19 0.74 0.07 0.14 0.78 0.08 0.11 0.81 0.08 0.09 0.83 0.08 λ l 0

  

Table 4 .

 4 Mean number of sib-pairs required to detect linkage with type 1 error of 1= and 50 % power with MLS c versus MLS u (N MLSc \N MLSu ), estimated respectively, with and without the constraints

	Models* :					
		M1	M2	M3	M4	M5
	β l 1	_\54	_\62	24\29	_\145	_\80
	β l 0n9	_\103	_\97	20\24	_\242	_\131
	β l 0n8	_\195	_\189	16\20	2283/323	_\278
	β l 0n7	2667/313	_\444	14\17	430/275	_\667
	β l 0n6	374/303	_\1132	12\15	180\201	_\2727
	β l 0n5	169\208	3053/1395	10\13	103\130	3200/2804

Table 5 .

 5 Thresholds of various sizes for the TTS test conditionally on MLS u exceeding a given value A Threshold corresponding to p l 7n10 -% proposed by Lander & Kruglyak (1995) as suggestive linkage. b Threshold corresponding to p l 2n10 -& proposed by Lander & Kruglyak (1995) as significant linkage.

	(a) When parents are typed					
					Size of test	
		nb					
	A	alleles	0.05	0.01	0.001	0.0001	0.00001
	2	2	3 n02	3n71	4n70	5n69	6n69
		5	3 n01	3n70	4n69	5n69	6n68
		20	3n01	3n70	4n69	5n69	6n68
	2n2 a	2	3 n22	3n91	4n90	5n89	6n89
		5	3 n21	3n90	4n89	5n89	6n88
		20	3n21	3n90	4n89	5n89	6n88
	3	2	4 n01	4n70	5n69	6n69	7n68
		5	4 n00	4n69	5n69	6n68	7n68
		20	4n00	4n69	5n68	6n68	7n67
	3n6 b	2	4 n59	5n29	6n29	7n28	8n28
		5	4 n59	5n28	6n28	7n28	8n27
		20	4n58	5n28	6n28	7n28	8n27
	4	2	5 n00	5n69	6n69	7n68	8n68
		5	4 n99	5n69	6n68	7n68	8n67
		20	4n99	5n69	6n68	7n67	8n67
	(b) When parents are not typed					
	2	2	3 n04	3n73	4n72	5n72	6n71
		5	3 n03	3n72	4n71	5n70	6n70
		20	3n01	3n70	4n69	5n69	6n68
	2n2 a	2	3 n24	3n93	4n92	5n91	6n91
		5	3 n23	3n92	4n91	5n90	6n90
		20	3n21	3n90	4n89	5n89	6n88
	3	2	4 n03	4n72	5n72	6n71	7n71
		5	4 n02	4n71	5n70	6n70	7n69
		20	3n99	4n69	5n69	6n68	7n68
	3n6 b	2	4 n62	5n31	6n31	7n31	8n31
		5	4 n60	5n30	6n30	7n30	8n29
		20	4n59	5n28	6n28	7n28	8n27
	4	2	5 n02	5n72	6n71	7n71	8n70
		5	5 n01	5n70	6n70	7n69	8n69
		20	4n99	5n69	6n69	7n68	8n67
	a